E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc770-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

FIGURE 3-2: BLOCK DIAGRAM OF RA2/AN2/VREF-/VRL AND RA3/AN3/VREF+/VRH

NOTES:

7.2 Timer2 Interrupt

The Timer2 module has an 8-bit period register PR2. Timer2 increments from 00h until it matches PR2 and then resets to 00h on the next increment cycle. PR2 is a readable and writable register. The PR2 register is initialized to FFh upon RESET.

7.3 Output of TMR2

The output of TMR2 (before the postscaler) is fed to the Synchronous Serial Port module which optionally uses it to generate shift clock.

FIGURE 7-1: Timer2 Block Diagram

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
0Bh,8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	TOIF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	—	—	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	—	ADIE	_	_	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
11h	TMR2	Timer2 register								0000 0000	0000 0000
12h	T2CON	_	TOUTPS3	TOUTPS2	TOUTPS1	TOUTPS0	TMR2ON	T2CKPS1	T2CKPS0	-000 0000	-000 0000
92h	PR2	Timer2 Peri	od Register							1111 1111	1111 1111

TABLE 7-1: REGISTERS ASSOCIATED WITH TIMER2 AS A TIMER/COUNTER

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the Timer2 module.

REGISTER 9-1: SYNC SERIAL PORT STATUS REGISTER (SSPSTAT: 94h)

					•	,		
	R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
	SMP	CKE	D/A	Р	S	R/W	UA	BF
	bit 7	·						bit 0
bit 7	SMP: Samp SPI Master 1 = Input da 0 = Input da SPI Slave M SMP must I In I ² C Mast 1 = Slew rat	ble bit <u>Mode</u> ata sampled a ata sampled a <u>Mode</u> be cleared wh er or Slave m e control disa	it end of data it middle of d nen SPI is us ode: bled for Stan	a output time ata output t ed in Slave	e ime mode	KHz and 1 Mi	47)	
bit 6	0= Slew rat CKE: SPI C <u>CKP = 0</u> 1 = Data tra	e control enal Clock Edge Se	bled for High elect (Figure	Speed mod 9-3, Figure	de (400 kHz) 9-5, and Figu	ure 9-6)	,	
	1 = Data tra 0 = Data tra CKP = 1 1 = Data tra 0 = Data tra	ansmitted on f ansmitted on f ansmitted on r	alling edge o alling edge c alling edge c rising edge o	of SCK of SCK f SCK				
bit 5	D/A: Data/A 1 = Indicate 0 = Indicate	Address bit (I ² es that the last es that the last	C mode only t byte receive t byte receive	/) ed or transn ed or transn	nitted was da nitted was ad	ta dress		
bit 4	P: STOP bi (I ² C mode o 1 = Indicate 0 = STOP b	t only. This bit is es that a STOI oit was not det	s cleared wh P bit has bee tected last	en the MSS en detected	P module is last (this bit i	disabled, SS s '0' on RESI	PEN is clear ET)	ed)
oit 3	S: START b (I ² C mode o 1 = Indicate 0 = START	bit only. This bit is s that a STAF bit was not de	s cleared wh RT bit has be etected last	en the MSS en detected	P module is last (this bit	disabled, SS is '0' on RES	PEN is clear SET)	ed)
bit 2	R/W : Read/ This bit hold address ma In I ² C Slave 1 = Read 0 = Write In I ² C Mast 1 = Transm 0 = Transm ORing this	Write bit infor ds the R/W bit itch to the nex <u>e mode:</u> er mode: it is in progres it is not in pro bit with SEN	mation (I ² C i information kt START bit, ss gress. RSEN PEN	mode only) following th STOP bit, of	e l <u>ast add</u> res or NACK bit.	s match. This	s bit is only va	alid from the
bit 1	UA: Update 1 = Indicate	e Address (10 es that the use	-bit I ² C mode er needs to u	e only) pdate the a	ddress in the	SSPADD reg	gister	
bit 0	BF: Buffer I <u>Receive (SI</u> 1 = Receive 0 = Receive <u>Transmit (l</u> ² 1 = Data Tr 0 = Data Tr	Full Status bit PI and I ² C mc complete, Si onot complete C mode only ansmit in prog ansmit complete	odes) SPBUF is ful e, SSPBUF i gress (does r ete (does no	II s empty not include t t include the	he ACK and S	STOP bits), \$ TOP bits), SS	SSPBUF is fi SPBUF is em	ull pty
	Legend: R = Readal	ole bit	W = Wr	itable bit	U = Unim	plemented b	it, read as '0'	,

- n = Value at POR

'1' = Bit is set

x = Bit is unknown

'0' = Bit is cleared

9.2.2.3 SLAVE RECEPTION

When the R/W bit of the address byte is clear (SSPSR<0> = 0) and an address match occurs, the R/ W bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register on the falling edge of the eighth SCL pulse.

When the address <u>byte</u> overflow condition exists, then no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF (SSPSTAT<0>) or bit SSPOV (SSPCON<6>) is set. An MSSP interrupt is generated for each data transfer byte. Flag bit SSPIF (PIR1<3>) must be cleared in software. The SSPSTAT register is used to determine the status of the received byte.

Note: The SSPBUF will be loaded if the SSPOV bit is set and the BF flag is cleared. If a read of the SSPBUF was performed, but the user did not clear the state of the SSPOV bit before the next receive occurred, the ACK is not sent and the SSP-BUF is updated.

TABLE 9-2: DATA TRANSFER RECEIVED BYTE ACTIONS

Status Bits as Data Transfer is Received			Concepto ACK	Set bit SSPIF
BF	SSPOV	$SSPSR \to SSPBUF$	Pulse	(SSP Interrupt occurs if enabled)
0	0	Yes	Yes	Yes
1	0	No	No	Yes
1	1	No	No	Yes
0	1	Yes	No	Yes

Note 1: Shaded cells show the conditions where the user software did not properly clear the overflow condition.

FIGURE 9-8: I²C SLAVE MODE WAVEFORMS FOR RECEPTION (7-BIT ADDRESS)

9.2.14 ACKNOWLEDGE SEQUENCE TIMING

An Acknowledge sequence is enabled by setting the Acknowledge sequence enable bit, ACKEN (SSPCON2<4>). When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit ACKDT (SSPCON2<5>) is presented on the SDA pin. If the user wishes to generate an Acknowledge (ACK), then the ACKDT bit should be cleared. Otherwise, the user should set the ACKDT bit (NACK) before starting an Acknowledge sequence. The baud rate generator is then loaded from SSPADD<6:0> and counts for one rollover period (TBRG). The SCL pin is then de-asserted (pulled high). When the SCL pin is sampled high (clock

arbitration), the baud rate generator is reloaded and counts for another TBRG. At the completion of the TBRG period, the following events occur (see Figure 9-20):

- The SCL pin is pulled low.
- The ACKEN bit is automatically cleared.
- The baud rate generator is turned off.
- The MSSP module goes into IDLE mode.

9.2.14.1 WCOL STATUS FLAG

If the user writes the SSPBUF when an Acknowledge sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write doesn't occur).

FIGURE 9-20: ACKNOWLEDGE SEQUENCE WAVEFORM

	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	VRHEN	VRLEN	VRHOEN	VRLOEN	—	_	—	—
	bit 7							bit 0
bit 7	VRHEN: Vo	oltage Refer	ence High E	nable bit (V	RH = 4.096	V nominal)		
	1 = Enable 0 = Disable	d, powers u ed, powers c	p reference lown referen	generator ce generato	r if unused l	by LVD, BOI	R, or VRL	
bit 6	VRLEN: Vo	oltage Refer	ence Low E	nable bit (VF	RL = 2.048V	nominal)		
	1 = Enable 0 = Disable	d, powers u d, powers c	p reference Iown referen	generator ce generato	r if unused l	by LVD, BOI	R, or VRH	
bit 5	VRHOEN:	High Voltage	e Reference	Output Ena	ble bit ⁽¹⁾			
	1 = Enable 0 = Disable	d, VRH ana d, analog re	log reference eference is u	e is output o sed internal	n RA3 if ena ly only ⁽¹⁾	abled (VRHE	EN = 1)	
bit 4	VRLOEN:	Low Voltage	Reference	Output Enat	ole bit			
	1 = Enable 0 = Disable	d, VRL anal d, analog re	og reference eference is u	e is output o sed internal	n RA2 if ena ly only	bled (VRLE	N = 1)	
bit 3-0	Unimplem	ented: Read	d as '0'					
	Note 1:	RA2 and R are enabled	A3 must be (I (See ANSE	configured a	s analog inp 25).	outs when th	e VREF outp	ut functions

REGISTER 10-2: VOLTAGE REFERENCE CONTROL REGISTER (REFCON: 9BH)

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Low-voltage detection
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming (ICSP)

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up type RESETS only (POR, BOR), designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The INTRC and ER oscillator options save system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space.

Some of the core features provided may not be necessary to each application that a device may be used for. The configuration word bits allow these features to be configured/enabled/disabled as necessary. These features include code protection, Brown-out Reset and its trip point, the Power-up Timer, the watchdog timer and the devices Oscillator mode. As can be seen in Register 12-1, some additional configuration word bits have been provided for Brown-out Reset trip point selection.

15.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on any pin with respect to Vss (except VDD, MCLR and RA4)	0.3V to (VDD + 0.3V)
Voltage on VDD with respect to Vss	0.3 to +7.5V
Maximum voltage between AVDD and VDD pins	$\pm 0.3V$
Maximum voltage between AVss and Vss pins	$\pm 0.3V$
Voltage on MCLR with respect to Vss	-0.3V to +8.5V
Voltage on RA4 with respect to Vss	
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin	
Maximum current into VDD pin	250 mA
Input clamp current, Iık (Vı < 0 or Vı > VDD)	± 20 mA
Output clamp current, Ioк (Vo < 0 or Vo > VDD)	± 20 mA
Maximum output current sunk by any I/O pin	25 mA
Maximum output current sourced by any I/O pin	25 mA
Maximum current sunk by PORTA and PORTB (combined)	200 mA
Maximum current sourced by PORTA and PORTB (combined)	200 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD - VOH) x IOH} + Σ (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

15.1 DC Characteristics: PIC16C717/770/771 (Commercial, Industrial, Extended) PIC16LC717/770/771 (Commercial, Industrial, Extended) (Continued)

PIC16LC717/770/771 Standard Operating Con Operating temperature -4 -4					n g Con ture (-4(-4(ditions (unless otherwise stated) $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $0^{\circ}C \le TA \le +85^{\circ}C$ for industrial $0^{\circ}C \le TA \le +125^{\circ}C$ for extended			
PIC16C717/770/771				Standard Operating Conditions (unless otherwise stated)Operating temperature $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for extended					
Param. No.	Sym	Characteristic	Min Typ† Max Units Conditions						
	Idd	Supply Current ⁽²⁾							
D010D D010E		PIC16LC7XX		1.0	2.0 3.0	mA	Fosc = 10 MHz, VDD = 3V, -40°C to 85°C Fosc = 10 MHz, VDD = 3V, -40°C to 125°C		
D010G				0.36	1.0	mA	Fosc = 4 MHz, Vdd = 2.5V, -40°C to 125°C		
D010K				11	45	μA	Fosc = 32 kHz, VDD = 2.5V, -40°C to 125°C		
	Idd	Supply Current ⁽²⁾							
D010 D010A		PIC16C7XX		4.0	7.5 12.0	mA	Fosc = 20 MHz, VDD = 5.5V, -40°C to 85°C Fosc = 20 MHz, VDD = 5.5V, -40°C to 125°C		
D010B D010C				2.5	5.0 6.0	mA	Fosc = 20 MHz, VDD = 4V, -40°C to 85°C Fosc = 20 MHz, VDD = 4V, -40°C to 125°C		
D010F				0.55	1.5	mA	Fosc = 4 MHz, VDD = 4V, -40°C to 125°C		
D010H D010J				30	80 95	μA	Fosc = 32 kHz, VDD = 4V, -40°C to 85°C Fosc = 32 kHz, VDD = 4V, -40°C to 125°C		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active Operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD

MCLR = VDD; WDT enabled/disabled as specified.

TABLE 15-14: PIC16C717 AND PIC16LC717 A/D CONVERTER CHARACTERISTI	CS:
---	-----

Param. No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
A01	NR	Resolution		_	10 bits	bit	Min. resolution for A/D is 4.1 mV, VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- \leq VAIN \leq VREF+
A03	EIL	Integral error		_	±1	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \leq VAIN \leq VREF+$
A04	Edl	Differential error	_	_	±1	LSb	No missing codes to 10 bits VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \le VAIN \le VREF+$
A06	EOFF	Offset error	—	_	±2	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, VREF- ≤ VAIN ≤ VREF+
A07	EGN	Gain Error	_	_	±1	LSb	VREF+ = AVDD = 4.096V, VREF- = AVSS = 0V, $VREF- \leq VAIN \leq VREF+$
A10	—	Monotonicity	—	Note 3	—	_	$AVSS \leq VAIN \leq VREF+$
A20*	VREF	Reference voltage (VREF+ - VREF-)	4.096	_	VDD +0.3V	V	Absolute minimum electrical spec to ensure 10-bit accuracy.
A21*	VREF+	Reference V High (AVDD or VREF+)	VREF-	_	AVdd	V	Min. resolution for A/D is 4.1 mV
A22*	VREF-	Reference V Low (Avss or VREF-)	AVss	_	VREF+	V	Min. resolution for A/D is 4.1 mV
A25*	VAIN	Analog input voltage	Vrefl	_	Vrefh	V	
A30*	ZAIN	Recommended impedance of analog voltage source	_	_	2.5	kΩ	
A50*	IREF	VREF input current (Note 2)	_	_	10	μA	During VAIN acquisition. Based on differential of VHOLD to VAIN. To charge CHOLD see Section 11.0. During A/D conversion cycle.

These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: When A/D is off, it will not consume any current other than leakage current. The power-down current spec includes any such leakage from the A/D module.

2: VREF current is from External VREF+, or VREF-, or AVSS, or AVDD pin, whichever is selected as reference input.

3: The A/D conversion result never decreases with an increase in the input voltage and has no missing codes.

t

FIGURE 15-17: PIC16C717 A/D CONVERSION TIMING (SLEEP MODE)

TABLE 15-16: PIC16C717 AND PIC16LC717 A/D CONVERSION REQUIREMENT (SLEEP MODE)

	r					1	
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	3.0	6.0	9.0	μS	ADCS<1:0> = 11 (A/D RC mode) At VDD = 3.0V
			2.0	4.0	6.0	μs	At VDD = 5.0V
131*	TCNV	Conversion time (not including acquisition time) (Note 1)	_	11Tad		—	
132*	TACQ	Acquisition Time	(Note 2)	11.5	-	μS	
			5*	_	_	μs	The minimum time is the amplifier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sam- pled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start		Tosc/2 + Tcy		_	If the A/D RC clock source is selected, a time of TCY is added before the A/D clock starts. This allows the SLEEP instruction to be executed.

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

FIGURE 15-21: SPI SLAVE MODE TIMING (CKE = 1)

TABLE 15-20: SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic	Min	Тур†	Max	Units	Conditions	
70*	TssL2scH, TssL2scL	$\overline{SS}\downarrow$ to SCK \downarrow or SCK \uparrow input		Тсү	—		ns	
71*	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A*		(Slave mode)	Single Byte	40	—	_	ns	Note 1
72*	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	_	ns	
72A*		(Slave mode)	Single Byte	40	—		ns	Note 1
73A*	Тв2в	Last clock edge of Byte1 to edge of Byte2	the 1st clock	1.5Tcy + 40	-		ns	Note 1
74*	TscH2diL, TscL2diL	Hold time of SDI data input	100	_		ns		
75*	TdoR	SDO data output rise time	PIC16CXXX	—	10	25	ns	
			PIC16LCXXX		20	45	ns	
76*	TdoF	SDO data output fall time		—	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impe	dance	10	—	50	ns	
78*	TscR	SCK output rise time (Mas-	PIC16CXXX	—	10	25	ns	
		ter mode)	PIC16LCXXX	—	20	45	ns	
79*	TscF	SCK output fall time (Maste	r mode)	—	10	25	ns	
80*	TscH2doV,	SDO data output valid after	PIC16CXXX	—	_	50	ns	
	TscL2doV	SCK edge	PIC16LCXXX	—	—	100	ns	
82*	TssL2doV	SDO data output valid after PIC16 C XXX		—	_	50	ns	
		SS↓ edge	PIC16LCXXX	_		100	ns	
83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—		ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

FIGURE 16-7: MAXIMUM IDD VS. FOSC OVER VDD (EC MODE)

FIGURE 16-17: INTERNAL RC Fosc VS. VDD OVER TEMPERATURE (4 MHz)

FIGURE 16-32: MINIMUM AND MAXIMUM VIH/VIL VS. VDD (ST INPUT,-40°C TO +125°C)

NOTES: