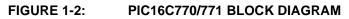


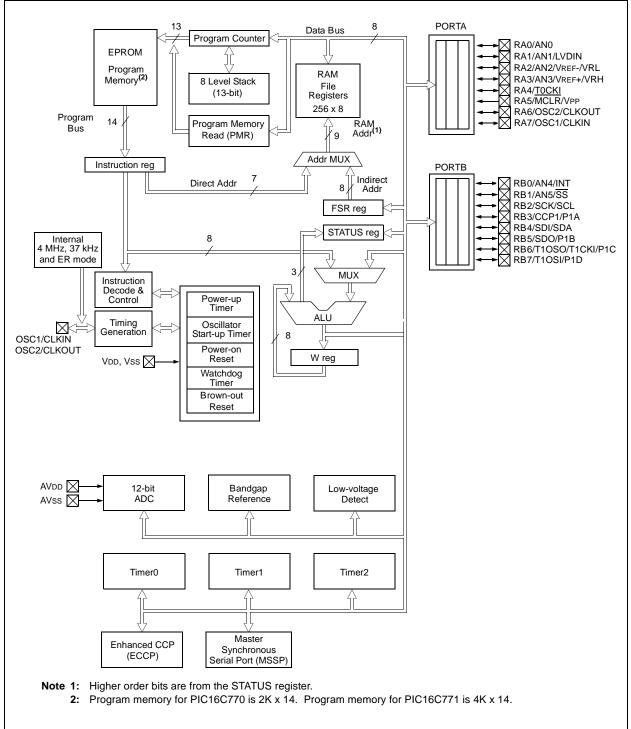
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


2014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc770t-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C717/770/771

2.2.2.2 **OPTION_REG REGISTER**

The OPTION_REG register is a readable and writable register, which contains various control bits to configure the TMR0 prescaler/WDT postscaler (single assignable register known also as the prescaler), the External INT Interrupt, TMR0 and the weak pull-ups on PORTB.

Note: To achieve a 1:1 prescaler assignment for the TMR0 register, assign the prescaler to the Watchdog Timer.

OPTION REGISTER (OPTION_REG: 81h, 181h) REGISTER 2-2:

	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0
	bit 7							bit 0
bit 7	RBPU: PC	RTB Pull-u	p Enable bit	(1)				
		B weak pull- B weak pull-	•		WPUB register			
bit 6	INTEDG:	nterrupt Edg	ge Select bi	t				
		pt on rising pt on falling	•	•				
bit 5	TOCS: TM	R0 Clock So	ource Selec	t bit				
		ion on RA4/ al instruction		(CLKOUT)				
bit 4	TOSE: TM	R0 Source E	Edge Select	bit				
		•		sition on RA sition on RA	•			
bit 3	PSA: Pres	caler Assigr	nment bit					
		aler is assigr aler is assigr		VDT ïmer0 modu	le			
bit 2-0	PS<2:0>:	Prescaler R	ate Select b	oits				
	I	Bit Value T	MR0 Rate	WDT Rate				
	_	000 001 010	1:2 1:4 1:8	1 : 1 1 : 2 1 : 4				
		011 100 101	1 : 16 1 : 32 1 : 64	1 : 8 1 : 16 1 : 32				

1:64

1:128

1:128

1:256

110

111

Note 1: Individual weak pull-up on RB pins can be enabled/disabled from the weak pull-up PORTB Register (WPUB).

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

2.2.2.4 PIE1 REGISTER

This register contains the individual enable bits for the peripheral interrupts.

Note: Bit PEIE (INTCON<6>) must be set to enable any peripheral interrupt.

REGISTER 2-4: PERIPHERAL INTERRUPT ENABLE REGISTER 1 (PIE1: 8Ch)

	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
		ADIE	—	—	SSPIE	CCP1IE	TMR2IE	TMR1IE	
	bit 7							bit 0	
bit 7	Unimplem	ented: Read	d as '0'						
bit 6	ADIE: A/D	Converter In	nterrupt Ena	ble bit					
		s the A/D in s the A/D in	•						
bit 5-4	Unimplem	ented: Read	d as '0'						
bit 3	SSPIE: Syr	nchronous S	Serial Port In	terrupt Enab	ole bit				
		s the SSP ir s the SSP i							
bit 2	CCP1IE: C	CP1 Interru	pt Enable bit	t					
		s the CCP1 s the CCP1							
bit 1	TMR2IE: T	MR2 to PR2	2 Match Inter	rupt Enable	bit				
			to PR2 mate to PR2 mat						
bit 0	TMR1IE: T	MR1 Overfle	ow Interrupt	Enable bit					
	 1 = Enables the TMR1 overflow interrupt 0 = Disables the TMR1 overflow interrupt 								
	Legend:								
	R = Reada	ble bit	W = W	ritable bit	U = Unim	plemented	bit, read as '	0'	
	- n = Value	at POR	'1' = Bi	t is set	'0' = Bit i	s cleared	x = Bit is u	nknown	

2.2.2.8 PCON REGISTER

The Power Control (PCON) register contains a flag bit to allow differentiation between a Power-on Reset (POR) to an external MCLR Reset or WDT Reset. Those devices with brown-out detection circuitry contain an additional bit to differentiate a Brown-out Reset condition from a Power-on Reset condition.

The PCON register also contains the frequency select bit of the INTRC or ER oscillator.

Note: BOR is unknown on Power-on Reset. It must then be set by the user and checked on subsequent RESETS to see if BOR is clear, indicating a brown-out has occurred. The BOR status bit is a don't care and is not necessarily predictable if the brown-out circuit is disabled (by clearing the BODEN bit in the Configuration word).

REGISTER 2-8: POWER CONTROL REGISTER (PCON: 8Eh)

- n = Value at POR

U-0	U-0	U-0	U-0	R/W-1	U-0	R/W-q	R/W-q
_	—	—	—	OSCF	_	POR	BOR
bit 7							bit 0

bit 7-4	Unimplemented: Read as '0'
bit 3	OSCF: Oscillator Speed bit
	INTRC Mode
	1 = 4 MHz nominal
	0 = 37 kHz nominal
	ER Mode
	 1 = Oscillator frequency depends on the external resistor value on the OSC1 pin. 0 = 37 kHz nominal
	All other modes
	x = Ignored
bit 2	Unimplemented: Read as '0'
bit 1	POR: Power-on Reset Status bit
	1 = No Power-on Reset occurred
	0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit (See Section 2.2.2.8 Note)
	1 = No Brown-out Reset occurred
	0 = A Brown-out Reset occurred (must be set in software after a Brown-out Reset occurs)
	Legend: q = Value depends on conditions
	R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'

'1' = Bit is set

'0' = Bit is cleared

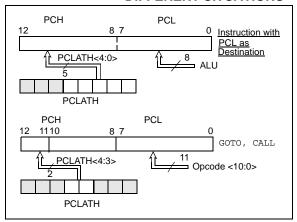
x = Bit is unknown

2.3 PCL and PCLATH

The program counter (PC) specifies the address of the instruction to fetch for execution. The PC is 13 bits wide. The low byte is called the PCL register. This register is readable and writable. The high byte is called the PCH register. This register contains the PC<12:8> bits and is not directly readable or writable. All updates to the PCH register occur through the PCLATH register.

2.3.1 PROGRAM MEMORY PAGING

PIC16C717/770/771 devices are capable of addressing a continuous 8K word block of program memory. The CALL and GOTO instructions provide only 11 bits of address to allow branching within any 2K program memory page. When doing a CALL or GOTO instruction, the upper 2 bits of the address are provided by PCLATH<4:3>. When doing a CALL or GOTO instruction, the user must ensure that the page select bits are programmed so that the desired program memory page is addressed. A return instruction pops a PC address off the stack onto the PC register. Therefore, manipulation of the PCLATH<4:3> bits are not required for the return instructions (which POPs the address from the stack).


2.4 Stack

The stack allows a combination of up to 8 program calls and interrupts to occur. The stack contains the return address from this branch in program execution.

Mid-range devices have an 8-level deep x 13-bit wide hardware stack. The stack space is not part of either program or data space and the stack pointer is not readable or writable. The PC is PUSHed onto the stack when a CALL instruction is executed or an interrupt causes a branch. The stack is POPed in the event of a RETURN, RETLW or a RETFIE instruction execution. PCLATH is not modified when the stack is PUSHed or POPed.

After the stack has been PUSHed eight times, the ninth push overwrites the value that was stored from the first push. The tenth push overwrites the second push (and so on).

FIGURE 2-4: LOADING OF PC IN DIFFERENT SITUATIONS

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a *pointer*). This is indirect addressing.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although STATUS bits may be affected).

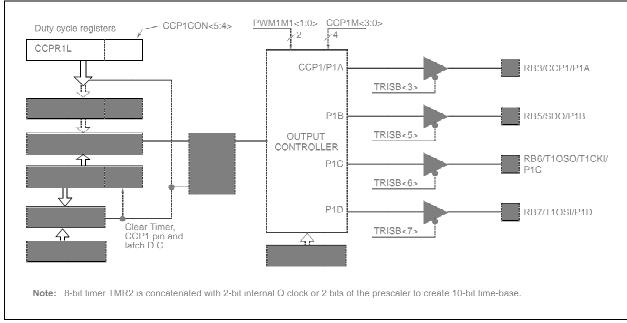
A simple program to clear RAM locations 20h-2Fh using indirect addressing is shown in Example 2-1.

EXAMPLE 2-1: How to Clear RAM Using Indirect Addressing

	movlw	0x20	;initialize pointer
	movwf	FSR	; to RAM
NEXT	clrf	INDF	;clear INDF register
	incf	FSR	;inc pointer
	btfss	FSR,4	;all done?
	goto	NEXT	;NO, clear next
CONTIN	IUE		
	:		;YES, continue

An effective 9-bit address is obtained by concatenating the 8-bit FSR register and the IRP bit (STATUS<7>), as shown in Figure 2-5.

FIGURE 2-5: DIRECT/INDIRECT ADDRESSING


TABLE 4-1: PROGRAM MEMORY READ REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
18Ch	PMCON1	Reserved	_	_	_	_	—		RD	1 0	10
10Eh	PMDATH	_	_	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8	xx xxxx	uu uuuu
10Ch	PMDATL	PMD7	PMD6	PMD5	PMD4	PMD3	PMD2	PMD1	PMD0	xxxx xxxx	uuuu uuuu
10Fh	PMADRH	_	_	—	_	PMA11	PMA10	PMA9	PMA8	xxxx	uuuu
10Dh	PMADRL	PMA7	PMA6	PMA5	PMA4	PMA3	PMA2	PMA1	PMA0	XXXX XXXX	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Program Memory Read.

8.3 PWM Mode

In Pulse Width Modulation (PWM) mode, the ECCP module produces up to a 10-bit resolution PWM output. Figure 8-3 shows the simplified PWM block diagram.

FIGURE 8-3: SIMPLIFIED PWM BLOCK DIAGRAM

8.3.1 PWM PERIOD

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

 $PWM PERIOD = [(PR2) + 1] \cdot 4 \cdot TOSC \cdot (TMR2 PRESCALE VALUE)$

PWM frequency is defined as 1 / [PWM period].

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The CCP1 pin is set (exception: if PWM duty cycle = 0%, the CCP1 pin will not be set)
- The PWM duty cycle is latched from CCPR1L into CCPR1H

Note: The Timer2 postscaler (see Section 7.0) is not used in the determination of the PWM frequency. The postscaler could be used to have a servo update rate at a different frequency than the PWM output.

9.0 MASTER SYNCHRONOUS SERIAL PORT (MSSP) MODULE

The Master Synchronous Serial Port (MSSP) module is a serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices may be serial EEPROMs, shift registers, display drivers, etc. The MSSP module can operate in one of two modes:

- Serial Peripheral Interface (SPI™)
- Inter-Integrated Circuit (I²C[™])

When the application software is expecting to receive valid data, the SSPBUF should be read before the next byte of data to transfer is written to the SSPBUF. Buffer full bit, BF (SSPSTAT<0>), indicates when the SSPBUF has been loaded with the received data (transmission is complete). When the SSPBUF is read, bit BF is cleared. This data may be irrelevant if the SPI is only a transmitter. Generally the MSSP Interrupt is used to determine when the transmission/reception has completed. The SSPBUF must be read and/or written. If the interrupt method is not going to be used, then software polling can be done to ensure that a write collision does not occur. Example 9-1 shows the loading of the SSPBUF (SSPSR) for data transmission.

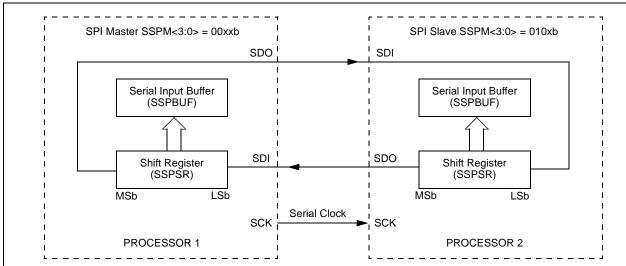
EXAMPLE 9-1: Loading the SSPBUF (SSPSR) Register

			, 0
	BSF	STATUS, RPO	;Specify Bank 1
LOOP	BTFSS	SSPSTAT, BF	;Has data been
			;received
			;(xmit complete)?
	GOTO	LOOP	;No
	BCF	STATUS, RPO	;Specify Bank 0
	MOVF	SSPBUF, W	;Save SSPBUF
	MOVWF	RXDATA	;in user RAM
	MOVF	TXDATA, W	;Get next TXDATA
	MOVWF	SSPBUF	;New data to xmit

The SSPSR is not directly readable or writable, and can only be accessed by addressing the SSPBUF register. Additionally, the MSSP STATUS register (SSPSTAT) indicates the various status conditions.

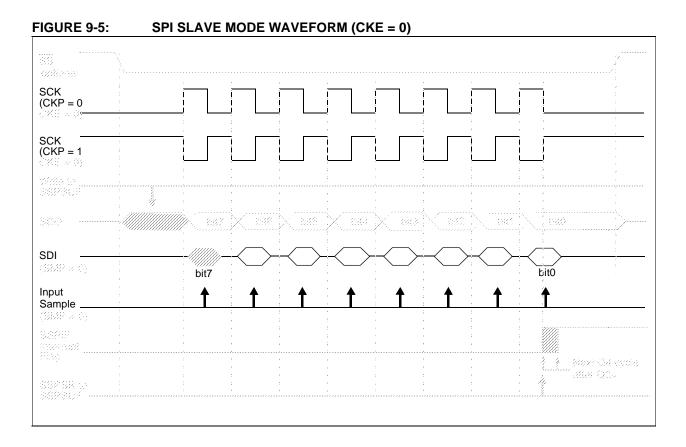
9.1.2 ENABLING SPI I/O

To enable the serial port, MSSP Enable bit, SSPEN (SSPCON<5>) must be set. To reset or reconfigure SPI mode, clear bit SSPEN, re-initialize the SSPCON registers, and then set bit SSPEN. This configures the SDI, SDO, SCK and SS pins as serial port pins. For the pins to behave as the serial port function, some must have their data direction bits (in the TRIS register) appropriately programmed. That is:


- SDI is automatically controlled by the SPI module
- SDO must have TRISB<5> cleared
- SCK (Master mode) must have TRISB<2> cleared
- SCK (Slave mode) must have TRISB<2> set
- SS must have TRISB<1> set, and ANSEL<5> cleared

Any serial port function that is not desired may be overridden by programming the corresponding data direction (TRIS) register to the opposite value.

9.1.3 TYPICAL CONNECTION


Figure 9-2 shows a typical connection between two microcontrollers. The master controller (Processor 1) initiates the data transfer by sending the SCK signal. Data is shifted out of both shift registers on their programmed clock edge, and latched on the opposite edge of the clock. Both processors should be programmed to same Clock Polarity (SSPCON<4>), then both controllers would send and receive data at the same time. Whether the data is meaningful (or dummy data) depends on the application software. This leads to three scenarios for data transmission:

- Master sends data Slave sends dummy data
- Master sends data Slave sends data
- Master sends dummy data Slave sends data

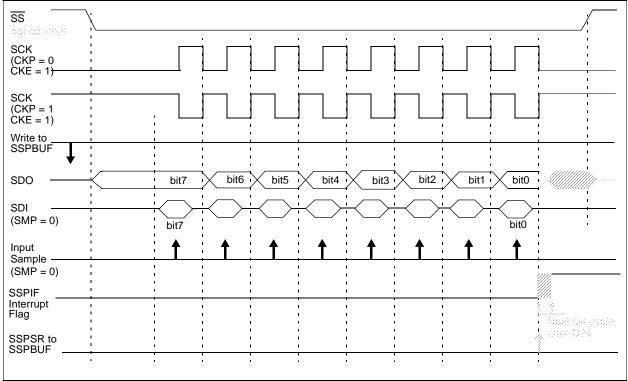


FIGURE 9-2: SPI MASTER/SLAVE CONNECTION

PIC16C717/770/771

FIGURE 9-6: SPI SLAVE MODE WAVEFORM (CKE = 1)

9.1.7 SLEEP OPERATION

In Master mode, all module clocks are halted and the transmission/reception will remain in that state until the device wakes from SLEEP. After the device returns to Normal mode, the module will continue to transmit/ receive data.

In Slave mode, the SPI transmit/receive shift register operates asynchronously to the device. This allows the device to be placed in SLEEP mode and data to be shifted into the SPI transmit/receive shift register. When all eight bits have been received, the SSPIF interrupt flag bit will be set and if enabled will wake the device from SLEEP.

9.1.8 EFFECTS OF A RESET

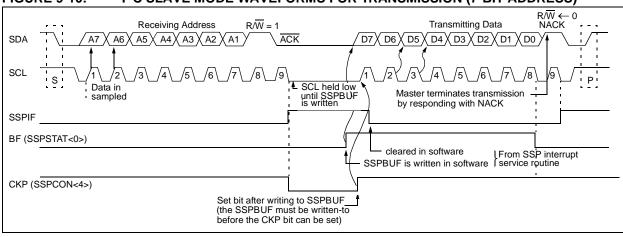
A RESET disables the MSSP module and terminates the current transfer.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	POR, BOR	MCLR, WDT
0Bh, 8Bh, 10Bh,18Bh	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
0Ch	PIR1	_	ADIF	-	-	SSPIF	CCP1IF	TMR2IF	TMR1IF	-0 0000	-0 0000
8Ch	PIE1	_	ADIE	-	-	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	-0 0000
13h	SSPBUF		Synchro	onous Seria	I Port Re	eceive Buffe	er/Transmit I	Register		XXXX XXXX	uuuu uuuu
14h	SSPCON	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	0000 0000	0000 0000
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	0000 0000
9Dh	ANSEL									11 1111	11 1111
86h	TRISB									1111 1111	1111 1111

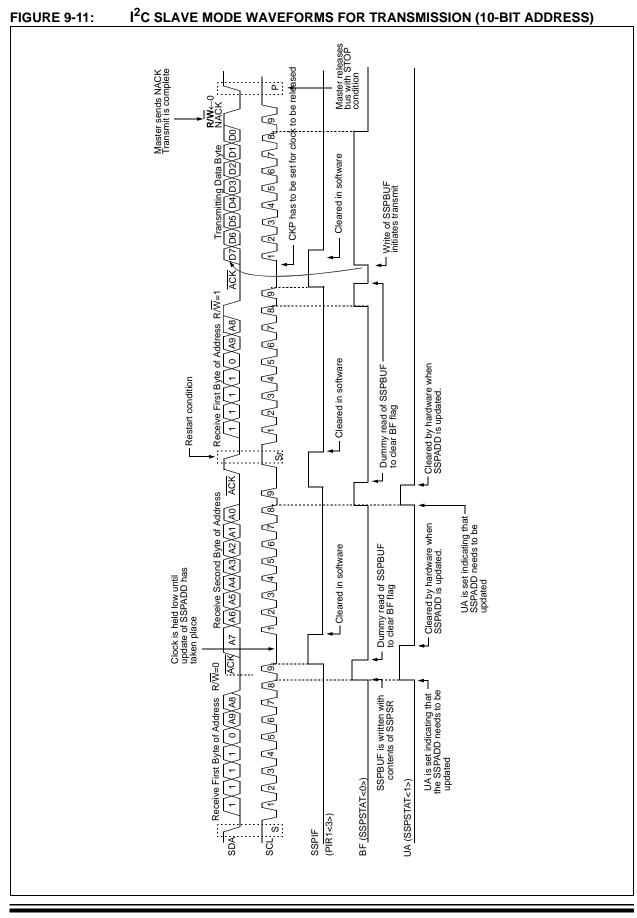
TABLE 9-1: REGISTERS ASSOCIATED WITH SPI OPERATION

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by the MSSP in SPI mode.

9.2.2.4 SLAVE TRANSMISSION


When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSP-STAT register is set. The received address is loaded into the SSPBUF register on the falling edge of the eighth SCL pulse. The ACK pulse will be sent on the ninth bit, and the SCL pin is held low. The slave module automatically stretches the clock by holding the SCL line low so that the master will be unable to assert another clock pulse until the slave is finished preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. The CKP bit (SSPCON<4>) must then be set to release the SCL pin from the forced low condition. The eight data bits are shifted out on the falling edges of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-10).

The \overline{ACK} or NACK signal from the master-receiver is latched on the rising edge of the ninth SCL input pulse. The master-receiver terminates slave transmission by


sending a NACK. If the SDA line is high (NACK), then the data transfer is complete. When the NACK is latched by the slave, the slave logic is RESET which also resets the R/W bit to '0'. The slave module then monitors for another occurrence of the START bit. The slave firmware knows not to load another byte into the SSPBUF register by sensing that the buffer is empty (BF = 0) and the R/W bit has gone low. If the SDA line is low (ACK), the R/W bit remains high indicating that the next transmit data must be loaded into the SSPBUF register.

An MSSP interrupt (SSPIF flag) is generated for each data transfer byte on the falling edge of the ninth clock pulse. The SSPIF flag bit must be cleared in software. The SSPSTAT register is used to determine the status of the byte transfer.

For more information about the I²C Slave mode, refer to Application Note AN734, "Using the PIC[®] SSP for Slave l^2C^{TM} Communication".

FIGURE 9-10: I²C SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

10.0 VOLTAGE REFERENCE MODULE AND LOW-VOLTAGE DETECT

The Voltage Reference module provides reference voltages for the Brown-out Reset circuitry, the Low-voltage Detect circuitry and the A/D converter.

b b

b

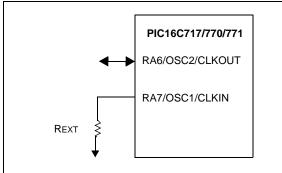
b

The source for the reference voltages comes from the bandgap reference circuit. The bandgap circuit is energized anytime the reference voltage is required by the other sub-modules, and is powered down when not in use. The control registers for this module are LVDCON and REFCON, as shown in Register 10-1 and Figure 10-2.

REGISTER 10-1: LOW-VOLTAGE DETECT CONTROL REGISTER (LVDCON: 9Ch)

U-0	U-0	R-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1
_	_	BGST	LVDEN	LV3	LV2	LV1	LV0
bit 7		•	•				bit
Unimplem	nented: Read	d as '0'					
BGST: Ba	ndgap Stable	e Status Flag	g bit				
1 = Indicat	es that the b	andgap volt	age is stable	e, and LVD i	nterrupt is re	eliable	
0 = Indicat	es that the b	andgap volt	age is not st	able, and L\	/D interrupt	should not b	be enabled
LVDEN: LO	ow-voltage D	etect Powe	r Enable bit				
1 = Enable	es LVD, powe	ers up band	ap circuit a	nd reference	e generator		
	es LVD, pow	•	• •		•	/RH/VRL	
LV<3:0>: l	Low Voltage	Detection Li	imit bits ⁽¹⁾		•		
	ternal analog						
1110 = 4.5		5 1					
1101 = 4.2	2V						
1100 = 4.0							
1011 = 3.8							
1010 = 3.6	-						
1001 = 3.5							
1000 = 3.3							
0111 = 3.0 0110 = 2.8							
0110 = 2.0 0101 = 2.7							
0101 = 2.7 0100 = 2.5							
	eserved. Do i	not use					
	eserved. Do i						
	eserved. Do i						
0000 = Re							

Note: These are the minimum trip points for the LVD. See Table 15-8 for the trip point tolerances. Selection of reserved setting may result in an inadvertent interrupt.


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

12.2.4 ER MODE

For timing insensitive applications, the ER (External Resistor) Clock mode offers additional cost savings. Only one external component, a resistor connected to the OSC1 pin and Vss, is needed to set the operating frequency of the internal oscillator. The resistor draws a DC bias current which controls the oscillation frequency. In addition to the resistance value, the oscillator frequency will vary from unit to unit, and as a function of supply voltage and temperature. Since the controlling parameter is a DC current and not a capacitance, the particular package type and lead frame will not have a significant effect on the resultant frequency.

Figure 12-3 shows how the controlling resistor is connected to the PIC16C717/770/771. For REXT values below 38 k Ω , the oscillator operation may become unstable, or stop completely. For very high REXT values (e.g. 1M), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend keeping REXT between 38 k Ω and 1 M Ω .

FIGURE 12-3: EXTERNAL RESISTOR

The Electrical Specification section shows the relationship between the REXT resistance value and the operating frequency as well as frequency variations due to operating temperature for given REXT and VDD values.

The ER Oscillator mode has two options that control the OSC2 pin. The first allows it to be used as a general purpose I/O port. The other configures the pin as CLK-OUT. The ER oscillator does not run during RESET.

12.2.5 INTRC MODE

The internal RC oscillator provides a fixed 4 MHz (nominal) system clock at VDD = 5V and 25°C, see "Electrical Specifications" section for information on variation over voltage and temperature. The INTRC oscillator does not run during RESET.

12.2.6 CLKOUT

In the INTRC and ER modes, the PIC16C717/770/771 can be configured to provide a clock out signal by programming the configuration word. The oscillator frequency, divided by 4, can be used for test purposes or to synchronize other logic.

In the INTRC and ER modes, if the CLKOUT output is enabled, CLKOUT is held low during RESET.

12.2.7 DUAL SPEED OPERATION FOR ER AND INTRC MODES

A software programmable dual speed oscillator is available in either ER or INTRC Oscillator modes. This feature allows the applications to dynamically toggle the oscillator speed between normal and slow frequencies. The nominal slow frequency is 37 kHz. In ER mode, the slow speed operation is fixed and does not vary with resistor size. Applications that require low current power savings, but cannot tolerate putting the part into SLEEP, may use this mode.

The OSCF bit in the PCON register is used to control Dual Speed mode. See the PCON Register, Register 2-8, for details.

When changing the INTRC or ER internal oscillator speed, there is a period of time when the processor is inactive. When the speed changes from fast to slow, the processor inactive period is in the range of 100 μ S to 300 μ S. For speed change from slow to fast, the processor is in active for 1.25 μ S to 3.25 μ S.

COMF	Complement f					
Syntax:	[<i>label</i>] COMF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	$(\overline{f}) \rightarrow (destination)$					
Status Affected:	Z					
Description:	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.					

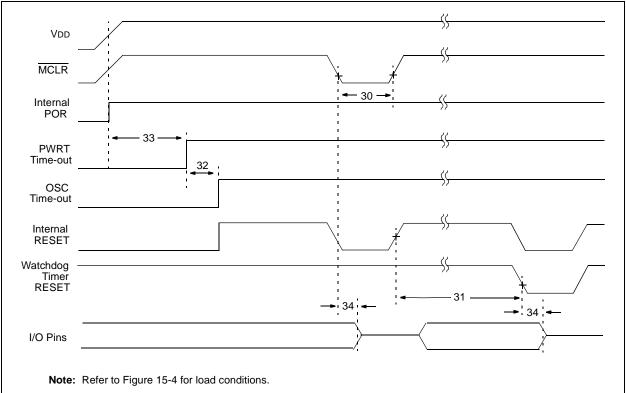
GOTO	Unconditional Branch					
Syntax:	[<i>label</i>] GOTO k					
Operands:	$0 \le k \le 2047$					
Operation:	$k \rightarrow PC<10:0>$ PCLATH<4:3> \rightarrow PC<12:11>					
Status Affected:	None					
Description:	GOTO is an unconditional branch. The eleven bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a two cycle instruction.					

DECF	Decrement f			
Syntax:	[<i>label</i>] DECF f,d			
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$			
Operation:	(f) - 1 \rightarrow (destination)			
Status Affected:	Z			
Description:	Decrement register 'f'. If 'd' is 0, the result is stored in the W regis- ter. If 'd' is 1, the result is stored back in register 'f'.			

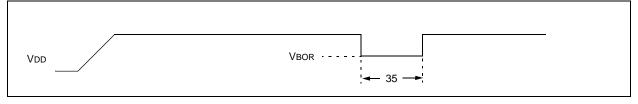
INCF	Increment f					
Syntax:	[label] INCF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination)					
Status Affected:	Z					
Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'.					

DECFSZ	Decrement f, Skip if 0	INCFSZ	Increment f, Skip if 0				
Syntax:	[label] DECFSZ f,d	Syntax:	[label] INCFSZ f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0	Operation:	(f) + 1 \rightarrow (destination), skip if result = 0				
Status Affected:	None	Status Affected:	None				
Description:	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, then a NOP is executed instead making it a 2Tcy instruction.	Description:	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in regis- ter 'f'. If the result is 1, the next instruc- tion is executed. If the result is 0, a NOP is executed instead making it a 2TCY instruction.				

TABLE 15-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC16C717/770/771 AND PIC16LC717/770/771


AC CharacteristicsStandard Operating Conditions (unless otherwise specified) Operating Temperature $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended Operating Voltage VDD range is described in Section and Section					tion		
Parameter No.	Sym	Characteristic	Min	Тур ^{(1)*}	Max	Units	Conditions
FIRC		Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	VDD = 5.0V
	TIRC	Internal RC Frequency*	3.55	4.00	4.31	MHz	VDD = 2.5V

These parameters are characterized but not tested.


*

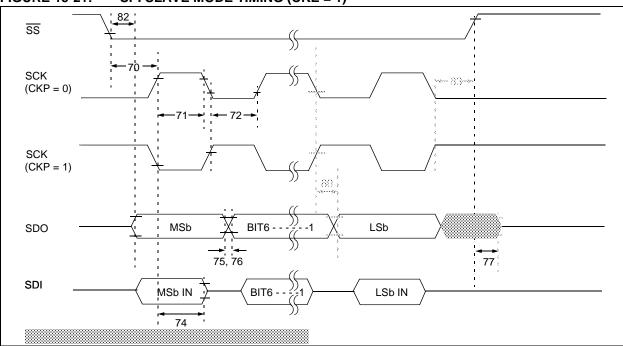

Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-8: BROWN-OUT RESET TIMING

FIGURE 15-21: SPI SLAVE MODE TIMING (CKE = 1)

TABLE 15-20: SPI SLAVE MODE REQUIREMENTS (CKE = 1)

Param. No.	Symbol	Characteristic		Min	Тур†	Max	Units	Conditions
70*	TssL2scH, TssL2scL	$\overline{\text{SS}}\downarrow$ to $\text{SCK}\downarrow$ or $\text{SCK}\uparrow$ input		Тсү	—		ns	
71*	TscH	SCK input high time	Continuous	1.25Tcy + 30	—	_	ns	
71A*		(Slave mode)	Single Byte	40	—	_	ns	Note 1
72*	TscL	SCK input low time	Continuous	1.25Tcy + 30	—	_	ns	
72A*		(Slave mode)	Single Byte	40	—		ns	Note 1
73A*	Тв2в	Last clock edge of Byte1 to the 1st clock edge of Byte2		1.5Tcy + 40	-	—	ns	Note 1
74*	TscH2diL, TscL2diL	Hold time of SDI data input to SCK edge		100	-	—	ns	
75*	TdoR	SDO data output rise time	PIC16 C XXX	_	10	25	ns	
			PIC16LCXXX		20	45	ns	
76*	TdoF	SDO data output fall time		_	10	25	ns	
77*	TssH2doZ	SS↑ to SDO output hi-impedance		10	—	50	ns	
78* TscR	SCK output rise time (Mas- ter mode)	PIC16 C XXX	_	10	25	ns		
		PIC16LCXXX	_	20	45	ns		
79*	TscF	SCK output fall time (Master mode)		_	10	25	ns	
80*	TscH2doV,	,	PIC16 C XXX	_	_	50	ns	
TscL2doV	TscL2doV		PIC16LCXXX	_	—	100	ns	
82*	82* TssL2doV		PIC16CXXX	_	_	50	ns	
		SS↓ edge	PIC16LCXXX	_	_	100	ns	
83*	TscH2ssH, TscL2ssH	$\overline{\text{SS}}$ \uparrow after SCK edge		1.5Tcy + 40	_		ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Specification 73A is only required if specifications 71A and 72A are used.

PIC16C717/770/771

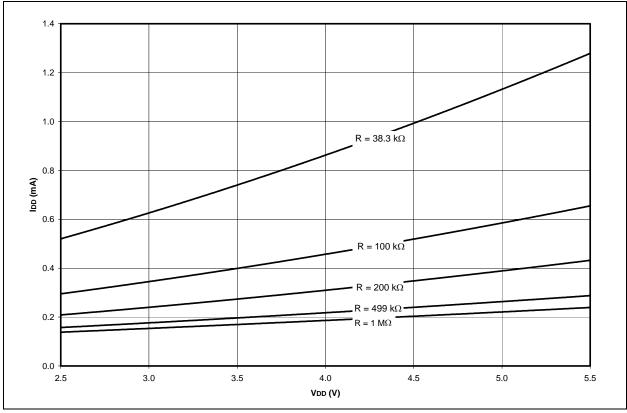
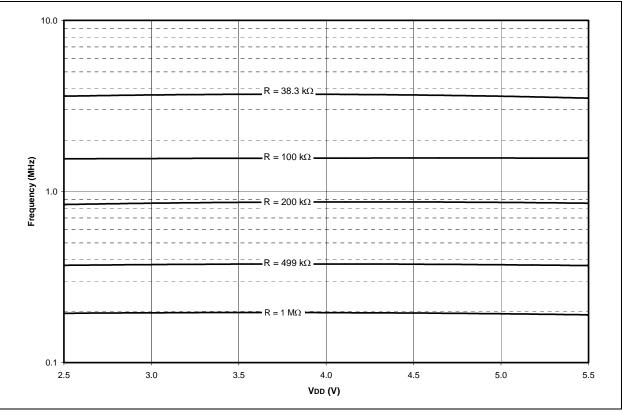



FIGURE 16-11: TYPICAL Fosc VS. VDD (ER MODE)

