

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc770-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0 Device Overview	5
2.0 Memory Organization	9
3.0 I/O Ports	
4.0 Program Memory Read (PMR)	41
5.0 Timer0 Module	
6.0 Timer1 Module	
7.0 Timer2 Module	
8.0 Enhanced Capture/Compare/PWM (ECCP) Modules	53
9.0 Master Synchronous Serial Port (MSSP) Module	65
10.0 Voltage Reference Module and Low-voltage Detect	101
11.0 Analog-to-Digital Converter (A/D) Module	105
12.0 Special Features of the CPU	117
13.0 Instruction Set Summary	133
14.0 Development Support	
15.0 Electrical Characteristics	147
16.0 DC and AC Characteristics Graphs and Tables	179
17.0 Packaging Information	197
APPENDIX A: Revision History	207
APPENDIX B: Device Differences	208
Index	209
On-Line Support	215
Reader Response	
PIC16C717/770/771 Product Identification System	217

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@mail.microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

- · Microchip's Worldwide Web site; http://www.microchip.com
- · Your local Microchip sales office (see last page)
- The Microchip Corporate Literature Center; U.S. FAX: (480) 792-7277

When contacting a sales office or the literature center, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com/cn to receive the most current information on all of our products.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on Page:
Bank 1											
80h ⁽³⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	emory (not a	a physical reg	gister)	0000 0000	23
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	15
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	22
83h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	14
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointer						xxxx xxxx	23
85h	TRISA	PORTA Dat	a Direction F	legister						1111 1111	25
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	33
87h	—	Unimpleme	nted							_	—
88h	—	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	—
8Ah ^(1,3)	PCLATH	_	_	_	Write Buffer fo	or the upper	5 bits of the I	Program Cou	unter	0 0000	22
8Bh (3)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	16
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	17
8Dh	PIE2	LVDIE	—		—	BCLIE	—	—	—	0 0	19
8Eh	PCON	—	—		—	OSCF	—	POR	BOR	1-qq	21
8Fh	_	Unimpleme	nted							_	—
90h	_	Unimpleme	nted							_	_
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	69
92h	PR2	Timer2 Peri	od Register							1111 1111	52
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Regist	er				0000 0000	76
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	66
95h	WPUB	PORTB We	ak Pull-up C	ontrol						1111 1111	34
96h	IOCB	PORTB Inte	errupt on Cha	ange Control						1111 0000	34
97h	P1DEL	PWM 1 Del	ay value							0000 0000	62
98h	—	Unimpleme	nted							_	—
99h	_	Unimpleme	nted							_	—
9Ah	—	Unimpleme	nted							_	—
9Bh	REFCON	VRHEN	VRLEN	VRHOEN	VRLOEN	—	—	—	—	0000	102
9Ch	LVDCON	—	—	BGST	LVDEN	LVV3	LVV2	LVV1	LVV0	00 0101	101
9Dh	ANSEL	—	—	Analog Chai	nnel Select					11 1111	25
9Eh	ADRESL	A/D Low By	te Result Re	gister						xxxx xxxx	107
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	_				0000	107

TABLE 2-1: PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.$

Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: These registers can be addressed from any bank.

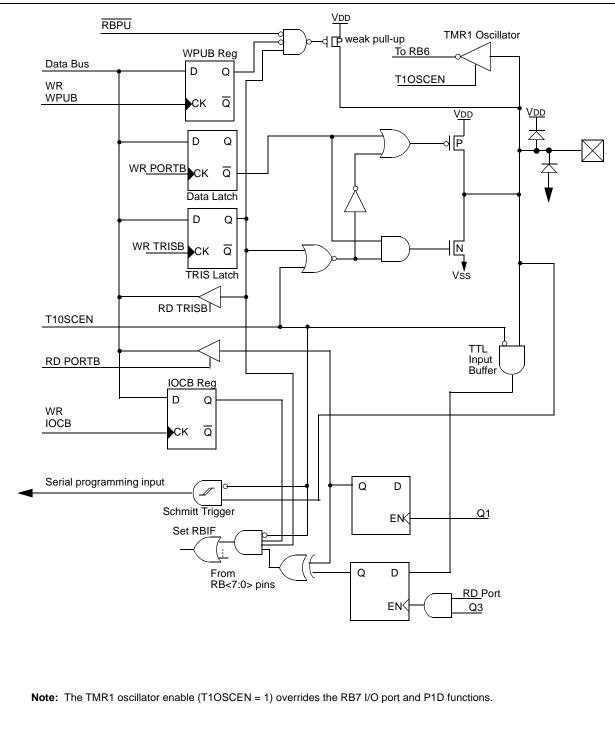
2.2.2.7 PIR2 REGISTER

This register contains the SSP Bus Collision and low-voltage detect interrupt flag bits.

Note: Interrupt flag bits get set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit, GIE (INTCON<7>). User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 2-7: PERIPHERAL INTERRUPT REGISTER 2 (PIR2: 0Dh)

	R/W-0	U-0	U-0	U-0	R/W-0	U-0	U-0	U-0			
	LVDIF	_	—	—	BCLIF	_	—	_			
	bit 7							bit 0			
bit 7	LVDIF: Low Voltage Detect Interrupt Flag bit										
		1,2 0				0 (be cleared i	n software)			
	0 = The su	oply voltage	is greater th	nan the spec	ified LVD vo	oltage					
bit 6-4	Unimplem	ented: Rea	d as '0'								
bit 3	BCLIF: Bus	s Collision I	nterrupt Flag) bit							
	 1 = A bus collision has occurred while the SSP module configured in I²C Master was transmitting (must be cleared in software) 0 = No bus collision occurred 										
bit 2-0	Unimplem	ented: Rea	d as '0'								


Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

The RB0 pin is multiplexed with the A/D converter analog input 4 and the external interrupt input (RB0/AN4/ INT). When the pin is used as analog input, the ANSEL register must have the proper value to select the RB0 pin as Analog mode. The RB1 pin is multiplexed with the A/D converter analog input 5 and the MSSP module slave select input (RB1/AN5/SS). When the pin is used as analog input, the ANSEL register must have the proper value to select the RB1 pin as Analog mode.

Note: Upon RESET, the ANSEL register configures the RB1 and RB0 pins as analog inputs. Both RB1 and RB0 pins will read as '1'.

FIGURE 3-7: BLOCK DIAGRAM OF RB0/AN4/INT, RB1/AN5/SS PIN

FIGURE 3-10: BLOCK DIAGRAM OF THE RB7/T10SI/P1D

4.0 PROGRAM MEMORY READ (PMR)

Program memory is readable during normal operation (full VDD range). It is indirectly addressed through the Special Function Registers:

- PMCON1
- PMDATH
- PMDATL
- PMADRH
- PMADRL

When interfacing the program memory block, the PMDATH & PMDATL registers form a 2-byte word, which holds the 14-bit data. The PMADRH & PMADRL registers form a 2-byte word, which holds the 12-bit address of the program memory location being accessed. Mid-range devices have up to 8K words of program EPROM with an address range from 0h to 3FFFh. When the device contains less memory than the full address range of the PMADRH:PMARDL registers, the Most Significant bits of the PMADRH register are ignored.

4.1 PMCON1 REGISTER

PMCON1 is the control register for program memory accesses.

Control bit RD initiates a read operation. This bit cannot be cleared, only set, in software. It is cleared in hardware at completion of the read operation.

REGISTER 4-1: PROGRAM MEMORY READ CONTROL REGISTER 1 (PMCON1: 18Ch)

R-1	U-0	U-0	U-0	U-0	U-0	U-0	R/S-0			
Reserved	—	—	—	—	—	—	RD			
bit 7							bit 0			
Reserved: Read as '1'										
Unimpleme	ented: Read	d as '0'								

bit 0 **RD**: Read Control bit

1 = Initiates a Program memory read (read takes 2 cycles). RD is cleared in hardware.

0 = Reserved

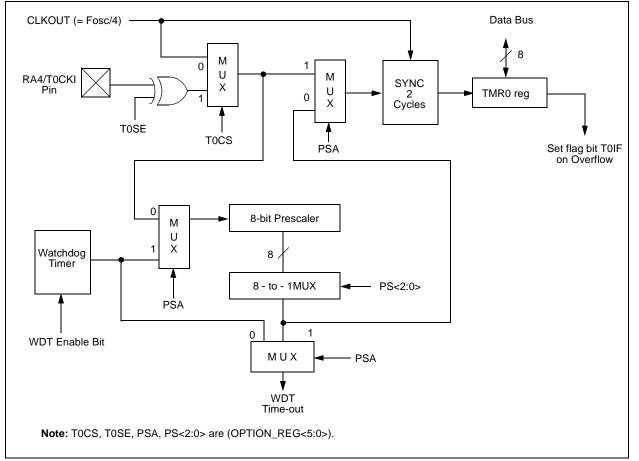
Legend:		S = Settable (cleared in hardware)				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

4.2 PMDATH AND PMDATL REGISTERS

bit 7 bit 6-1

The PMDATH:PMDATL registers are loaded with the contents of program memory addressed by the PMADRH and PMADRL registers upon completion of a Program Memory Read command.

5.2.1 SWITCHING PRESCALER ASSIGNMENT


The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution).

Note: To avoid an unintended device RESET, a specific instruction sequence (shown in the PIC Mid-Range Reference Manual, DS33023) must be executed when changing the prescaler assignment from Timer0 to the WDT. This sequence must be followed even if the WDT is disabled.

5.3 Timer0 Interrupt

The TMR0 interrupt is generated when the TMR0 register overflows from FFh to 00h. This overflow sets bit T0IF (INTCON<2>). The interrupt can be masked by clearing bit T0IE (INTCON<5>). Bit T0IF must be cleared in software by the Timer0 module interrupt service routine before re-enabling this interrupt. The TMR0 interrupt cannot awaken the processor from SLEEP since the timer is shut off during SLEEP.

TABLE 5-1: REGISTERS ASSOCIATED WITH TIMER0

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
01h,101h	TMR0	Timer0	register							xxxx xxxx	uuuu uuuu
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
81h,181h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
85h TRISA PORTA Data Direction Register									1111 1111	1111 1111	

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Timer0.

8.3.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing to the CCPR1L register and to the CCP1CON<5:4> bits. Up to 10-bit resolution is available. The CCPR1L contains the eight MSbs and the CCP1CON<5:4> contains the two LSbs. This 10-bit value is represented by CCPR1L:CCP1CON<5:4>. The following equation is used to calculate the PWM duty cycle in time:

PWM duty cycle = (CCPR1L:CCP1CON<5:4>) • Tosc • (TMR2 prescale value)

CCPR1L and CCP1CON<5:4> can be written to at any time, but the duty cycle value is not latched into CCPR1H until after a match between PR2 and TMR2 occurs (i.e., the period is complete). In PWM mode, CCPR1H is a read-only register.

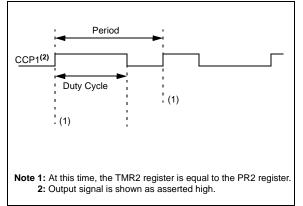
The CCPR1H register and a 2-bit internal latch are used to double buffer the PWM duty cycle. This double buffering is essential for glitchless PWM operation.

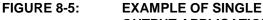
When the CCPR1H and 2-bit latch match TMR2 concatenated with an internal 2-bit Q clock or 2 bits of the TMR2 prescaler, the CCP1 pin is cleared.

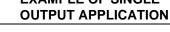
Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log(\frac{FOSC}{FPWM})}{\log(2)}$$
bits

Note: If the PWM duty cycle value is longer than the PWM period, the CCP1 pin will not be cleared.


8.3.3 PWM OUTPUT CONFIGURATIONS


The PWM1M1 bits in the CCP1CON register allows one of the following configurations:


- · Single output
- · Half-Bridge output
- Full-Bridge output, Forward mode
- Full-Bridge output, Reverse mode

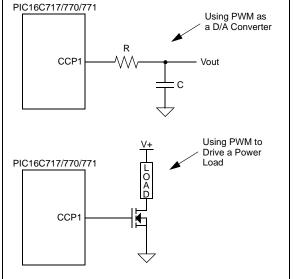
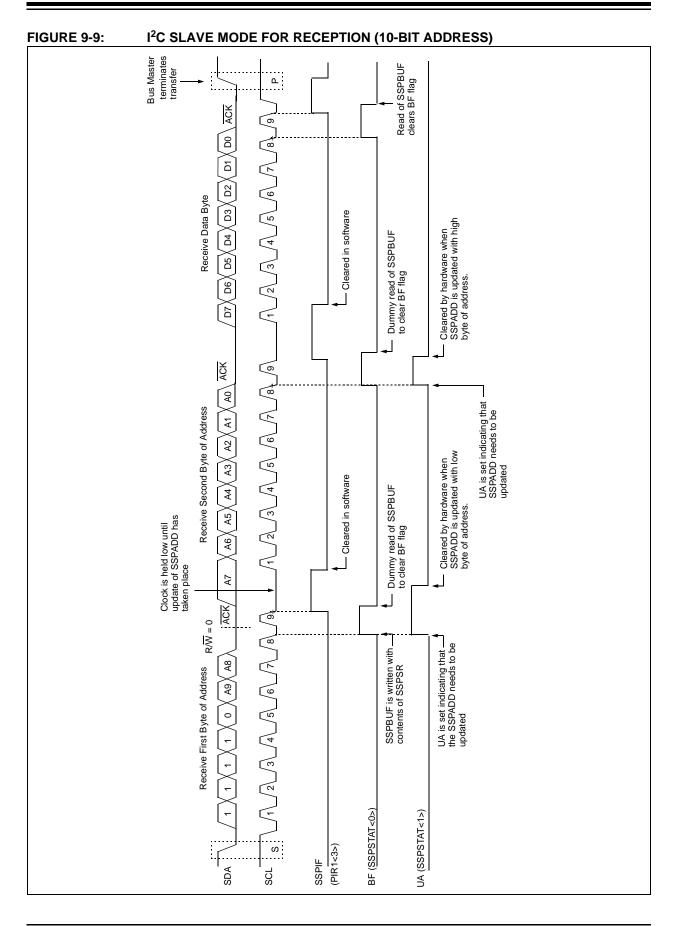
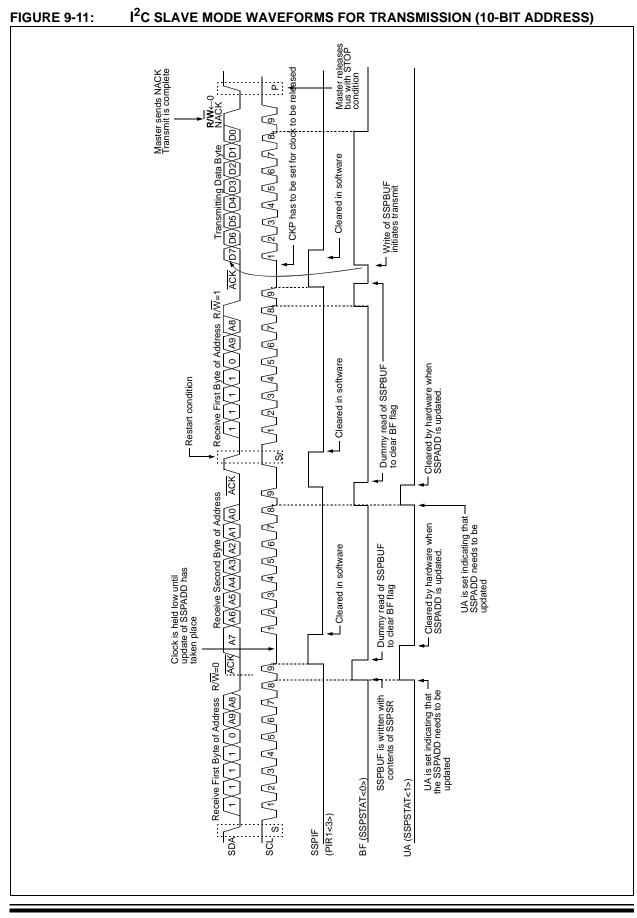

In the Single Output mode, the RB3/CCP1/P1A pin is used as the PWM output. Since the CCP1 output is multiplexed with the PORTB<3> data latch, the TRISB<3> bit must be cleared to make the CCP1 pin an output.

FIGURE 8-4: SINGLE PWM OUTPUT





In the Half-Bridge Output mode, two pins are used as outputs. The RB3/CCP1/P1A pin has the PWM output signal, while the RB5/SDO/P1B pin has the complementary PWM output signal. This mode can be used for half-bridge applications, as shown on Figure 8-7, or for full-bridge applications, where four power switches are being modulated with two PWM signal.

Since the P1A and P1B outputs are multiplexed with the PORTB<3> and PORTB<5> data latches, the TRISB<3> and TRISB<5> bits must be cleared to configure P1A and P1B as outputs.

In Half-Bridge Output mode, the programmable deadband delay can be used to prevent shoot-through current in bridge power devices. See Section 8.3.5 for more details of the deadband delay operations.

9.2.4 SLEEP OPERATION

While in SLEEP mode, the I²C slave module can receive addresses or data. When an address match or complete byte transfer occurs, it wakes the processor from SLEEP (if the SSP interrupt bit is enabled).

9.2.5 EFFECTS OF A RESET

A RESET disables the MSSP module and terminates the current transfer.

9.2.6 MASTER MODE

Master mode operation supports interrupt generation on the detection of the START and STOP conditions. The STOP (P) and START (S) bits are cleared from a RESET or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit is set or the bus is idle with both the S and P bits clear.

In Master mode, the SCL and SDA lines are manipulated by the MSSP hardware.

The following events will cause SSP Interrupt Flag bit (SSPIF) to be set (SSP Interrupt, if enabled):

- START condition
- STOP condition
- Data transfer byte transmitted/received
- Acknowledge transmit
- Repeated START

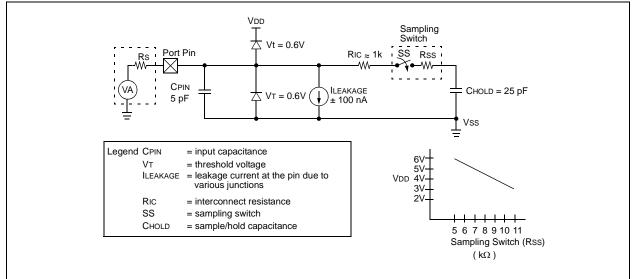

SSPM<3:0>, Internal Data Bus SSPADD<6:0> Read Write SSPBUF Baud Rate Generator SDA Shift clock arbitrate/WCOL detect SDA in Clock \ge SSPSR (hold off clock source) MSb LSb Enable START bit, STOP bit cntl Receive Acknowledge Generate clock SCL START bit detect, STOP bit detect SCL in Set/RESET, S, P, WCOL (SSPSTAT) Vrite collision detect **Clock Arbitration** Set SSPIF. BCLIF State counter for **Bus Collision** RESET ACKSTAT, PEN (SSPCON2) end of XMIT/RCV

FIGURE 9-13: MSSP BLOCK DIAGRAM (I²C MASTER MODE)

EXAMPLE 11-3: CALCULATING THE MINIMUM REQUIRED SAMPLE TIME

TACQ =	Amplifier Settling Time						
	+ Holding Capacitor Charging Time						
	+Temperature offset †						
TACQ =	5 μs						
	+ Tc						
	+ [(Temp - 25°C)(0.05 μs/°C)] †						
Tc= Ho	Iding Capacitor Charging Time						
Tc = (C	HOLD) (RIC + RSS + RS) In (1/16384)						
Tc = -25	5 pF (1 kΩ +10 kΩ + 2.5 kΩ) In (1/16384)						
Tc = -25	5 pF (13.5 kΩ) In (1/16384)						
Tc = -0.	338 (-9.704)μs						
Tc = 3.3	3 μs						
TACQ =	5 µs						
	+ 3.3 μs						
	+ [(50°C - 25°C)(0.05 μs / °C)]						
TACQ =	8.3 μs + 1.25 μs						
TACQ =	9.55 μs						
	perature coefficient is only required for atures > 25°C.						

FIGURE 11-5: ANALOG INPUT MODEL

15.3 AC Characteristics: PIC16C717/770/771 & PIC16LC717/770/771 (Commercial, Industrial, Extended)

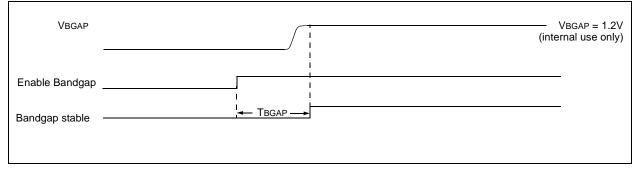
15.3.1 TIMING PARAMETER SYMBOLOGY

The timing parameter symbols have been created using one of the following formats:

		-	-
1. TppS2p	opS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerc	ase letters (pp) and their meanings:		
рр			
сс	CCP1	OSC	OSC1
ck	CLKOUT	rd	RD
CS	CS	rw	RD or WR
di	SDI	SC	SCK
do	SDO	SS	SS
dt	Data in	tO	TOCKI
io	I/O port	t1	T1CKI
mc	MCLR	wr	WR
Upperc	ase letters and their meanings:		
S			
F	Fall	Р	Period
Н	High	R	Rise
I	Invalid (Hi-impedance)	V	Valid
L	Low	Z	Hi-impedance
I²C (I ² C	C specifications only)		
AA	output access		
BUF	Bus free		
High	High		
Low	Low		
Tcc:st	(I ² C specifications only)		
CC	· · ·		
HD	Hold	SU	Setup
ST			
DAT	DATA input hold	STO	STOP condition
STA	START condition		

TABLE 15-6:	ENHANCED CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)
-------------	--

Param. No.	Sym Characteristic		Min	Тур†	Max	Units	Conditions				
50*	TccL	CCP1 input low	No Prescaler		0.5Tcy + 20	—	_	ns			
		time		PIC16 C 717/770/771	10	_	_	ns			
			With Prescaler	PIC16 LC 717/770/771	20	—	_	ns			
51* Tccł	TccH	CCP1 input high time	CCP1 input high	CCP1 input high	No Prescaler	•	0.5Tcy + 20	—	_	ns	
			With Prescaler	PIC16 C 717/770/771	10	_	_	ns			
				PIC16 LC 717/770/771	20	—	_	ns			
52*	TccP	CCP1 input period	CCP1 input period			—	_	ns	N = prescale value (1, 4 or 16)		
53*	TccR	CCP1 output fall ti	me	PIC16 C 717/770/771	—	10	25	ns			
				PIC16 LC 717/770/771	—	25	45	ns			
54*	TccF	CCP1 output fall ti	me	PIC16 C 717/770/771	—	10	25	ns			
				PIC16 LC 717/770/771	—	25	45	ns			


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

15.4 Analog Peripherals Characteristics: PIC16C717/770/771 & PIC16LC717/770/771 (Commercial, Industrial, Extended)

15.4.1 BANDGAP MODULE

FIGURE 15-12: BANDGAP START-UP TIME

TABLE 15-7: BANDGAP START-UP TIME

Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
36*	Tbgap	Bandgap start-up time		19	33	μS	Defined as the time between the instant that the bandgap is enabled and the moment that the bandgap reference voltage is stable.

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

15.4.3 PROGRAMMABLE BROWN-OUT RESET MODULE (PBOR)

TABLE 15-9: DC CHARACTERISTICS: PBOR

$\label{eq:characteristics} \text{Standard Operating Conditions (unless otherwise stated)} \\ \text{Operating temperature} 0^\circ\text{C} &\leq T\text{A} \leq +70^\circ\text{C} \text{ for commercial} \\ -40^\circ\text{C} &\leq T\text{A} \leq +85^\circ\text{C} \text{ for industrial} \\ -40^\circ\text{C} &\leq T\text{A} \leq +125^\circ\text{C} \text{ for extended} \\ \text{Operating voltage VDD range as described in DC Characteristics Section 15.1.} \end{cases}$									
Param. No.	Charac	teristic	Symbol	Min	Тур	Max	Units	Conditions	
D005	BOR Voltage	BORV<1:0> = 11		2.5	2.58	2.66			
		BORV<1:0> = 10	VBOR	2.7	2.78	2.86	v		
		BORV<1:0> = 01		4.2	4.33	4.46			
		BORV<1:0> = 00		4.5	4.64	4.78			

15.4.4 VREF MODULE

TABLE 15-10: DC CHARACTERISTICS: VREF

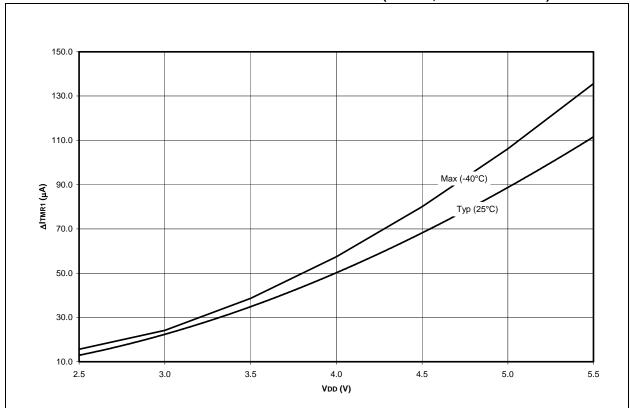
DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C$ $\leq TA \leq +70^{\circ}C$ for commercial $-40^{\circ}C$ $\leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C$ $\leq TA \leq +125^{\circ}C$ for extendedOperating voltage VDD range as described in DC CharacteristicsSection 15.1.								
Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions				
D400	VRL	Output Voltage	2.0	2.048	2.1	V	$VDD \ge 2.7V,$	$\text{-40°C} \leq \text{TA} \leq \text{+85°C}$			
	VRH		4.0	4.096	4.2	V	$V\text{DD} \geq 4.5\text{V},$	$\text{-40°C} \leq \text{TA} \leq \text{+85°C}$			
D400A	VRL	Output Voltage	1.9	2.048	2.2	V	$V \text{DD} \geq 2.7 \text{V}, \ \text{-40}^{\circ} \text{C} \leq \text{Ta} \leq \text{+125}^{\circ} \text{C}$				
	VRH		4.0	4.096	4.3	V	$V\text{DD} \geq 4.5\text{V}, \ \text{-}40^{\circ}\text{C} \leq \text{Ta} \leq \text{+}125^{\circ}\text{C}$				
D404*	IVREFSO	External Load Source		_	5	mA					
D405*	IVREFSI	External Load Sink	_	_	-5	mA					
*	CL	External Capacitor Load	_	_	200	pF					
D406*	Δ Vout/	VRH Load Regulation	_	0.6	1	mV/mA	$V\text{dd} \geq 5V$	ISOURCE = 0 mA to 5 mA			
	∆lout		_	1	4]		ISINK = 0 mA to 5 mA			
		VRL Load Regulation		0.6	1]	$VDD \geq 3V$	ISOURCE = 0 mA to 5 mA			
			_	2	4]		ISINK = 0 mA to 5 mA			

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

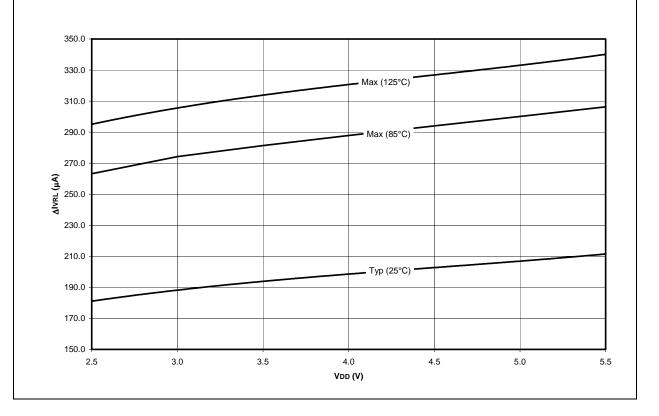
Param. No.	Symbol	Characteristic		Min	Max	Units	Conditions
100*	Thigh	Clock high time	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			400 kHz mode	2(Tosc)(BRG + 1)	_	ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
101*	TLOW	Clock low time	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
			400 kHz mode	2(Tosc)(BRG + 1)		ms	
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
102*	TR	SDA and SCL	100 kHz mode	_	1000	ns	Cb is specified to be from
		rise time	400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	300	ns	
103*	TF	SDA and SCL	100 kHz mode	_	300	ns	Cb is specified to be from
		fall time	400 kHz mode	20 + 0.1Cb	300	ns	10 to 400 pF
			1 MHz mode ⁽¹⁾	_	100	ns	
90*	TSU:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	Only relevant for Repeated
		setup time	400 kHz mode	2(Tosc)(BRG + 1)	_	ms	START
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	condition
91*	THD:STA	START condition	100 kHz mode	2(Tosc)(BRG + 1)	_	ms	After this period the first clock
		hold time	400 kHz mode	2(Tosc)(BRG + 1)	—	ms	pulse is generated
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
106*	THD:DAT	Data input	100 kHz mode	0	—	ns	
		hold time	400 kHz mode	0	0.9	ms]
			1 MHz mode ⁽¹⁾	TBD	—	ns	
107*	TSU:DAT	Data input	100 kHz mode	250	—	ns	Note 2
		setup time	400 kHz mode	100	—	ns	1
			1 MHz mode ⁽¹⁾	TBD	-	ns	
92*	Tsu:sto	STOP condition	100 kHz mode	2(Tosc)(BRG + 1)	—	ms	
		setup time	400 kHz mode	2(Tosc)(BRG + 1)		ms]
			1 MHz mode ⁽¹⁾	2(Tosc)(BRG + 1)	—	ms	
109*	TAA	Output valid from	100 kHz mode	—	3500	ns	
		clock	400 kHz mode		1000	ns	
			1 MHz mode ⁽¹⁾	_	_	ns	
110	TBUF	Bus free time	100 kHz mode	4.7 ‡	—	ms	Time the bus must be free
			400 kHz mode	1.3 ‡	—	ms	before a new transmission
			1 MHz mode ⁽¹⁾	TBD‡	—	ms	can start
D102 ‡	Cb	Bus capacitive load		—	400	pF	

TABLE 15-22: MASTER SSP I²C BUS DATA REQUIREMENTS


* These parameters are characterized but not tested. For the value required by the I²C specification, please refer to the PICmicroTM Mid-Range MCU Family Reference Manual (DS33023).

‡ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Maximum pin capacitance = 10 pF for all I^2C pins.


2: A Fast mode l^2C bus device can be used in a Standard mode l^2C bus system, but $(TSU:DAT) \ge 250$ ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line.

[(TR) + (TSU:DAT) = 1000 + 250 = 1250 ns], for 100 kHz mode, before the SCL line is released.

FIGURE 16-20: TYPICAL AND MAXIMUM AITMR1 VS. VDD (32 KHZ, -40°C TO +125°C)

17.6 20-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)

DRAWING NOT AVAILABLE