E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc770-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

This document contains device-specific information. Additional information may be found in the PICmicro[™] Mid-Range MCU Family Reference Manual, (DS33023), which may be obtained from your local Microchip Sales Representative or downloaded from the Microchip website. The Reference Manual should be considered a complementary document to this data sheet, and is highly recommended reading for a better understanding of the device architecture and operation of the peripheral modules.

There are three devices (PIC16C717, PIC16C770 and PIC16C771) covered by this data sheet. The PIC16C717 device comes in 18/20-pin packages and the PIC16C770/771 devices come in 20-pin packages.

The following two figures are device block diagrams of the PIC16C717 and the PIC16C770/771.

FIGURE 1-1: PIC16C717 BLOCK DIAGRAM

FIGURE 3-3: BLOCK DIAGRAM OF RA4/T0CKI

REGISTER 3-2: WEAK PULL-UP PORTB REGISTER (WPUB: 95h)

| R/W-1 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| WPUB7 | WPUB6 | WPUB5 | WPUB4 | WPUB3 | WPUB2 | WPUB1 | WPUB0 |
| bit 7 | | | | | | | bit 0 |

bit 7-0 WPUB<7:0>: PORTB Weak Pull-Up Control bits

0 = Weak pull-up disabled

- **Note 1:** For the WPUB register setting to take effect, the RBPU bit in the OPTION_REG register must be cleared.
 - 2: The weak pull-up device is automatically disabled if the pin is in Output mode (TRIS = 0).

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 3-3: INTERRUPT-ON-CHANGE PORTB REGISTER (IOCB: 96h)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
IOCB7	IOCB6	IOCB5	IOCB4	IOCB3	IOCB2	IOCB1	IOCB0
bit 7							bit 0

bit 7-0 IOCB<7:0>: Interrupt-on-Change PORTB Control bits

1 = Interrupt-on-change enabled

0 = Interrupt-on-change disabled

Note: The interrupt enable bits GIE and RBIE in the INTCON Register must be set for individual interrupts to be recognized.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

^{1 =} Weak pull-up enabled

The RB0 pin is multiplexed with the A/D converter analog input 4 and the external interrupt input (RB0/AN4/ INT). When the pin is used as analog input, the ANSEL register must have the proper value to select the RB0 pin as Analog mode. The RB1 pin is multiplexed with the A/D converter analog input 5 and the MSSP module slave select input (RB1/AN5/SS). When the pin is used as analog input, the ANSEL register must have the proper value to select the RB1 pin as Analog mode.

Note: Upon RESET, the ANSEL register configures the RB1 and RB0 pins as analog inputs. Both RB1 and RB0 pins will read as '1'.

FIGURE 3-7: BLOCK DIAGRAM OF RB0/AN4/INT, RB1/AN5/SS PIN

REGISTER 9-2: SYNC SERIAL PORT CONTROL REGISTER (SSPCON: 14h) (CONTINUED)

- bit 3-0 SSPM<3:0>: Synchronous Serial Port Mode Select bits
 - 0000 = SPI Master mode, clock = Fosc/4
 - 0001 = SPI Master mode. clock = Fosc/16
 - 0010 = SPI Master mode, clock = Fosc/64
 - 0011 = SPI Master mode, clock = TMR2 output/2
 - $0100 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control enabled.$
 - 0101 = SPI Slave mode, clock = SCK pin. \overline{SS} pin control disabled. \overline{SS} can be used as I/O pin.
 - $0110 = I^2C$ Slave mode, 7-bit address
 - $0111 = I^2C$ Slave mode, 10-bit address
 - $1000 = I^2C$ Master mode, clock = Fosc / (4 (SSPADD+1))
 - 1001 = Reserved
 - 1010 = Reserved
 - 1011 = Firmware controlled Master mode (slave idle)
 - 1100 = Reserved
 - 1101 = Reserved
 - 1110 = 7-bit Slave mode with START and STOP condition interrupts
 - 1111 = 10-bit Slave mode with START and STOP condition interrupts

Leaend	:
	•

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented b	oit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN
	bit 7							bit 0
				· ² ~ ~				
bit 7	GCEN: General Call Enable bit (In I ² C Slave mode only)							
	1 = Enable 0 = Gener:	al call addres	s disabled.		3S (000011) is	3 receiveu ii	1 the Soron	ζ.
bit 6	ACKSTAT	: Acknowledg	je Status bit	t (In I ² C Mas	ster mode or	ıly)		
	In Master	Transmit mod	<u>le</u> :	l fram alava				
	1 = ACKNOV 0 = ACKNOV	wledge was n wledge was r	not received received fro	m slave				
bit 5	ACKDT: A	cknowledge	Data bit (In	I ² C Master I	mode only)			
	In Master	Receive mod	<u>ie</u> :					
	Value that	will be transr	mitted when	the user ini	tiates an Ac	knowledge	sequence at	t the end of
	1 = Not Ac	ve. knowledge (I	NACK)					
	0 = Acknov	wledge (ACK	.)					
bit 4	ACKEN: A	cknowledge	Sequence I	Enable bit (Ir	n I ² C Master	r mode only).	
	<u>In Master I</u> 1 = Initiate	Acknowledg	<u>e:</u> e sequence	on SDA an د	d SCL pins	and transm	it ACKDT da	ata hit
	Autom	atically cleare	ed by hardw	/are.				
	0 = Acknow	wledge seque	ence IDLE					
bit 3	RCEN: Re	ceive Enable	⇒bit (In I ² C I	Master mode	ə only).			
	1 = Enable 0 = Receiv	⊮s Receive m ∕e IDLE	ode for I ² C					
bit 2	PEN: STO	P Condition	Enable bit (In I ² C Maste	r mode only).		
	SCK Relea	<u>ase Control</u>	Han on SD/	and SCI n	ing Automa		ad by bardw	~~~
	1 = 11111210 0 = STOP	condition IDL	LE	tanu SC⊏ p	Ins. Automa	lically cleare	30 Dy Haruw	are.
bit 1	RSEN: Re	peated STAF	RT Condition	n Enabled bi	t (In I ² C Ma	ster mode o	nly)	
	1 = Initiate	Repeated S	TART condi	ition on SDA	and SCL pi	ns. Automa	tically cleare	ed by
	narowa 0 = Repea	are. ated START c	condition IDI	F				
bit 0	SEN: STA	RT Condition	1 Enabled bi	t (In I ² C Ma	ster mode or	nly)		
	1 = Initiate	START conc	dition on SD	A and SCL	pins. Autom	atically clea	red by hard	ware.
	0 = START	Г condition ID)LE					
	Note:	For bits ACK	KEN, RCEN	I, PEN, RSE	EN, SEN: If	the I ² C more	dule is not i	in the IDLE
		mode, this bi writes to the	it may not be SSPBUF a	e set (no spo re disabled).	ooling) and t	he SSPBUF	⁻ may not be	e written (or
	Legend:							
	R = Reada	able bit	W = W	/ritable bit	U = Unirr	plemented	bit, read as	'0'

'1' = Bit is set

'0' = Bit is cleared

REGISTER 9-3: SYNC SERIAL PORT CONTROL REGISTER2 (SSPCON2: 91h)

- n = Value at POR

x = Bit is unknown

9.1.4 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 9-2) is to broad-cast data by the software protocol.

In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI module is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor".

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 9-3, Figure 9-5 and Figure 9-6, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

This allows a maximum bit clock frequency (at 20 MHz) of 8.25 MHz.

Figure 9-3 shows the waveforms for Master mode. When CKE = 1, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.

9.2.12 I²C MASTER MODE TRANSMISSION

In Master-transmitter mode, serial data is output through SDA, while SCL outputs the serial clock. The first byte transmitted contains seven bits of address data and the Read/Write (R/W) bit. In this case, the R/W bit will be logic '0'. Subsequent serial data is transmitted eight bits at a time. After each byte is transmitted, an Acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

Transmission of a data byte, a 7-bit address, or either half of a 10-bit address is accomplished by simply writing a value to the SSPBUF register. This action will set the buffer full flag (BF) and allow the baud rate generator to begin counting and start the next transmission. Each bit of address/data will be shifted out onto the SDA pin after the falling edge of SCL is asserted (see data hold time spec). SCL is held low for one baud rate generator roll over count (TBRG). Data should be valid before SCL is released high (see data setup time spec). When the SCL pin is released high, it is held that way for TBRG, the data on the SDA pin must remain stable for that duration and some hold time after the next falling edge of SCL. After the eighth bit is shifted out (the falling edge of the eighth clock), the BF flag is cleared and the master releases SDA. This allows the slave device being addressed to respond with an ACK bit during the ninth bit time. The status of ACK is read into the ACKDT on the rising edge of the ninth clock. If the master receives an Acknowledge, the Acknowledge status bit (ACKSTAT) is cleared. Otherwise, the bit is set. The SSPIF is set on the falling edge of the ninth clock, and the master clock (baud rate generator) is suspended until the next data byte is loaded into the SSPBUF leaving SCL low and SDA unchanged (Figure 9-18).

A typical transmit sequence would go as follows:

- a) The user generates a START Condition by setting the START enable bit (SEN) in SSPCON2.
- b) SSPIF is set at the completion of the START sequence.
- c) The user resets the SSPIF bit and loads the SSPBUF with seven bits of address plus R/W bit to transmit.
- d) Address and R/W is shifted out the SDA pin until all eight bits are transmitted.
- e) The MSSP Module shifts in the ACK bit from the slave device, and writes its value into the SSPCON2 register (SSPCON2<6>).
- f) The module generates an interrupt at the end of the ninth clock cycle by setting SSPIF.
- g) The user resets the SSPIF bit and loads the SSPBUF with eight bits of data.
- h) DATA is shifted out the SDA pin until all eight bits are transmitted.
- The MSSP Module shifts in the ACK bit from the slave device and writes its value into the SSPCON2 register (SSPCON2<6>).
- j) The MSSP module generates an interrupt at the end of the ninth clock cycle by setting the SSPIF bit.
- k) The user resets the SSPIF bit and generates a STOP condition by setting the STOP enable bit PEN in SSPCON2.
- I) SSPIF is set when the STOP condition is complete.

9.2.12.1 BF STATUS FLAG

In Transmit mode, the BF bit (SSPSTAT<0>) is set when the CPU writes to SSPBUF and is cleared when all eight bits are shifted out.

9.2.12.2 WCOL STATUS FLAG

If the user writes the SSPBUF when a transmit is already in progress (i.e. SSPSR is still shifting out a data byte), then WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

WCOL must be cleared in software.

9.2.12.3 ACKSTAT STATUS FLAG

In Transmit mode, the ACKSTAT bit (SSPCON2<6>) is cleared when the slave has sent an Acknowledge $(\overline{ACK} = 0)$, and is set when the slave does not Acknowledge ($\overline{ACK} = 1$). A slave sends an Acknowledge when it has recognized its address (including a general call), or when the slave has properly received its data.

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has six inputs for the PIC16C717/770/771.

The PIC16C717 analog-to-digital converter (A/D) allows conversion of an analog input signal to a corresponding 10-bit digital value, while the A/D converter in the PIC16C770/771 allows conversion to a corresponding 12-bit digital value. The A/D module has up to 6 analog inputs, which are multiplexed into one sample and hold. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltages are software selectable to either the device's analog positive and negative supply voltages (AVDD/AVSS), the voltage level on the VREF+ and VREF- pins, or internal voltage references if enabled (VRH, VRL).

The A/D converter can be triggered by setting the GO/ DONE bit, or by the special event Compare mode of the ECCP module. When conversion is complete, the GO/DONE bit returns to '0', the ADIF bit in the PIR1 register is set, and an A/D interrupt will occur, if enabled.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers. These registers are:

- A/D Result Register Low ADRESL
- A/D Result Register High ADRESH
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.

11.1 Control Registers

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins, the voltage reference configuration and the result format. The ANSEL register, shown in Register 3-1, selects between the Analog or Digital Port Pin modes. The port pins can be configured as analog inputs or as digital I/O.

The combination of the ADRESH and ADRESL registers contain the result of the A/D conversion. The register pair is referred to as the ADRES register. When the A/D conversion is complete, the result is loaded into ADRES, the GO/DONE bit (ADCON0<2>) is cleared, and the A/D interrupt flag ADIF is set. The block diagram of the A/D module is shown in Figure 11-3.

12.3 RESET

The PIC16C717/770/771 devices have several different RESETS. These RESETS are grouped into two classifications; power-up and non-power-up. The power-up type RESETS are the Power-on and Brownout Resets which assume the device VDD was below its normal operating range for the device's configuration. The non power-up type RESETS assume normal operating limits were maintained before/during and after the RESET.

- Power-on Reset (POR)
- Programmable Brown-out Reset (PBOR)
- MCLR Reset during normal operation
- MCLR Reset during SLEEP
- WDT Reset (during normal operation)

Some registers are not affected in any RESET condition. Their status is unknown on a Power-up Reset and unchanged in any other RESET. Most other registers are placed into an initialized state upon RESET, however they are not affected by a WDT Reset during SLEEP, because this is considered a WDT Wake-up, which is viewed as the resumption of normal operation.

Several status bits have been provided to indicate which RESET occurred (see Table 12-4). See Table 12-6 for a full description of RESET states of all registers.

A simplified block diagram of the On-Chip Reset circuit is shown in Figure 12-4.

These devices have a MCLR noise filter in the MCLR Reset path. The filter will detect and ignore small pulses.

It should be noted that a WDT Reset does not drive $\overline{\text{MCLR}}$ pin low.

FIGURE 12-4: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

12.10 Interrupts

The devices have up to 11 sources of interrupt. The interrupt control register (INTCON) records individual interrupt requests in flag bits. It also has individual and global interrupt enable bits.

Note:	Individual interrupt flag bits are set regard-
	less of the status of their corresponding
	mask bit or the GIE bit.

A Global Interrupt Enable bit, GIE (INTCON<7>), enables (if set) all un-masked interrupts or disables (if cleared) all interrupts. When bit GIE is enabled and an interrupt's flag bit and mask bit are set, the interrupt will vector immediately. Individual interrupts can be disabled through their corresponding enable bits in various registers. Individual interrupt bits are set, regardless of the status of the GIE bit. The GIE bit is cleared on RESET.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine as well as sets the GIE bit, which re-enables interrupts.

The RB0/INT pin interrupt, the RB port change interrupt and the TMR0 overflow interrupt flags are contained in the INTCON register.

The peripheral interrupt flags are contained in the special function registers PIR1 and PIR2. The corresponding interrupt enable bits are contained in special function registers PIE1 and PIE2, and the peripheral interrupt enable bit is contained in special function register INTCON.

When an interrupt is responded to, the GIE bit is cleared to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with 0004h. Once in the interrupt service routine the source(s) of the interrupt can be determined by polling the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid recursive interrupts.

For external interrupt events, such as the INT pin or PORTB change interrupt, the interrupt latency will be three or four instruction cycles. The exact latency depends when the interrupt event occurs. The latency is the same for one or two cycle instructions. Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GIE bit

12.13 Power-down Mode (SLEEP)

Power-down mode is entered by executing a $\ensuremath{\mathtt{SLEEP}}$ instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the PD bit (STATUS<3>) is cleared, the TO (STATUS<4>) bit is set, and the oscillator driver is turned off. The I/O ports maintain the status they had, before the SLEEP instruction was executed (driving high, low, or hi-impedance).

For lowest current consumption in this mode, place all I/O pins at either VDD, or VSS, ensure no external circuitry is drawing current from the I/O pin, power-down the A/D, disable external clocks. Pull all I/O pins, that are hi-impedance inputs, high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should also be at VDD or VSS for lowest current consumption. The contribution from on-chip pull-ups on PORTB should be considered.

12.13.1 WAKE-UP FROM SLEEP

The device can wake-up from SLEEP through one of the following events:

- 1. External RESET input on $\overline{\text{MCLR}}$ pin.
- 2. Watchdog Timer Wake-up (if WDT was enabled).
- 3. Interrupt from INT pin, RB port change, or some Peripheral Interrupts.

External MCLR Reset will cause a device RESET. All other events are considered a continuation of program execution and cause a "wake-up". The TO and PD bits in the STATUS register can be used to determine the cause of device RESET. The PD bit, which is set on power-up, is cleared when SLEEP is invoked. The TO bit is cleared if a WDT time-out occurred (and caused wake-up).

The following peripheral interrupts can wake the device from SLEEP:

- 1. TMR1 interrupt. Timer1 must be operating as an asynchronous counter.
- 2. CCP Capture mode interrupt.
- 3. Special event trigger (Timer1 in Asynchronous mode using an external clock).
- 4. SSP (START/STOP) bit detect interrupt.
- SSP transmit or receive in Slave mode (SPI/I²C).
- 6. A/D conversion (when A/D clock source is RC).
- 7. Low Voltage detect.

Other peripherals cannot generate interrupts since during SLEEP, no on-chip clocks are present.

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GIE bit. If the GIE bit is

clear (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is set (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt address (0004h). In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

12.13.2 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction, the SLEEP instruction will complete as a NOP. Therefore, the WDT and WDT postscaler will not be cleared, the TO bit will not be set and PD bits will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction, the device will immediately wake-up from SLEEP. The SLEEP instruction will be completely executed before the wake-up. Therefore, the WDT and WDT postscaler will be cleared, the TO bit will be set and the PD bit will be cleared.

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

If a peripheral can wake the device from SLEEP, then to ensure that the WDT is cleared, a CLRWDT instruction should be executed before a SLEEP instruction.

13.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 13-2 lists the instructions recognized by the MPASMTM assembler.

Figure 13-1 shows the general formats that the instructions can have.

Note:	То	maintain	upward	l compa	tibility	with
	futu	ire PIC160	CXXX pr	roducts,	do not	use
	the	OPTION a	nd TRIS	instructi	ions.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

15.1 DC Characteristics: PIC16C717/770/771 (Commercial, Industrial, Extended) PIC16LC717/770/771 (Commercial, Industrial, Extended) (Continued)

PIC16LC717/770/771				$ \begin{array}{ c c c c c } \hline \textbf{Standard Operating Conditions (unless otherwise stated)} \\ \hline \textbf{Operating temperature} & 0^{\circ}\text{C} & \leq \text{TA} \leq & +70^{\circ}\text{C} \text{ for commercial} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq & +85^{\circ}\text{C} \text{ for industrial} \\ & -40^{\circ}\text{C} & \leq \text{TA} \leq & +125^{\circ}\text{C} \text{ for extended} \\ \hline \end{array} $				
PIC16C717/770/771			Stand Opera	Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended				
Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
	Idd	Supply Current ⁽²⁾						
D010D D010E		PIC16LC7XX		1.0	2.0 3.0	mA	Fosc = 10 MHz, VDD = 3V, -40°C to 85°C Fosc = 10 MHz, VDD = 3V, -40°C to 125°C	
D010G				0.36	1.0	mA	Fosc = 4 MHz, Vdd = 2.5V, -40°C to 125°C	
D010K				11	45	μA	Fosc = 32 kHz, VDD = 2.5V, -40°C to 125°C	
	Idd	Supply Current ⁽²⁾						
D010 D010A		PIC16C7XX		4.0	7.5 12.0	mA	Fosc = 20 MHz, VDD = 5.5V, -40°C to 85°C Fosc = 20 MHz, VDD = 5.5V, -40°C to 125°C	
D010B D010C				2.5	5.0 6.0	mA	Fosc = 20 MHz, VDD = 4V, -40°C to 85°C Fosc = 20 MHz, VDD = 4V, -40°C to 125°C	
D010F				0.55	1.5	mA	Fosc = 4 MHz, VDD = 4V, -40°C to 125°C	
D010H D010J				30	80 95	μA	Fosc = 32 kHz, VDD = 4V, -40°C to 85°C Fosc = 32 kHz, VDD = 4V, -40°C to 125°C	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

Param. No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
40*	Tt0H	T0CKI High Pulse Width		No Prescaler	0.5TCY + 20	_		ns	Must also meet parameter 42
				With Prescaler	10	_	_	ns	
41*	Tt0L	T0CKI Low Pulse Width		No Prescaler	0.5Tcy + 20	—	—	ns	Must also meet parameter 42
				With Prescaler	10	—	_	ns	
42*	Tt0P	T0CKI Period		No Prescaler	TCY + 40	—	—	ns	
				With Prescaler	Greater of:	—	—	ns	N = prescale value
					20 or <u>Tcy + 40</u>				(2, 4,, 256)
45*	THE	TAOKI Link Time	0		N 0.5Toxix 00				M
45"	ITH	TICKI High Time	Synchronous, H	Prescaler = 1	0.5 ICY + 20		_	ns	Must also meet parameter 47
			Synchronous,	PIC16C/17/70/771	15	_	_	ns	
			2,4,8	PIC 16LC/1////0///1	25	_	_	ns	
			Asynchronous	PIC16C717/770/771	30	—	—	ns	
				PIC16LC717/770/771	50	—	—	ns	
46*	Tt1L	T1CKI Low Time	Synchronous, F	Prescaler = 1	0.5Tcy + 20	-	—	ns	Must also meet
			Synchronous,	PIC16 C 717/770/771	15	—	—	ns	parameter 47
			Prescaler = 2,4,8	PIC16 LC 717/770/771	25			ns	
			Asynchronous	PIC16 C 717/770/771	30	—	—	ns	
				PIC16LC717/770/771	50	—	—	ns	
47*	Tt1P	T1CKI input period	Synchronous	PIC16 C 717/770/771	Greater of:	—	—	ns	N = prescale value
					30 OR <u>TCY + 40</u> N				(1, 2, 4, 8)
				PIC16LC717/770/771	Greater of:	—	—	ns	N = prescale value
					50 OR <u>TCY + 40</u>				(1, 2, 4, 8)
					N				
			Asynchronous	PIC16 C 717/770/771	60		—	ns	
				PIC16 LC 717/770/771	100		_	ns	
	Ft1	Timer1 oscillator inp	imer1 oscillator input frequency range			-	50	kHz	
40	Toko 2tmr1	(oscillator enabled by setting bit 1105CEN)			27000		77000		
40 *	TUCKEZUMPT	Delay from external clock edge to timer increment			21050		1 1080		

TABLE 15-5: TIMERU AND TIMERT EXTERNAL CLOCK REQUIREMENT	TABLE 15-5:	TIMER0 AND TIMER1 EXTERNAL CLOCK REQUIREMENTS
--	-------------	---

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not † tested.

FIGURE 15-11: ENHANCED CAPTURE/COMPARE/PWM TIMINGS (ECCP)

TABLE 15-19: SPI MODE REQUIREMENTS (SLAVE MODE TIMING (CKE = 0)

Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input	Тсү	_	_	ns		
71*	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A*		(Slave mode)	Single Byte	40	—	_	ns	Note 1
72*	TscL	SCK input low time	Continuous	1.25Tcy + 30	-	_	ns	
72A*		(Slave mode)	Single Byte	40	-	-	ns	Note 1
73*	TdiV2scH, TdiV2scL	Setup time of SDI data input to	100	_	_	ns		
73A*	Тв2в	Last clock edge of Byte1 to the of Byte2	1.5Tcy + 40	-	—	ns	Note 1	
74*	TscH2diL, TscL2diL	Hold time of SDI data input to	100	_	_	ns		
75*	TdoR	SDO data output rise time	PIC16CXXX		10	25	ns	
			PIC16LCXXX		20	45	ns	
76*	TdoF	SDO data output fall time		_	10	25	ns	
77*	TssH2doZ	SS [↑] to SDO output hi-impedance		10	_	50	ns	
78*	TscR	SCK output rise time (Master	PIC16 C XXX	_	10	25	ns	
		mode)	PIC16LCXXX		20	45	ns	
79*	TscF	SCK output fall time (Master mode)		_	10	25	ns	
80*	TscH2doV, TscL2doV	SDO data output valid after SCK edge	PIC16 C XXX	_	-	50	ns	
			PIC16LCXXX		_	100	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	_	_	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

PIC16C717/770/771

FIGURE 16-14: INTERNAL RC Fosc VS. VDD OVER TEMPERATURE (37 kHZ)

© 1999-2013 Microchip Technology Inc.

PIC16C717/770/771

NOTES: