

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc717-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C717/770/771

NOTES:

FIGURE 2-3: REGISTER FILE MAP

A	File ddress	A	File ddress		File Address	Δ	File ddress
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	- I OIL	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh		8Fh	PMADRH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h	P1DEL	97h		117h		197h
	18h		98h		118h		198h
	19h		99h		119h		199h
	1Ah		9Ah		11Ah		19Ah
	1Bh	REFCON	9Bh		11Bh		19Bh
	1Ch	LVDCON	9Ch		11Ch		19Ch
	1Dh	ANSEL	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes			
96 Bytes			EFh		16Fh		1EFh
-		accesses 70h-7Fh	F0h	accesses 70h - 7Fh	170h	accesses 70h - 7Fh	1F0h
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFh

Unimplemented data memory locations, read as '0'.
 * Not a physical register.

2.2.2.8 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

The PCON register also contains the frequency select bit of the INTRC or ER oscillator.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

REGISTER 2-8: POWER CONTROL REGISTER (PCON: 8Eh)

- n = Value at POR

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-q	R/W-q
_	—	—	—	OSCF	_	POR	BOR
bit 7							bit 0

bit 7-4	Unimplemented: Read as '0'
bit 3	OSCF: Oscillator Speed bit
	INTRC Mode
	1 = 4 MHz nominal
	0 = 37 kHz nominal
	ER Mode
	 1 = Oscillator frequency depends on the external resistor value on the OSC1 pin. 0 = 37 kHz nominal
	All other modes
	x = Ignored
bit 2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit (See Section 2.2.2.8 Note)
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)
	Legend: q = Value depends on conditions
	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set

'0' = Bit is cleared

x = Bit is unknown

The RB0 pin is multiplexed with the A/D converter analog input 4 and the external interrupt input (RB0/AN4/ INT). When the pin is used as analog input, the ANSEL register must have the proper value to select the RB0 pin as Analog mode. The RB1 pin is multiplexed with the A/D converter analog input 5 and the MSSP module slave select input (RB1/AN5/SS). When the pin is used as analog input, the ANSEL register must have the proper value to select the RB1 pin as Analog mode.

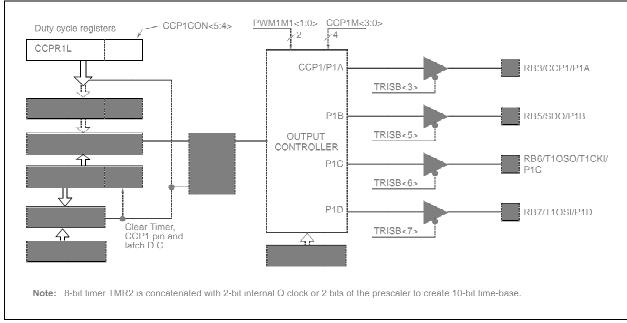

Note: Upon RESET, the ANSEL register configures the RB1 and RB0 pins as analog inputs. Both RB1 and RB0 pins will read as '1'.

FIGURE 3-7: BLOCK DIAGRAM OF RB0/AN4/INT, RB1/AN5/SS PIN

8.3 PWM Mode

In Pulse Width Modulation (PWM) mode, the ECCP module produces up to a 10-bit resolution PWM output. Figure 8-3 shows the simplified PWM block diagram.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM PERIOD = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 PRESCALE VALUE)$

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 7.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

8.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

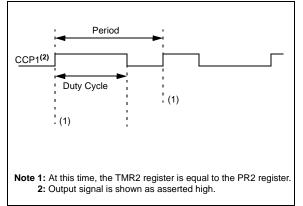
The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

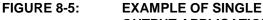
When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

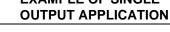
Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.


8.3.3 PWM OUTPUT CONFIGURATIONS


The PWM1M1 bits in the CCP1CON register allows one of the following configurations:


- · Single output
- · Half-Bridge output
- Full-Bridge output, Forward mode
- Full-Bridge output, Reverse mode

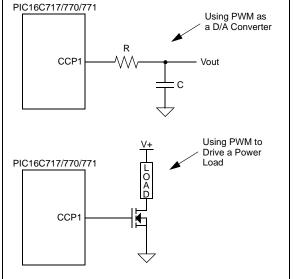

In the Single Output mode, the RB3/CCP1/P1A pin is used as the PWM output. Since the CCP1 output is multiplexed with the PORTB<3> data latch, the TRISB<3> bit must be cleared to make the CCP1 pin an output.

FIGURE 8-4: SINGLE PWM OUTPUT

In the Half-Bridge Output mode, two pins are used as outputs. The RB3/CCP1/P1A pin has the PWM output signal, while the RB5/SDO/P1B pin has the complementary PWM output signal. This mode can be used for half-bridge applications, as shown on Figure 8-7, or for full-bridge applications, where four power switches are being modulated with two PWM signal.

Since the P1A and P1B outputs are multiplexed with the PORTB<3> and PORTB<5> data latches, the TRISB<3> and TRISB<5> bits must be cleared to configure P1A and P1B as outputs.

In Half-Bridge Output mode, the programmable deadband delay can be used to prevent shoot-through current in bridge power devices. See Section 8.3.5 for more details of the deadband delay operations.

REGISTER 9-1: SYNC SERIAL PORT STATUS REGISTER (SSPSTAT: 94h)

R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7	•						bit
SMP: Sam	ple bit						
SPI Master							
	ata sampled a						
0 = Input d SPI Slave	ata sampled a	at middle of c	ata output t	me			
	be cleared wi	hen SPI is us	sed in Slave	mode			
	ter or Slave m						
	te control disa				KHz and 1 M	Hz)	
0= Slew ra	te control ena	bled for High	n Speed moo	le (400 kHz)			
	Clock Edge S	elect (Figure	9-3, Figure	9-5, and Figu	ıre 9-6)		
<u>CKP = 0</u>							
	ansmitted on						
0 = Data tr <u>CKP = 1</u>	ansmitted on	failing edge	OF SCK				
	ansmitted on	falling edge	of SCK				
	ansmitted on						
	Address bit (l2						
	es that the las		• •	nitted was da	ta		
0 = Indicat	es that the las	st byte receiv	ed or transn	nitted was ad	dress		
P: STOP b	it						
(I ² C mode	only. This bit i	is cleared wh	nen the MSS	P module is	disabled, SS	PEN is cleare	ed)
	es that a STO		en detected	last (this bit i	s '0' on RESI	ET)	
	bit was not de	etected last					
S: START				_			
	only. This bit i es that a STA						ed)
	bit was not d		en delected	i last (this bit	IS U UII REC	D⊏1)	
	Write bit info		mode only)				
	ds the R/W bi			e last addres	s match. This	s bit is only va	alid from t
	atch to the ne						
<u>In I²C Slav</u>							
1 = Read							
0 = Write In I ² C Mas	tor mode						
	nit is in progre	22					
	nit is not in pro						
	bit with SEN,		, RCEN, or a	AKEN will inc	licate if the N	ISSP is in ID	LE mode
UA: Updat	e Address (10)-bit I ² C mod	e only)				
1 = Indicate	es that the us	er needs to ι	update the a	ddress in the	SSPADD re	gister	
0 = Addres	s does not ne	ed to be upo	lated				
	Full Status bit						
	PI and I ² C mo						
	e complete, S						
	e not complet ² C mode only		is empty				
	ransmit in pro		not include t	he ACK and	STOP bits).	SSPBUF is fu	III
	ransmit compl						
Locardi							
Legend:	hla hit	\\/ _ \\/	ritabla bit		nlamontad h	it read as 'O'	
R = Reada		vv = vv	ritable bit	0 = 0.00		it, read as '0'	

- n = Value at POR

'1' = Bit is set

x = Bit is unknown

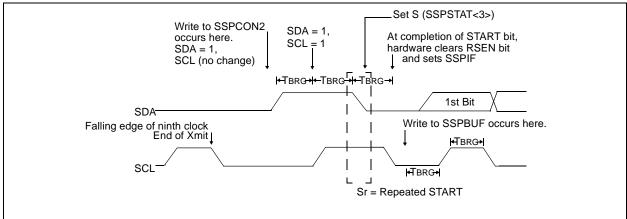
'0' = Bit is cleared

9.2.11 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated START condition occurs when the RSEN bit (SSPCON2<1>) is set high while the I^2C module is in the idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the baud rate generator is loaded with the contents of SSPADD<6:0> and begins counting. The SDA pin is released (brought high) for one baud rate generator count (TBRG). When the baud rate generator times out, if SDA is sampled high, the SCL pin will be de-asserted (brought high). When SCL is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. SDA and SCL must be sampled high for one TBRG period. This action is then followed by assertion of the SDA pin (SDA is low) for one TBRG period while SCL is high. As soon as a START condition is detected on the SDA and SCL pins, the S bit (SSPSTAT<3>) will be set. Following this, the baud rate generator is reloaded with the contents of SSPAD<6:0> and begins counting. When the BRG times out a third time, the RSEN bit in the SSPCON2 register is automatically cleared and SCL is pulled low. The SSPIF flag is set, which indicates the Restart sequence is complete.

- Note 1: If RSEN is set while another event is in progress, it will not take effect. Queuing of events is not allowed.
 - 2: A bus collision during the Repeated START condition occurs if either of the following is true:
 - a) SDA is sampled low when SCL goes from low to high.
 - b) SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data "1".

Immediately following the SSPIF bit transition to true, the user may write the SSPBUF with the 7-bit address in 7-bit mode, or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then perform one of the following:

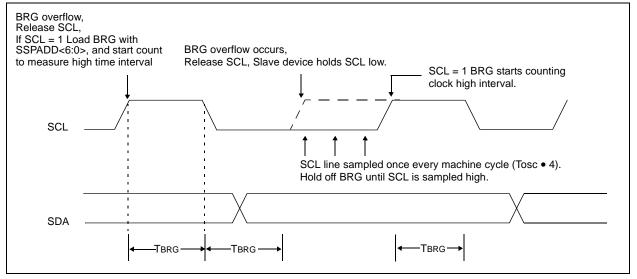

- Transmit an additional eight bits of address (if the user transmitted the first half of a 10-bit address with $R/\overline{W} = 0$),
- Transmit eight bits of data (if the user transmitted a 7-bit address with R/W = 0), or
- Receive eight bits of data (if the user transmitted either the first half of a 10-bit address or a 7-bit address with R/W = 1).

9.2.11.1 WCOL STATUS FLAG

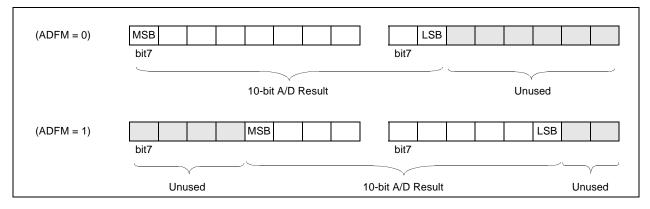
If the user writes the SSPBUF when a Repeated START sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

Note: Because queueing of events is not allowed, writing of the lower five bits of SSPCON2 is disabled until the Repeated START condition is complete.

FIGURE 9-17: REPEAT START CONDITION WAVEFORM



9.2.16 CLOCK ARBITRATION


Clock arbitration occurs when the master, during any receive, transmit or repeated START/STOP condition, de-asserts the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the baud rate generator (BRG) is suspended from counting until the

SCL pin is actually sampled high. When the SCL pin is sampled high, the baud rate generator is reloaded with the contents of SSPADD<6:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 9-22).

FIGURE 9-22: CLOCK ARBITRATION TIMING IN MASTER TRANSMIT MODE

FIGURE 11-2: PIC16C717 10-BIT A/D RESULT FORMAT

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS and ANSEL bits selected as an input. To determine acquisition time, see Section 11.6. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

11.2 Configuring the A/D Module

11.2.1 CONFIGURING ANALOG PORT PINS

The ANSEL and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted. The proper ANSEL bits must be set (analog input) to disable the digital input buffer.

The A/D operation is independent of the state of the TRIS bits and the ANSEL bits.

- Note 1: When reading the PORTA register, all pins configured as analog input channels will read as '0'.
 - 2: When reading the PORTB register, all pins configured as analog pins on PORTB will be read as '1'.
 - **3:** Analog levels on any pin that is defined as a digital input, including the ANx pins, may cause the input buffer to consume current that is out of the devices specification.

11.2.2 CONFIGURING THE REFERENCE VOLTAGES

The VCFG bits in the ADCON1 register configure the A/D module reference inputs. The reference high input can come from an internal reference (VRH) or (VRL), an external reference (VREF+), or AVDD. The low reference input can come from an internal reference (VRL), an external reference (VREF-), or AVss. If an external reference is chosen for the reference high or reference low inputs, the port pin that multiplexes the incoming external references is configured as an analog input, regardless of the values contained in the A/D port configuration bits (PCFG<3:0>).

RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]
	$1 \rightarrow GIE$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'. -C Register f

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d
Operands: Operation:	$0 \le k \le 255$ k \rightarrow (W);	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation.	$TOS \rightarrow PC$	Operation:	See description below
Status Affected:	None	Status Affected:	С
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'. Register f

RETURN	Return from Subroutine	SLEEP				
Syntax:	[label] RETURN	Syntax:	[label SLEEP			
Operands:	None]			
Operation:	$TOS \rightarrow PC$	Operands:	None			
Status Affected:	None	Operation:	$00h \rightarrow WDT$,			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle	Status Affected:	$0 \rightarrow WDT \text{ prescaler,} \\ 1 \rightarrow \overline{TO}, \\ 0 \rightarrow \overline{PD} \\ \overline{TO}, \overline{PD}$			
	instruction.	Description:	The power-down status bit, \overline{PD} is cleared. Time-out status bit, \overline{TO} is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.			

See Section 12.8 for more

details.

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEMTM 1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

14.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

14.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

15.1 DC Characteristics: PIC16C717/770/771 (Commercial, Industrial, Extended) PIC16LC717/770/771 (Commercial, Industrial, Extended) (Continued)

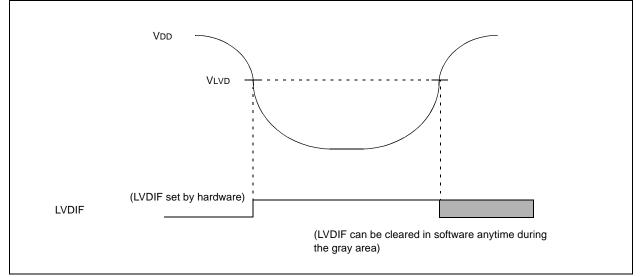
						ture (-40	ditions (unless otherwise stated) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $0^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +125^{\circ}C$ for extended		
PIC16C717/770/771				$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions		
	Idd	Supply Current ⁽²⁾							
D010D D010E		PIC16LC7XX		1.0	2.0 3.0	mA	Fosc = 10 MHz, VDD = 3V, -40°C to 85°C Fosc = 10 MHz, VDD = 3V, -40°C to 125°C		
D010G				0.36	1.0	mA	Fosc = 4 MHz, VDD = 2.5V, -40°C to 125°C		
D010K				11	45	μA	Fosc = 32 kHz, VDD = 2.5V, -40°C to 125°C		
	Idd	Supply Current ⁽²⁾							
D010 D010A		PIC16C7XX		4.0	7.5 12.0	mA	Fosc = 20 MHz, VDD = 5.5V, -40°C to 85°C Fosc = 20 MHz, VDD = 5.5V, -40°C to 125°C		
D010B D010C				2.5	5.0 6.0	mA	Fosc = 20 MHz, VDD = 4V, -40°C to 85°C Fosc = 20 MHz, VDD = 4V, -40°C to 125°C		
D010F				0.55	1.5	mA	Fosc = 4 MHz, VDD = 4V, -40°C to 125°C		
D010H D010J				30	80 95	μA	Fosc = 32 kHz, VDD = 4V, -40°C to 85°C Fosc = 32 kHz, VDD = 4V, -40°C to 125°C		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.


The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

15.4.2 LOW VOLTAGE DETECT MODULE (LVD)

TABLE 15-8:	ELECTRICAL CHARACTERISTICS: LVD
-------------	---------------------------------

DC CHARACTERISTICSStandard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $0^{\circ}C \le TA \le +70^{\circ}C$ for commercialOperating voltage VDD range as described in DC Characteristics Section 15.1.								
Param. Characteristic No.			Symbol	Min	Тур†	Max	Units	Conditions
D420*	LVD Voltage	LVV = 0100		2.5	2.58	2.66	V	
		LVV = 0101		2.7	2.78	2.86	V	
		LVV = 0110		2.8	2.89	2.98	V	
		LVV = 0111		3.0	3.1	3.2	V	
		LVV = 1000		3.3	3.41	3.52	V	
		LVV = 1001	Vlvd	3.5	3.61	3.72	V	
		LVV = 1010		3.6	3.72	3.84	V	
		LVV = 1011		3.8	3.92	4.04	V	
		LVV = 1100		4.0	4.13	4.26	V	
		LVV = 1101	1	4.2	4.33	4.46	V	
		LVV = 1110		4.5	4.64	4.78	V	

These parameters are characterized but not tested.

Note 1: Production tested at Tamb = 25°C. Specifications over temperature limits ensured by characterization.

Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution	_	_	10 bits	bit	Min. resolution for A/D is 4.1 mV, VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- \leq VAIN \leq VREF+
A03	EIL	Integral error		_	±1	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A04	EDL	Differential error	_	_	±1	LSb	No missing codes to 10 bits VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \le VAIN \le VREF+$
A06	EOFF	Offset error		_	±2	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A07	Egn	Gain Error	_	_	±1	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A10		Monotonicity	_	Note 3	—		$AVSS \leq VAIN \leq VREF+$
A20*	Vref	Reference voltage (VREF+ - VREF-)	4.096	_	VDD +0.3V	V	Absolute minimum electrical spec to ensure 10-bit accuracy.
A21*	VREF+	Reference V High (Avdd or VREF+)	VREF-	_	AVdd	V	Min. resolution for A/D is 4.1 mV
A22*	VREF-	Reference V Low (Avss or VREF-)	AVss	_	VREF+	V	Min. resolution for A/D is 4.1 mV
A25*	VAIN	Analog input voltage	VREFL	_	VREFH	V	
A30*	Zain	Recommended impedance of analog voltage source	_	—	2.5	kΩ	
A50*	IREF	VREF input current (Note 2)	_	_	10	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 11.0. During A/D conversion cycle.

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

t

PIC16C717/770/771

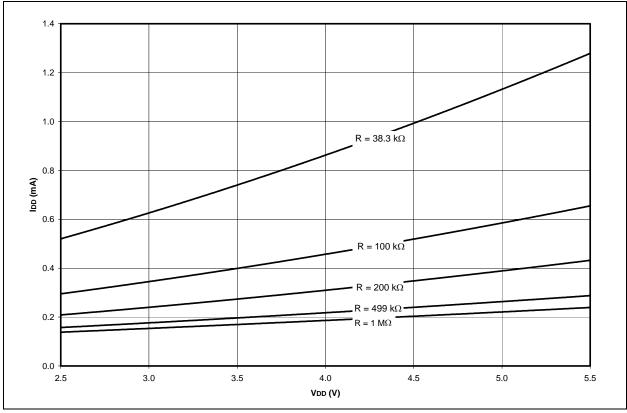
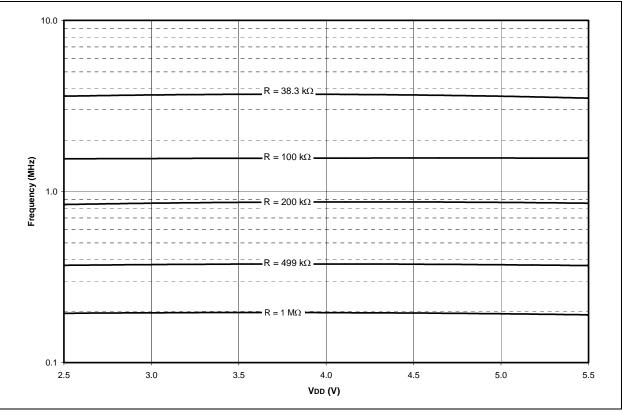
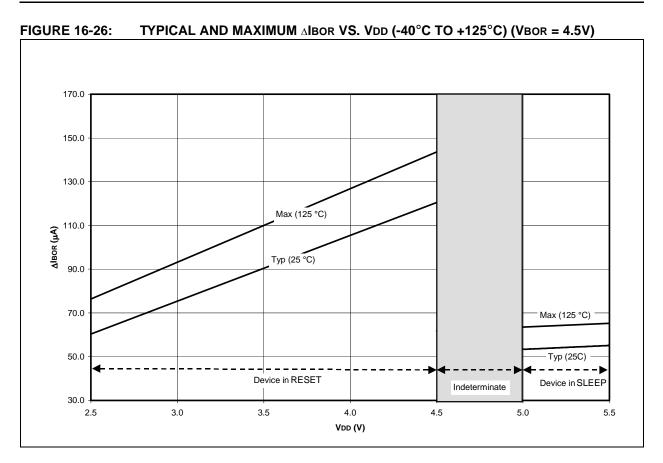
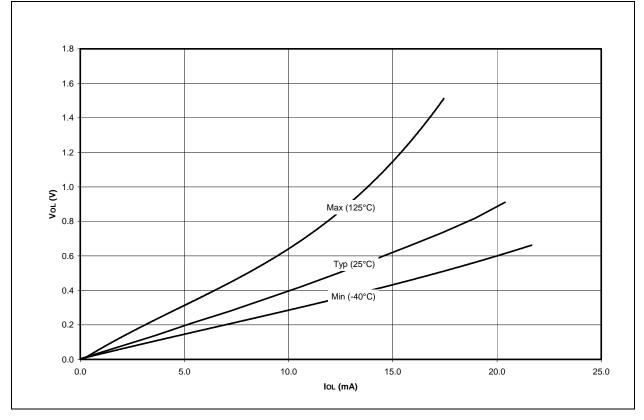
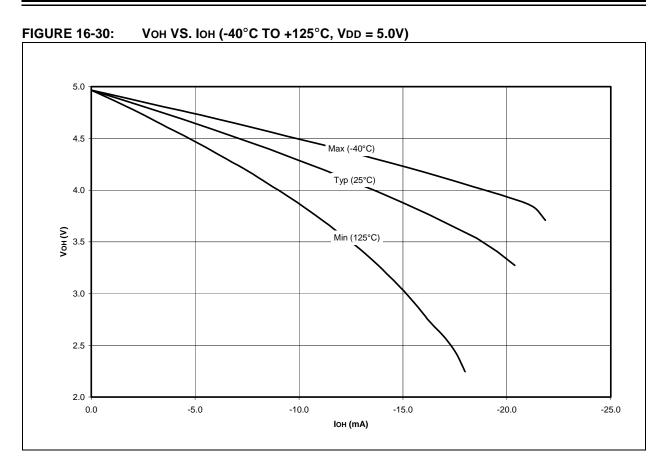
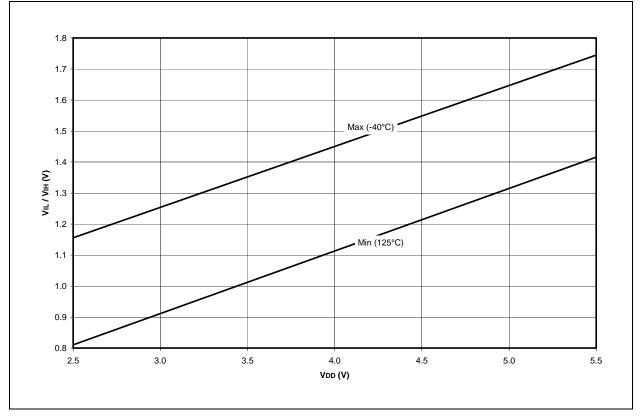
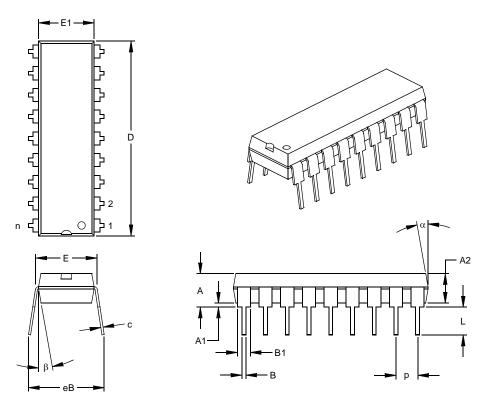



FIGURE 16-11: TYPICAL Fosc VS. VDD (ER MODE)


FIGURE 16-27: Vol VS. Iol (-40°C TO +125°C, VDD = 3.0V)

PIC16C717/770/771



© 1999-2013 Microchip Technology Inc.

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP) 17.2

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

Units		INCHES*		N	IILLIMETERS	
on Limits	MIN	NOM	MAX	MIN	NOM	MAX
n		18			18	
р		.100			2.54	
А	.140	.155	.170	3.56	3.94	4.32
A2	.115	.130	.145	2.92	3.30	3.68
A1	.015			0.38		
E	.300	.313	.325	7.62	7.94	8.26
E1	.240	.250	.260	6.10	6.35	6.60
D	.890	.898	.905	22.61	22.80	22.99
L	.125	.130	.135	3.18	3.30	3.43
С	.008	.012	.015	0.20	0.29	0.38
B1	.045	.058	.070	1.14	1.46	1.78
В	.014	.018	.022	0.36	0.46	0.56
eB	.310	.370	.430	7.87	9.40	10.92
α	5	10	15	5	10	15
β	5	10	15	5	10	15
	n Limits n P A A2 A1 E E1 D L C B1 B eB α	n MIN n P A .140 A2 .115 A1 .015 E .300 E1 .240 D .890 L .125 C .008 B1 .045 B .014 eB .310 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

* Controlling Parameter § Significant Characteristic

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Derwing No. CO4 007

Drawing No. C04-007

INDEX

Α

A/D	105
A/D Converter Enable (ADIE Bit)	17
ADCON0 Register	
ADCON1 Register	
ADRES Register	
Block Diagram	
Configuring Analog Port	
Conversion time	
Conversions	
converter characteristics 164, 165,	
Faster Conversion - Lower Resolution Tradeoff	
Internal Sampling Switch (Rss) Impedence	
Operation During Sleep	
Sampling Requirements	113
Sampling Time	113
Source Impedance	113
Special Event Trigger (ECCP)	
A/D Conversion Clock	
ACK	
Acknowledge Data bit, AKD	
Acknowledge Sequence Enable bit, AKE	
Acknowledge Status bit, AKS	
ACKSTAT	
ADCON0 Register	
ADCON1 Register	
ADRES	
ADRES Register 11, 12,	
AKD	
AKE	
AKS	
Analog-to-Digital Converter. See A/D	
Analog-to-Digital Converter. See A/D Application Note AN578, "Use of the SSP Module	
Application Note AN578, "Use of the SSP Module	84
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment."	
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture	
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram	5
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram	5
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler	5 n6
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram	5 n6
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler	5 n6
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B	5 n 6 141
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory	5 n 6 141 9, 14
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator	5 n6 141 9, 14 84
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator	5 n6 141 9, 14 84
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5 n6 9, 141 9, 14 84 7, 87, 89
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator	5 n6 9, 14 84 7, 87, 89 84
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5 n6 141 9, 14 84 7, 87, 89 84 84 83
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5 n6 141 9, 14 84 7, 87, 89 84 83 76
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	5 n6 141 9, 14 84 7, 87, 89 84 83 76 8, 29, 35
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler	5 n6 141 9, 14 84 7, 87, 89 84 76 8, 29, 35 76 8, 29, 35 70 84 123, 124
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler	5 n6 141 9, 14 84 7, 87, 89 84 76 8, 29, 35 76 8, 29, 35 70 84 123, 124
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler B Banking, Data Memory Baud Rate Generator BF	
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler. B Banking, Data Memory Baud Rate Generator BF Bod Rate Generator BF Bod Rate Generator BF Bod Rate Generator I ² C Master Mode I ² C Module RA3:RA0 and RA5 Port Pins SSP (I ² C Mode) SSP (SPI Mode) BOR. See Brown-out Reset BRG Brown-out Reset (BOR) 117, Buffer Full bit, BF	
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler. B Banking, Data Memory Bud Rate Generator BF Bolock Diagrams Baud Rate Generator I ² C Master Mode I ² C Module RA3:RA0 and RA5 Port Pins SSP (I ² C Mode) SSP (SPI Mode) BOR. See Brown-out Reset BRG Brown-out Reset (BOR) 117, Buffer Full bit, BF Bus Arbitration	5 n6 141 9, 14 84 7, 87, 89 84 76 8, 29, 35 76 70 84 123, 124 77 66 94
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler. B Banking, Data Memory	5 n6 141 9, 14 84 7, 87, 89 84 83 76 8, 29, 35 76 8, 29, 35 70 84 123, 124 77 66 94 97
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler. B Banking, Data Memory Baud Rate Generator BF Baud Rate Generator. I ² C Module RA3:RA0 and RA5 Port Pins SSP (I ² C Mode) SSP (SPI Mode) BOR. See Brown-out Reset BR Brown-out Reset (BOR) 117, Buffer Full bit, BF Bus Arbitration Bus Collision During a RESTART Condition	5 n6 141 9, 14 9, 14 84 7, 87, 89 84 83 76 8, 29, 35 76 70 84 123, 124 97 94 97 95
Application Note AN578, "Use of the SSP Module in the I2C Multi-Master Environment." Architecture PIC16C717/PIC16C717 Block Diagram PIC16C770/771/PIC16C770/771 Block Diagram Assembler MPASM Assembler. B Banking, Data Memory Baud Rate Generator BF Baud Rate Generator. I ² C Master Mode. I ² C Module RA3:RA0 and RA5 Port Pins SSP (I ² C Mode) SSP (SPI Mode) Brown-out Reset BRG Burder Full bit, BF Burder Full Status bit, BF Bus Arbitration Bus Collision During a RESTART Condition	5 n6 141 9, 14 9, 14 84 7, 87, 89 84 76 8, 29, 35 76 70 84 123, 124 97 94 97 94 97 98

С

Capture (ECCP Module)
Block Diagram
CCPR1H:CCPR1L Registers 54
Changing Between Capture Prescalers
ECCP Pin Configuration 54
Software Interrupt 54
Timer1 Mode Selection54
Capture/Compare/PWM (ECCP)
Capture Mode. See Capture
Compare Mode. See Compare
PWM Mode. See PWM
CCP1CON
CCP2CON
CCPR1H Register 11, 13
CCPR1L Register 13
CCPR2H Register 13
CCPR2L Register 13
CKE 66
CKP 67
Clock Polarity Select bit, CKP 67
Code Examples
Loading the SSPBUF register 71
Code Protection 117, 131
Compare (ECCP Module)
Block Diagram 55
CCPR1H:CCPR1L Registers 54
ECCP Pin Configuration 54
Software Interrupt 55
Special Event Trigger 49, 55
Timer1 Mode Selection 54
Configuration Bits 117
D
D/Ā
D/A
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Development Support 141
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Development Support 141 Device Differences 208
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Pic16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Development Support 141 Device Differences 208
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Pic16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Plvelopment Support 141 Device Differences 208 Direct Addressing 23 E 23
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E Enhanced Capture/Compare/PWM (ECCP)
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Plc16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCP1
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 Pice Differences 208 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 208 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 208 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 91C16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP11E Bit) 17 Timer Resources 54 Errata 3 External Power-on Reset Circuit 122
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 91C16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53 Enable (CCP11E Bit) 17 Timer Resources 54 Errata 3 External Power-on Reset Circuit 122 F 122
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53 Enable (CCP11E Bit) 17 Timer Resources 54 Errata 3 External Power-on Reset Circuit 122 F Firmware Instructions 133
D/A 66 Data Memory 6 Data Memory 6 Bank Select (RP Bits) 9, 14 General Purpose Registers 6 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 11 PlC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54 Errata 33 External Power-on Reset Circuit 122 F Firmware Instructions 133 FSR Register 11, 12, 13
D/A 66 Data Memory 9 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics PIC16C717/770/771 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1H Register 53 CCPR1L Register 53 Enable (CCP11E Bit) 17 Timer Resources 54 Errata 3 External Power-on Reset Circuit 122 F Firmware Instructions 133
D/A 66 Data Memory 6 Data Memory 6 Bank Select (RP Bits) 9, 14 General Purpose Registers 6 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 11 PlC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54 Errata 33 External Power-on Reset Circuit 122 F Firmware Instructions 133 FSR Register 11, 12, 13
D/A 66 Data Memory 6 Bank Select (RP Bits) 9, 14 General Purpose Registers 9 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 11 PIC16C717/770/771 150, 151, 153 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54 Errata 33 External Power-on Reset Circuit 122 F Firmware Instructions 133 FSR Register 11, 12, 13 G 11, 12, 13
D/A 66 Data Memory 5 Bank Select (RP Bits) 9, 14 General Purpose Registers 5 Register File Map 10 Special Function Registers 11 Data/Address bit, D/A 66 DC Characteristics 11 Development Support 141 Device Differences 206 Direct Addressing 23 E E Enhanced Capture/Compare/PWM (ECCP) CCP1 CCPR1L Register 53 CCPR1L Register 53 Enable (CCP1IE Bit) 17 Timer Resources 54 Errata 33 F 53 Firmware Instructions 133 FSR Register 11, 12, 13 G 60 GCE 60