

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I²C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc717t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.2.6 PIE2 REGISTER

This register contains the individual enable bits for the SSP bus collision and low voltage detect interrupts.

REGISTER 2-6: PERIPHERAL INTERRUPT ENABLE REGISTER 2 (PIE2: 8Dh)

	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0			
	LVDIE	—	—	_	BCLIE	_	—	—			
	bit 7							bit 0			
bit 7	LVDIE: Lov	v Voltage D	etect Interru	pt Enable bit	I						
	1 = LVD Int 0 = LVD Int	 1 = LVD Interrupt is enabled 0 = LVD Interrupt is disabled 									
bit 6-4	Unimplem	ented: Rea	d as '0'								
bit 3	BCLIE: Bus	s Collision I	nterrupt Ena	ble bit							
	1 = Bus Co 0 = Bus Co	Ilision interr	upt is enable upt is disabl	ed ed							
bit 2-0	Unimplem	ented: Rea	d as '0'								
	Legend:										
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as	0'			
	- n = Value	at POR	'1' = B	it is set	'0' = Bit is	s cleared	x = Bit is u	nknown			

3.0 I/O PORTS

Some pins for these I/O ports are multiplexed with an alternate function for the peripheral features on the device. In general, when a peripheral is enabled, that pin may not be used as a general purpose I/O pin.

Additional information on I/O ports may be found in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

3.1 I/O Port Analog/Digital Mode

The PIC16C717/770/771 have two I/O ports: PORTA and PORTB. Some of these port pins are mixed-signal (can be digital or analog). When an analog signal is

present on a pin, the pin must be configured as an analog input to prevent unnecessary current draw from the power supply. The Analog Select Register (ANSEL) allows the user to individually select the Digital/Analog mode on these pins. When the Analog mode is active, the port pin will always read 0.

- **Note 1:** On a Power-on Reset, the ANSEL register configures these mixed-signal pins as Analog mode.
 - 2: If a pin is configured as Analog mode, the RA pin will always read '0' and RB pin will always read '1', even if the digital output is active.

REGISTER 3-1: ANALOG SELECT REGISTER (ANSEL: 9Dh)

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| — | — | ANS5 | ANS4 | ANS3 | ANS2 | ANS1 | ANS0 |
| bit 7 | | | | | | | bit 0 |

bit 7-6 **Reserved:** Do not use

0 = Digital I/O. Pin is assigned to port or special function.

1 = Analog Input. Pin is assigned as analog input.

Note: Setting a pin to an analog input disables the digital input buffer on the pin. The corresponding TRIS bit should be set to Input mode when using pins as analog inputs.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

3.2 PORTA and the TRISA Register

PORTA is a 8-bit wide bi-directional port. The corresponding data direction register is TRISA. Setting a TRISA bit (=1) will make the corresponding PORTA pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISA bit (=0) will make the corresponding PORTA pin an output (i.e., put the contents of the output latch on the selected pin).

Reading the PORTA register reads the status of the pins, whereas writing to it will write to the port latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified, and then written to the port data latch.

Pins RA<3:0> are multiplexed with analog functions, such as analog inputs to the A/D converter, analog VREF inputs, and the onboard bandgap reference outputs. When the analog peripherals are using any of

these pins as analog input/output, the ANSEL register must have the proper value to individually select the Analog mode of the corresponding pins.

Note:	Upon RESET, the ANSEL register config-
	ures the RA<3:0> pins as analog inputs.
	All RA<3:0> pins will read as '0'.

Pin RA4 is multiplexed with the Timer0 module clock input to become the RA4/T0CKI pin. The RA4/T0CKI pin is a Schmitt Trigger input and an open drain output.

Pin RA5 is multiplexed with the device RESET (MCLR) and programming input (VPP) functions. The RA5/ MCLR/VPP input only pin has a Schmitt Trigger input buffer. All other RA port pins have Schmitt Trigger input buffers and full CMOS output buffers.

Pins RA6 and RA7 are multiplexed with the oscillator input and output functions.

The TRISA register controls the direction of the RA pins, even when they are being used as analog inputs. The user must ensure the bits in the TRISA register are maintained set when using them as analog inputs.

bit 5-0 **ANS<5:0>:** Analog Select between analog or digital function on pins AN<5:0>, respectively.

FIGURE 3-3: BLOCK DIAGRAM OF RA4/T0CKI

TABLE 3-1: PORTA FUNCTIONS

Name	Function	Input Type	Output Type	Description
DAG/ANO	RA0	ST	CMOS	Bi-directional I/O
RAU/ANU	AN0	AN		A/D input
	RA1	ST	CMOS	Bi-directional I/O
RA1/AN1/LVDIN	AN1	AN		A/D input
	LVDIN	AN		LVD input reference
	RA2	ST	CMOS	Bi-directional I/O
	AN2	AN		A/D input
RAZ/ANZ/VREF-/VRL	VREF-	AN		Negative analog reference input
	VRL		AN	Internal voltage reference low output
	RA3	ST	CMOS	Bi-directional I/O
	AN3	AN		A/D input
KA3/AN3/VREF+/VKH	VREF+	AN		Positive analog reference input
	VRH		AN	Internal voltage reference high output
	RA4	ST	OD	Bi-directional I/O
KA4/TUCKI	TOCKI	ST		TMR0 clock input
	RA5	ST		Input port
RA5/MCLR/VPP	MCLR	ST		Master clear
	Vpp	Power		Programming voltage
	RA6	ST	CMOS	Bi-directional I/O
RA6/OSC2/CLKOUT	OSC2		XTAL	Crystal/resonator
	CLKOUT		CMOS	Fosc/4 output
	RA7	ST	CMOS	Bi-directional I/O
RA7/OSC1/CLKIN	OSC1	XTAL		Crystal/resonator
	CLKIN	ST/AN		External clock input/ER resistor connection

TABLE 3-2: SUMMARY OF REGISTERS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
05h	PORTA	RA7	RA6	RA5	RA4	RA3	RA2	RA1	RA0	xxxx 0000	uuuu 0000
85h	TRISA	PORTA	PORTA Data Direction Register							1111 1111	1111 1111
9Dh	ANSEL	—	—	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	11 1111	11 1111

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTA.

3.3 PORTB and the TRISB Register

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 3-2: Initializing PORTB

BCF	STATUS,	RP0;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS,	RP0;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs
MOVLW	0x30	;	Set RB<1:0> as analog
			inputs
MOVWF	ANSEL	;	
BCF	STATUS,	RP0;	Return to Bank 0

Each of the PORTB pins has an internal pull-up, which can be individually enabled from the WPUB register. A single global enable bit can turn on/off the enabled pullups. Clearing the RBPU bit, (OPTION_REG<7>), enables the weak pull-up resistors. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset. Each of the PORTB pins, if configured as input, also has an interrupt-on-change feature, which can be individually selected from the IOCB register. The RBIE bit in the INTCON register functions as a global enable bit to turn on/off the interrupt-on-change feature. The selected inputs are compared to the old value latched on the last read of PORTB. The "mismatch" outputs are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- a) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

8.0 ENHANCED CAPTURE/ COMPARE/PWM (ECCP) MODULES

The ECCP (Enhanced Capture/Compare/PWM) module contains a 16-bit register which can operate as a 16-bit capture register, as a 16-bit compare register or as a PWM master/slave Duty Cycle register. Table 8-1 shows the timer resources of the ECCP module modes. Capture/Compare/PWM Register1 (CCPR1) is comprised of two 8-bit registers: CCPR1L (low byte) and CCPR1H (high byte). The CCP1CON and P1DEL registers control the operation of ECCP. All are readable and writable.

REGISTER 8-1: CCP1 CONTROL REGISTER (CCP1CON: 17h)

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	PWM1M1	PWM1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0			
	bit 7	<u> </u>					1	bit 0			
bit 7-6	PWM1M<1	:0>: PWM C	Output Confi	guration							
	 CCP1M<3:2> = 00, 01, 10 xx = P1A assigned as Capture input, Compare output. P1B, P1C, P1D assigned as Port pins. CCP1M<3:2> = 11 00 = Single output. P1A modulated. P1B, P1C, P1D assigned as Port pins. 01 = Full-bridge output forward. P1D modulated. P1A active. P1B, P1C inactive. 10 = Half-bridge output. P1A, P1B modulated with deadband control. P1C, P1D assigned as Port pins. 11 = Full-bridge output reverse. P1B modulated. P1C active. P1A, P1D inactive. 										
bit 5-4	DC1B<1:0	>: PWM Dut	y Cycle Lea	st Significar	nt bits						
	Capture M Compare N PWM Mode	ode: Unused lode: Unuse e: These bits CCPRnL.	d are the two	LSbs of the	PWM duty	cycle. The e	ight MSbs a	re found in			
bit 3-0	CCP1M<3	:0>: ECCP N	lode Select	bits							
	CCP1M<3:0>: ECCP Mode Select bits 0000 = Capture/Compare/PWM off (resets ECCP module) 0001 = Unused (reserved) 0010 = Compare mode, toggle output on match (CCP1IF bit is set) 0011 = Unused (reserved) 0100 = Capture mode, every falling edge 0101 = Capture mode, every rising edge 0110 = Capture mode, every 4th rising edge 0111 = Capture mode, every 16th rising edge 1000 = Compare mode, set output on match (CCP1IF bit is set) 1001 = Compare mode, clear output on match (CCP1IF bit is set) 1001 = Compare mode, generate software interrupt on match (CCP1IF bit is set. CCP1 pin is										
	 1010 = Compare mode, generate software interrupt on match (CCPTIF bit is set, CCPT pin is unaffected) 1011 = Compare mode, trigger special event (CCPTIF bit is set; ECCP resets TMR1, and starts an A/D conversion, if the A/D module is enabled.) 1100 = PWM mode. P1A, P1C active high. P1B, P1D active high. 1101 = PWM mode. P1A, P1C active high. P1B, P1D active low. 1110 = PWM mode. P1A, P1C active low. P1B, P1D active high. 1111 = PWM mode. P1A, P1C active low. P1B, P1D active high. 										
	Legend:										

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented I	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

8.3 PWM Mode

In Pulse Width Modulation (PWM) mode, the ECCP module produces up to a 10-bit resolution PWM output. Figure 8-3 shows the simplified PWM block diagram.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM PERIOD = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 PRESCALE VALUE)$

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 7.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

9.1 SPI Mode

The SPI mode allows eight bits of data to be synchronously transmitted and received simultaneously. All four modes of SPI are supported. To accomplish communication, typically three pins are used:

- Serial Data Out (SDO)
- Serial Data In (SDI)
- Serial Clock (SCK)

Additionally, a fourth pin may be used when in a Slave mode of operation:

Slave Select (SS)

9.1.1 OPERATION

When initializing the SPI, several options need to be specified. This is done by programming the appropriate control bits (SSPCON<5:0> and SSPSTAT<7:6>). These control bits allow the following to be specified:

- Master Mode (SCK is the clock output)
- Slave Mode (SCK is the clock input)
- Clock Polarity (Idle state of SCK)
- Data input sample phase (middle or end of data output time)
- Clock edge (output data on rising/falling edge of SCK)
- Clock Rate (Master mode only)
- Slave Select Mode (Slave mode only)

Figure 9-1 shows the block diagram of the MSSP module when in SPI mode.

FIGURE 9-1: MSSP BLOCK DIAGRAM (SPI MODE)

The MSSP consists of a transmit/receive Shift Register (SSPSR) and a Buffer Register (SSPBUF). The SSPSR shifts the data in and out of the device, MSb first. The SSPBUF holds the data that was written to the SSPSR, until the received data is ready. Once the eight bits of data have been received, that byte is moved to the SSPBUF register. Then the buffer full detect bit, BF (SSPSTAT<0>), and the interrupt flag bit, SSPIF (PIR1<3>), are set. This double buffering of the received data (SSPBUF) allows the next byte to start reception before reading the data that was just received. Any write to the SSPBUF register during transmission/reception of data will be ignored, and the write collision detect bit WCOL (SSPCON<7>) will be set. User software must clear the WCOL bit so that it can be determined if the following write(s) to the SSP-BUF register completed successfully.

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates when the SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the MSSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 9-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

EXAMPLE 9-1: Loading the SSPBUF (SSPSR) Register

	BSF	STATUS, RPO	;Specify Bank 1
LOOP	BTFSS	SSPSTAT, BF	;Has data been
			;received
			;(xmit complete)?
	GOTO	LOOP	;No
	BCF	STATUS, RPO	;Specify Bank 0
	MOVF	SSPBUF, W	;Save SSPBUF
	MOVWF	RXDATA	;in user RAM
	MOVF	TXDATA, W	;Get next TXDATA
	MOVWF	SSPBUF	;New data to xmit

The SSPSR is not directly readable or writable, and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP STATUS register (SSPSTAT) indicates the various status conditions.

9.1.2 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers, and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:

- SDI is automatically controlled by the SPI module
- SDO must have TRISB<5> cleared
- SCK (Master mode) must have TRISB<2> cleared
- SCK (Slave mode) must have TRISB<2> set
- SS must have TRISB<1> set, and ANSEL<5> cleared

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

9.1.3 TYPICAL CONNECTION

Figure 9-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (SSPCON<4>), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

FIGURE 9-2: SPI MASTER/SLAVE CONNECTION

9.2.15 STOP CONDITION TIMING

The master asserts a STOP condition on the SDA and SCL pins at the end of a receive/transmit by setting the Stop Sequence Enable bit PEN (SSPCON2<2>). At the end of a receive/transmit plus Acknowledge, the SCL line is held low immediately following the falling edge of the ninth SCL pulse. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the baud rate generator is loaded from SSPADD<6:0> and counts down to 0. When the baud rate generator times out, the SCL pin is brought high, the BRG is reloaded and one TBRG (baud rate generator rollover count) later, the SDA pin is de-asserted. The SDA pin transition from low to high while SCL is high is the STOP condition and causes the P bit (SSP-STAT<4>) to be set. Following this the baud rage generator is reloaded with the contents of SSPADD<6:0> and resumes its count. When the baud rate generator

times out (TBRG) the STOP condition is complete and the PEN bit is cleared and the SSPIF bit is set (Figure 9-21).

Whenever the firmware decides to take control of the bus, it should first determine if the bus is busy by checking the S and P bits in the SSPSTAT register. When the MSSP module detects a START or STOP condition the SSPIF flag is set. If the bus is busy (S bit is set), then the CPU can be configured to be interrupted when when the bus is free by enabling the SSPIF interrupt to detect the STOP bit.

9.2.15.1 WCOL STATUS FLAG

If the user writes the SSPBUF when a STOP sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 9-21: STOP CONDITION RECEIVE OR TRANSMIT MODE

FIGURE 11-2: PIC16C717 10-BIT A/D RESULT FORMAT

After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS and ANSEL bits selected as an input. To determine acquisition time, see Section 11.6. After this acquisition time has elapsed, the A/D conversion can be started. The following steps should be followed for doing an A/D conversion:

11.2 Configuring the A/D Module

11.2.1 CONFIGURING ANALOG PORT PINS

The ANSEL and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted. The proper ANSEL bits must be set (analog input) to disable the digital input buffer.

The A/D operation is independent of the state of the TRIS bits and the ANSEL bits.

- Note 1: When reading the PORTA register, all pins configured as analog input channels will read as '0'.
 - 2: When reading the PORTB register, all pins configured as analog pins on PORTB will be read as '1'.
 - 3: Analog levels on any pin that is defined as a digital input, including the ANx pins, may cause the input buffer to consume current that is out of the devices specification.

11.2.2 CONFIGURING THE REFERENCE VOLTAGES

The VCFG bits in the ADCON1 register configure the A/D module reference inputs. The reference high input can come from an internal reference (VRH) or (VRL), an external reference (VREF+), or AVDD. The low reference input can come from an internal reference (VRL), an external reference (VREF-), or AVss. If an external reference is chosen for the reference high or reference low inputs, the port pin that multiplexes the incoming external references is configured as an analog input, regardless of the values contained in the A/D port configuration bits (PCFG<3:0>).

FIGURE 15-2: PIC16LC717/770/771 VOLTAGE-FREQUENCY GRAPH, $0^{\circ}C \le TA \le +70^{\circ}C$

TABLE 15-12: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION REQUIREMENTS (NORMAL MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	1.6			μs	Tosc based, VREF \geq 2.5V
			3.0	_	—	μS	Tosc based, VREF full range
			3.0	6.0	9.0	μS	ADCS<1:0> = 11 (A/D RC mode) At VDD = 2.5V
			2.0	4.0	6.0	μs	At $VDD = 5.0V$
131*	ΤΟΝΥ	Conversion time (not including acquisition time) (Note 1)	_	13Tad	_	Tad	
132*	TACQ	Acquisition Time	Note 2	11.5	—	μS	
			5*	_	_	μs	The minimum time is the ampli- fier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sampled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start	—	Tosc/2	_	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

FIGURE 16-7: MAXIMUM IDD VS. FOSC OVER VDD (EC MODE)

FIGURE 16-32: MINIMUM AND MAXIMUM VIH/VIL VS. VDD (ST INPUT,-40°C TO +125°C)

NOTES:

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1999-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769713

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.