

Welcome to E-XFL.COM

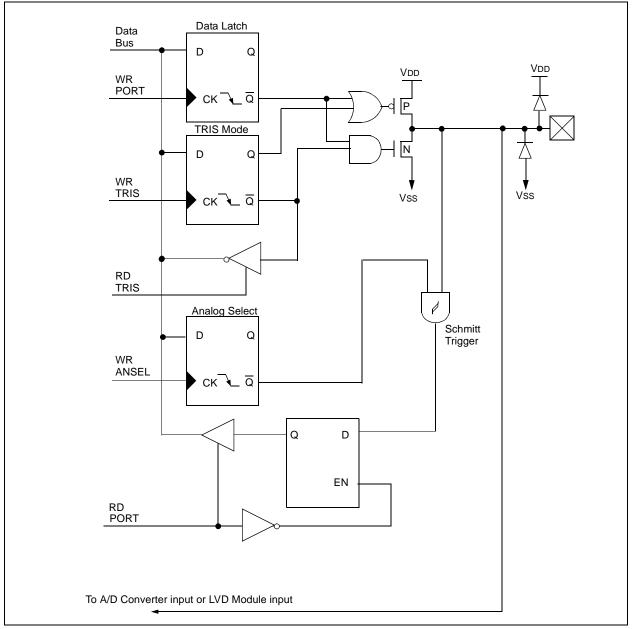
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc770t-i-ss


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

EXAMPLE 3-1: Initializing PORTA

	-			J
BCF	STATUS,	RP0	;	Select Bank 0
CLRF	PORTA		;	Initialize PORTA by
			;	clearing output
			;	data latches
BSF	STATUS,	RP0	;	Select Bank 1
MOVLW	0Fh		;	Value used to
			;	initialize data
			;	direction
MOVWF	TRISA		;	Set RA<3:0> as inputs
			;	RA<7:4> as outputs. RA<7:6>availability depends on oscillator selection.
MOVLW	03		;	Set RA<1:0> as analog inputs, RA<7:2> are digital I/O
MOVWF	ANSEL			
BCF	STATUS,	RP0	;	Return to Bank 0

FIGURE 3-1: BLOCK DIAGRAM OF RA0/AN0, RA1/AN1/LVDIN

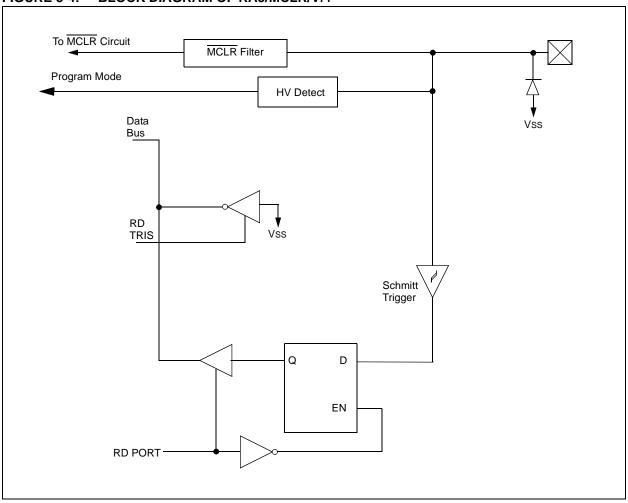


FIGURE 3-4: BLOCK DIAGRAM OF RA5/MCLR/VPP

3.3 PORTB and the TRISB Register

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is TRISB. Setting a TRISB bit (=1) will make the corresponding PORTB pin an input (i.e., put the corresponding output driver in a Hi-impedance mode). Clearing a TRISB bit (=0) will make the corresponding PORTB pin an output (i.e., put the contents of the output latch on the selected pin).

EXAMPLE 3-2: Initializing PORTB

BCF	STATUS,	RP0;	
CLRF	PORTB	;	Initialize PORTB by
		;	clearing output
		;	data latches
BSF	STATUS,	RP0;	Select Bank 1
MOVLW	0xCF	;	Value used to
		;	initialize data
		;	direction
MOVWF	TRISB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs
MOVLW	0x30	;	Set RB<1:0> as analog
			inputs
MOVWF	ANSEL	;	
BCF	STATUS,	RP0;	Return to Bank 0

Each of the PORTB pins has an internal pull-up, which can be individually enabled from the WPUB register. A single global enable bit can turn on/off the enabled pullups. Clearing the RBPU bit, (OPTION_REG<7>), enables the weak pull-up resistors. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset. Each of the PORTB pins, if configured as input, also has an interrupt-on-change feature, which can be individually selected from the IOCB register. The RBIE bit in the INTCON register functions as a global enable bit to turn on/off the interrupt-on-change feature. The selected inputs are compared to the old value latched on the last read of PORTB. The "mismatch" outputs are OR'ed together to generate the RB Port Change Interrupt with flag bit RBIF (INTCON<0>).

This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt in the following manner:

- a) Any read or write of PORTB. This will end the mismatch condition.
- a) Clear flag bit RBIF.

A mismatch condition will continue to set flag bit RBIF. Reading PORTB will end the mismatch condition and allow flag bit RBIF to be cleared.

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTB is only used for the interrupt-on-change feature. Polling of PORTB is not recommended while using the interrupt-on-change feature.

Name	Function	Input Type	Output Type	Description
	RB0	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB0/AN4/INT	AN4	AN		A/D input
	INT	ST		Interrupt input
	RB1	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB1/AN5/SS	AN5	AN		A/D input
	SS	ST		SSP slave select input
	RB2	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB2/SCK/SCL	SCK	ST	CMOS	Serial clock I/O for SPI
	SCL	ST	OD	Serial clock I/O for I ² C
	RB3	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB3/CCP1/P1A	CCP1	ST	CMOS	Capture 1 input/Compare 1 output
	P1A		CMOS	PWM P1A output
	RB4	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB4/SDI/SDA	SDI	ST		Serial data in for SPI
	SDA	ST	OD	Serial data I/O for I ² C
	RB5	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB5/SDO/P1B	SDO		CMOS	Serial data out for SPI
	P1B		CMOS	PWM P1B output
	RB6	TTL	CMOS	Bi-directional I/O ⁽¹⁾
	T1OSO		XTAL	Crystal/Resonator
RB6/T1OSO/T1CKI/P1C	T1CKI	CMOS		TMR1 clock input
	P1C		CMOS	PWM P1C output
	RB7	TTL	CMOS	Bi-directional I/O ⁽¹⁾
RB7/T1OSI/P1D	T1OSI	XTAL		TMR1 crystal/resonator
	P1D		CMOS	PWM P1D output

TABLE 3-3: PORTB FUNCTIONS

Note 1: Bit programmable pull-ups.

TABLE 3-4: SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
06h, 106h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xx11	uuuu uull
86h, 186h	TRISB	PORTE	PORTB Data Direction Register							1111 1111	1111 1111
81h, 181h	OPTION_REG	RBPU	INTEDG	TOCS	T0SE	PSA	PS2	PS1	PS0	1111 1111	1111 1111
95h	WPUB	PORTE	PORTB Weak Pull-up Control							1111 1111	1111 1111
96h	IOCB	PORTE	PORTB Interrupt on Change Control							1111 0000	1111 0000
9Dh	ANSEL	_	_	ANS5	ANS4	ANS3	ANS2	ANS1	ANS0	11 1111	11 1111

Legend: x = unknown, u = unchanged. Shaded cells are not used by PORTB.

TABLE 4-1: PROGRAM MEMORY READ REGISTER SUMMARY

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other RESETS
18Ch	PMCON1	Reserved	_	_	_	_	—		RD	1 0	10
10Eh	PMDATH	_	_	PMD13	PMD12	PMD11	PMD10	PMD9	PMD8	xx xxxx	uu uuuu
10Ch	PMDATL	PMD7	PMD6	PMD5	PMD4	PMD3	PMD2	PMD1	PMD0	xxxx xxxx	uuuu uuuu
10Fh	PMADRH	_	_	—	_	PMA11	PMA10	PMA9	PMA8	xxxx	uuuu
10Dh	PMADRL	PMA7	PMA6	PMA5	PMA4	PMA3	PMA2	PMA1	PMA0	XXXX XXXX	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Program Memory Read.

6.0 TIMER1 MODULE

The Timer1 module timer/counter has the following features:

- 16-bit timer/counter (Two 8-bit registers; TMR1H and TMR1L)
- Readable and writable (Both registers)
- · Internal or external clock select
- Interrupt on overflow from FFFFh to 0000h
- RESET from ECCP module trigger

Timer1 has a control register, shown in Register 6-1. Timer1 can be enabled/disabled by setting/clearing control bit TMR1ON (T1CON<0>).

Figure 6-2 is a simplified block diagram of the Timer1 module.

Additional information on timer modules is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

6.1 Timer1 Operation

Timer1 can operate in one of these modes:

- As a timer
- · As a synchronous counter
- · As an asynchronous counter

The Operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

In Timer mode, Timer1 increments every instruction cycle. In Counter mode, it increments on every rising edge of the external clock input.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

bit 7-6	Unimplemented: Read as '0'
bit 5-4	T1CKPS<1:0>: Timer1 Input Clock Prescale Select bits 11 = 1:8 Prescale value 10 = 1:4 Prescale value 01 = 1:2 Prescale value 00 = 1:1 Prescale value
bit 3	T1OSCEN: Timer1 Oscillator Enable Control bit 1 = Oscillator is enabled 0 = Oscillator is shut off ⁽¹⁾
bit 2	T1SYNC: Timer1 External Clock Input Synchronization Control bitTMR1CS = 1:1 = Do not synchronize external clock input0 = Synchronize external clock inputTMR1CS = 0:This bit is ignored. Timer1 uses the internal clock when TMR1CS = 0.
bit 1	TMR1CS: Timer1 Clock Source Select bit 1 = External clock from pin RB6/T1OSO/T1CKI /P1C (on the rising edge) 0 = Internal clock (Fosc/4)
bit 0	TMR1ON: Timer1 On bit 1 = Enables Timer1 0 = Stops Timer1

Note 1: The oscillator inverter and feedback resistor are turned off to eliminate power drain.

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

REGISTER 6-1: TIMER1 CONTROL REGISTER (T1CON: 10h)

TABLE 8-1: ECCP MODE - TIMER RESOURCE

ECCP Mode	Timer Resource
Capture	Timer1
Compare	Timer1
PWM	Timer2

8.1 Capture Mode

In Capture mode, CCPR1H:CCPR1L captures the 16bit value of the TMR1 register when an event occurs on pin CCP1. An event is defined as:

- · every falling edge
- · every rising edge
- · every 4th rising edge
- every 16th rising edge

An event is selected by control bits CCP1M<3:0> (CCP1CON<3:0>). When a capture is made, the interrupt request flag bit CCP1IF (PIR1<2>) is set. It must be cleared in software. If another capture occurs before the value in register CCPR1 is read, the old captured value will be lost.

8.1.1 CCP1 PIN CONFIGURATION

In Capture mode, the CCP1 pin should be configured as an input by setting the TRISB<3> bit.

Note:	If the RB3/CCP1/P1A pin is configured as
	an output, a write to the port can cause a
	capture condition.

8.1.2 TIMER1 MODE SELECTION

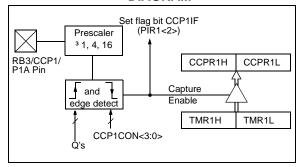
Timer1 must be running in Timer mode or Synchronized Counter mode. In Asynchronous Counter mode, the capture operation may not work.

8.1.3 SOFTWARE INTERRUPT

When the Capture mode is changed, a false capture interrupt may be generated. The user should keep bit CCP1IE (PIE1<2>) clear to avoid false interrupts and should clear the flag bit CCP1IF following any such change in Operating mode.

8.1.4 ECCP PRESCALER

There are three prescaler settings, specified by bits CCP1M<3:0>. Whenever the ECCP module is turned off or the ECCP module is not in Capture mode, the prescaler counter is cleared. This means that any RESET will clear the prescaler counter.


Switching from one capture prescaler to another may generate an interrupt. Also, the prescaler counter will not be cleared, therefore the first capture may be from a non-zero prescaler. Example 8-1 shows the recommended method for switching between capture prescalers. This example also clears the prescaler counter and will not generate the "false" interrupt.

EXAMPLE 8-1: Changing Between Capture Prescalers

CLRF	CCP1CON	;	Turn ECCP module off
MOVLW	NEW_CAPT_PS	;	Load WREG with the
		;	new prescaler mode
		;	value and ECCP ON
MOVWF	CCP1CON	;	Load CCP1CON with
		;	this value

FIGURE 8-1:

CAPTURE MODE OPERATION BLOCK DIAGRAM

8.2 Compare Mode

In Compare mode, the 16-bit CCPR1 register value is constantly compared against the TMR1 register pair value. When a match occurs, the CCP1 pin is:

- driven High
- driven Low
- toggle output (High to Low or Low to High)
- remains Unchanged

The action on the pin is based on the value of control bits CCP1M<3:0>. At the same time, interrupt flag bit CCP1IF is set.

Changing the ECCP mode select bits to the clear output on Match mode (CCP1M<3.0> = "1000") presets the CCP1 output latch to the logic 1 level. Changing the ECCP mode select bits to the clear output on Match mode (CCP1M<3:0> = "1001") presets the CCP1 output latch to the logic 0 level.

8.2.1 CCP1 PIN CONFIGURATION

The user must configure the CCP1 pin as an output by clearing the appropriate TRISB bit.

Note: Clearing the CCP1CON register will force the CCP1 compare output latch to the default low level. This is not the port data latch.

8.2.2 TIMER1 MODE SELECTION

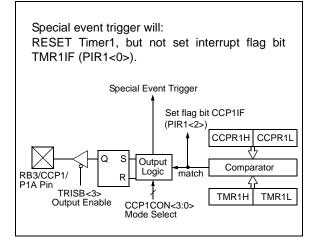
Timer1 must be running in Timer mode or Synchronized Counter mode if the ECCP module is using the compare feature. In Asynchronous Counter mode, the compare operation may not work.

8.2.3 SOFTWARE INTERRUPT MODE

When generate software interrupt is chosen, the CCP1 pin is not affected. Only an ECCP interrupt is generated (if enabled).

8.2.4 SPECIAL EVENT TRIGGER

In this mode, an internal hardware trigger is generated, which may be used to initiate an action.


The special event trigger output of ECCP resets the TMR1 register pair. This allows the CCPR1 register to effectively be a 16-bit programmable period register for Timer1.

The special event trigger output of ECCP module will also start an A/D conversion if the A/D module is enabled.

Note: The special event trigger will not set the interrupt flag bit TMR1IF (PIR1<0>).

FIGURE 8-2:

COMPARE MODE OPERATION BLOCK DIAGRAM

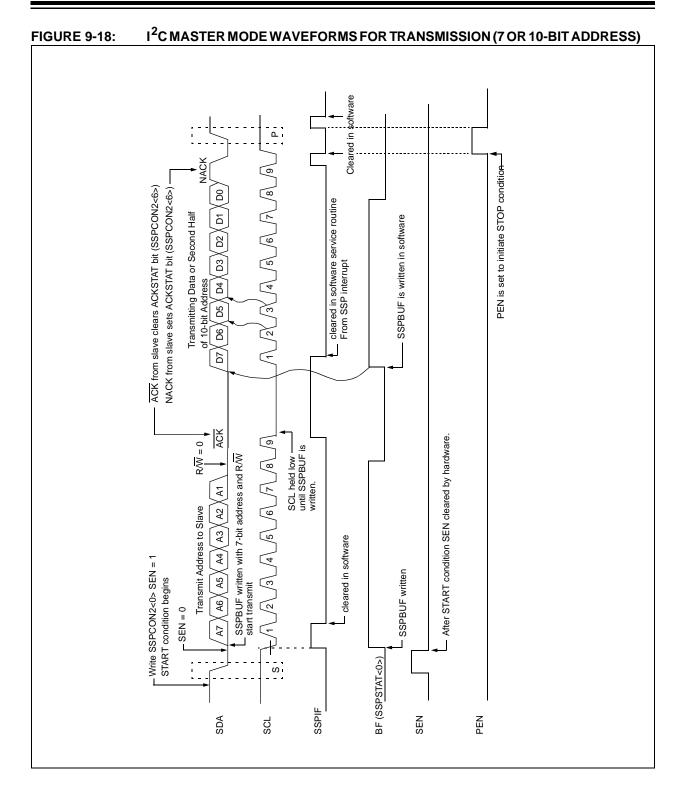
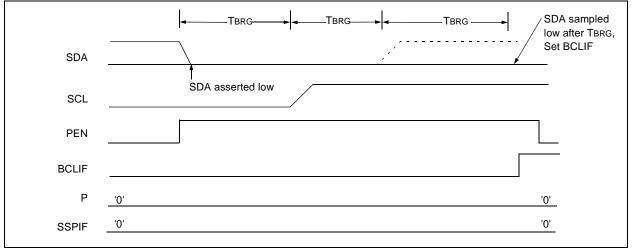


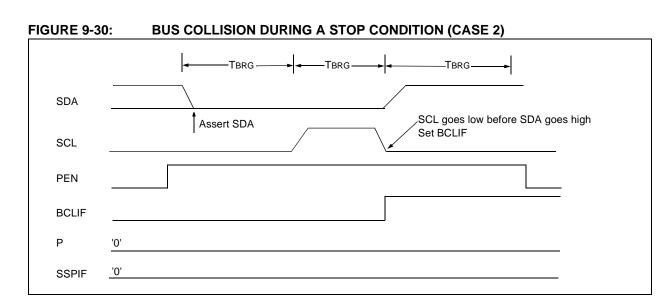
TABLE 8-2: REGISTERS ASSOCIATED WITH CAPTURE, COMPARE AND TIMER1

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other RESETS
INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	0000 000u
PIR1	PSPIF ⁽¹⁾	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	0000 0000	0000 0000
PIE1	PSPIE ⁽¹⁾	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
TRISB	PORTB Data	1111 1111	1111 1111							
TMR1L	Holding regi	ster for the Lea	ast Significar	nt Byte of the	e 16-bit TMR1	register			XXXX XXXX	uuuu uuuu
TMR1H	Holding regi	ster for the Mo	st Significan	t Byte of the	e 16-bit TMR1r	egister			XXXX XXXX	uuuu uuuu
T1CON		—	T1CKPS 1	T1CKP S0	T1OSCEN	T1SYNC	TMR1CS	TMR1O N	00 0000	uu uuuu
CCPR1L	1L Capture/Compare/PWM register1 (LSB)									uuuu uuuu
CCPR1H	H Capture/Compare/PWM register1 (MSB)									uuuu uuuu
CCP1CON	PWM1M1	PWM1M0	DC1B1	DC1B0	CCP1M3	CCP1M2	CCP1M1	CCP1M0	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by Capture and Timer1.

PIC16C717/770/771


9.2.17.3 BUS COLLISION DURING A STOP CONDITION


Bus collision occurs during a STOP condition if:

- After the SDA pin has been de-asserted and allowed to float high, SDA is sampled low after the BRG has timed out.
- b) After the SCL pin is de-asserted, SCL is sampled low before SDA goes high.

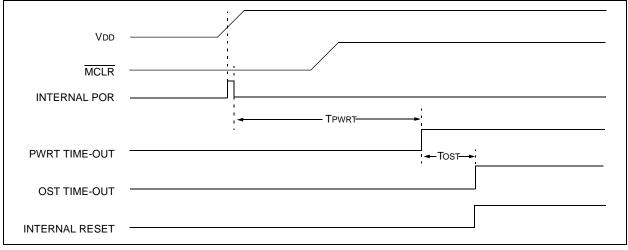
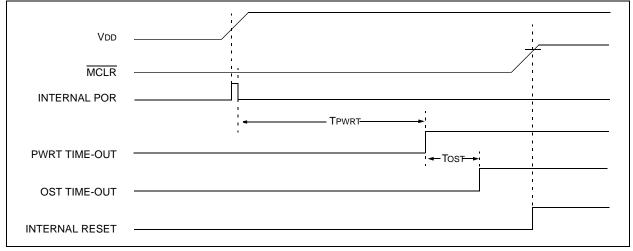
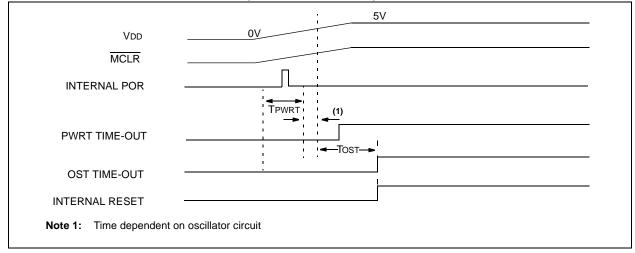

The STOP condition begins with SDA asserted low. When SDA is sampled low, the SCL pin is allowed to float. When the pin is sampled high (clock arbitration), the baud rate generator is loaded with SSPADD<6:0> and counts down to '0'. After the BRG times out SDA is sampled. If SDA is sampled low, a bus collision has occurred. This is due to another master attempting to drive a data '0' (Figure 9-29). If the SCL pin is sampled low before SDA is allowed to float high, a bus collision occurs. This is another case of another master attempting to drive a data '0' (Figure 9-30).

FIGURE 9-29: BUS COLLISION DURING A STOP CONDITION (CASE 1)





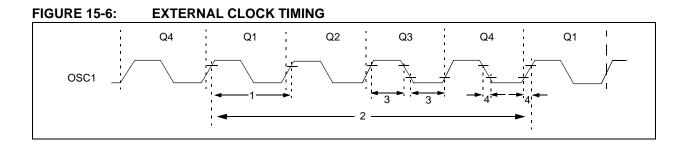


FIGURE 12-8: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD): CASE 2

FIGURE 12-9: SLOW VDD RISE TIME (MCLR TIED TO VDD)

TABLE 15-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
1A	Fosc	External CLKIN Frequency		_	4	MHz	XT mode
		(Note 1)	DC	_	20	MHz	EC mode
			DC	_	20	MHz	HS mode
			DC	—	200	kHz	LP mode
		Oscillator Frequency	0.1*		4	MHz	XT mode
		(Note 1)	4* 5*	_	20 200	MHz kHz	HS mode LP mode
1	Tosc	External CLKIN Period	250	_	—	ns	XT mode
		(Note 1)	50	_	—	ns	EC mode
			50	_	—	ns	HS mode
			5	_	—	μs	LP mode
		Oscillator Period	250		10,000*	ns	XT mode
		(Note 1)	50	—	250*	ns	HS mode
			5	—	—	μs	LP mode
2	TCY	Instruction Cycle Time (Note 1)	200	Тсү	DC	ns	TCY = 4/FOSC
3*	TosL,	External Clock in (OSC1) High or Low	100	_	_	ns	XT mode
	TosH	Time	2.5	—	—	μs	LP mode
			15	—	—	ns	HS mode
							EC mode
4*	TosR,	External Clock in (OSC1) Rise or Fall	—	_	25	ns	XT mode
	TosF	Time	—	—	50	ns	LP mode
			—	—	15	ns	HS mode
							EC mode

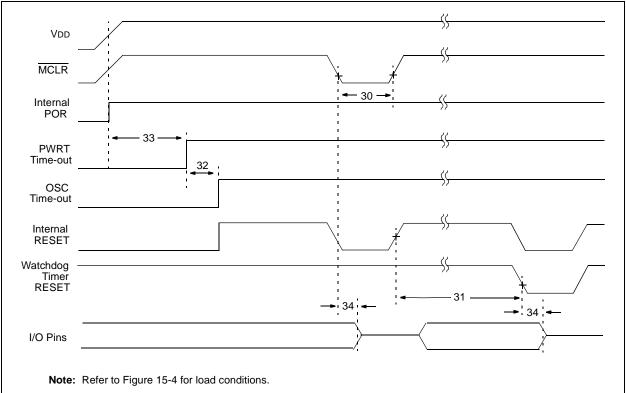
* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

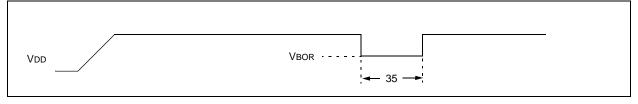
Note 1: Instruction cycle period (TCY) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "Max. Frequency" values with a square wave applied to the OSC1/CLKIN pin.

When an external clock input is used, the "Min." frequency (or Max. TCY) limit is "DC" (no clock) for all devices.

TABLE 15-3: CALIBRATED INTERNAL RC FREQUENCIES - PIC16C717/770/771 AND PIC16LC717/770/771


AC Chara	cteristics	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Parameter No.	Sym	Characteristic	Min	Тур ^{(1)*}	Max	Units	Conditions		
	Firc	Internal Calibrated RC Frequency	3.65	4.00	4.28	MHz	Vdd = 5.0V		
	TIRC	Internal RC Frequency*	3.55	4.00	4.31	MHz	VDD = 2.5V		

These parameters are characterized but not tested.


*

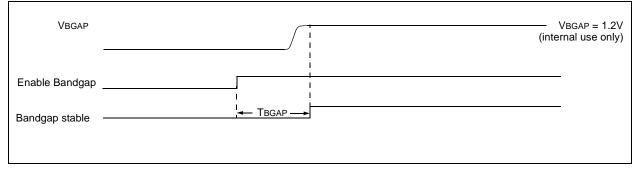
Note 1: Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-7: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

FIGURE 15-8: BROWN-OUT RESET TIMING

TABLE 15-6:	ENHANCED CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)
-------------	--

Param. No.	Sym	Characteristic			Min	Тур†	Max	Units	Conditions
50*	TccL	CCP1 input low	No Prescaler		0.5Tcy + 20	—	_	ns	
		time		PIC16 C 717/770/771	10	_	_	ns	
			With Prescaler	PIC16 LC 717/770/771	20	—	_	ns	
51* TccH	TccH	CCP1 input high time	No Prescaler		0.5TCY + 20	—	_	ns	
				PIC16 C 717/770/771	10	_	_	ns	
			With Prescaler	PIC16 LC 717/770/771	20	—	_	ns	
52*	TccP	CCP1 input period	l		<u>3Tcy + 40</u> N	—	_	ns	N = prescale value (1, 4 or 16)
53*	TccR	CCP1 output fall ti	me	PIC16 C 717/770/771	—	10	25	ns	
				PIC16 LC 717/770/771	_	25	45	ns	
54*	TccF	CCP1 output fall ti	me	PIC16 C 717/770/771	_	10	25	ns	
				PIC16 LC 717/770/771	—	25	45	ns	


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

15.4 Analog Peripherals Characteristics: PIC16C717/770/771 & PIC16LC717/770/771 (Commercial, Industrial, Extended)

15.4.1 BANDGAP MODULE

FIGURE 15-12: BANDGAP START-UP TIME

TABLE 15-7: BANDGAP START-UP TIME

Param. No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
36*	Tbgap	Bandgap start-up time		19	33	μS	Defined as the time between the instant that the bandgap is enabled and the moment that the bandgap reference voltage is stable.

These parameters are characterized but not tested.

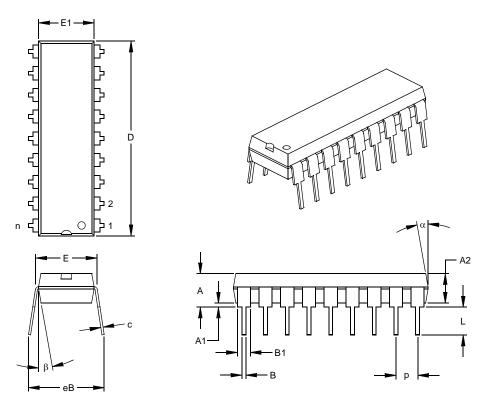
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

TABLE 15-12: PIC16C770/771 AND PIC16LC770/771 A/D CONVERSION REQUIREMENTS (NORMAL MODE)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
130* ⁽³⁾	TAD	A/D clock period	1.6	—	_	μS	Tosc based, VREF \geq 2.5V
			3.0	—	—	μS	Tosc based, VREF full range
			3.0	6.0	9.0	μS	ADCS<1:0> = 11 (A/D RC mode) At VDD = 2.5V
			2.0	4.0	6.0	μs	At VDD = 5.0V
131*	TCNV	Conversion time (not including acquisition time) (Note 1)	_	13Tad	—	TAD	
132*	TACQ	Acquisition Time	Note 2	11.5	—	μS	
			5*	_	_	μs	The minimum time is the ampli- fier settling time. This may be used if the "new" input voltage has not changed by more than 1LSb (i.e., 1mV @ 4.096V) from the last sampled voltage (as stated on CHOLD).
134*	TGO	Q4 to A/D clock start	—	Tosc/2	—	—	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


Note 1: ADRES register may be read on the following TCY cycle.

2: See Section 11.6 for minimum conditions.

3: These numbers multiplied by 8 if VRH or VRL is selected as A/D reference.

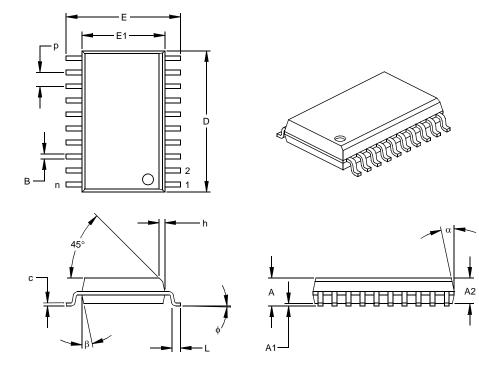
18-Lead Plastic Dual In-line (P) – 300 mil (PDIP) 17.2

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

Units		INCHES*		MILLIMETERS			
on Limits	MIN	NOM	MAX	MIN	NOM	MAX	
n		18			18		
р		.100			2.54		
А	.140	.155	.170	3.56	3.94	4.32	
A2	.115	.130	.145	2.92	3.30	3.68	
A1	.015			0.38			
E	.300	.313	.325	7.62	7.94	8.26	
E1	.240	.250	.260	6.10	6.35	6.60	
D	.890	.898	.905	22.61	22.80	22.99	
L	.125	.130	.135	3.18	3.30	3.43	
С	.008	.012	.015	0.20	0.29	0.38	
B1	.045	.058	.070	1.14	1.46	1.78	
В	.014	.018	.022	0.36	0.46	0.56	
eB	.310	.370	.430	7.87	9.40	10.92	
α	5	10	15	5	10	15	
Mold Draft Angle Bottom β			15	5	10	15	
	n Limits n P A A2 A1 E E1 D L C B1 B eB α	n MIN n P A .140 A2 .115 A1 .015 E .300 E1 .240 D .890 L .125 C .008 B1 .045 B .014 eB .310 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

* Controlling Parameter § Significant Characteristic

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Derwing No. CO4 007


Drawing No. C04-007

17.6 20-Lead Ceramic Dual In-line with Window (JW) – 300 mil (CERDIP)

DRAWING NOT AVAILABLE

20-Lead Plastic Small Outline (SO) - Wide, 300 mi (SOIC) 17.7

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

		INCHES*		MILLIMETERS			
Dimensio	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		20			20	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.496	.504	.512	12.60	12.80	13.00
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. C04-094

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755 China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2943-5100

Fax: 852-2401-3431 China - Nanjing

Tel: 86-25-8473-2460 Fax: 86-25-8473-2470 **China - Qingdao** Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Osaka Tel: 81-6-6152-7160 Fax: 81-6-6152-9310

Japan - Tokyo Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2508-8600 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829 France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/12