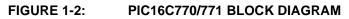
Microchip Technology - PIC16LC770T/SO Datasheet

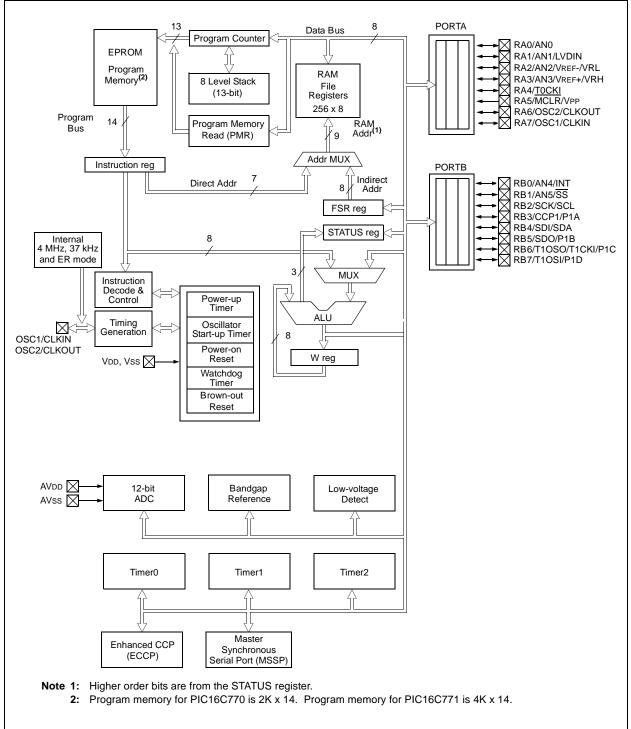
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc770t-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

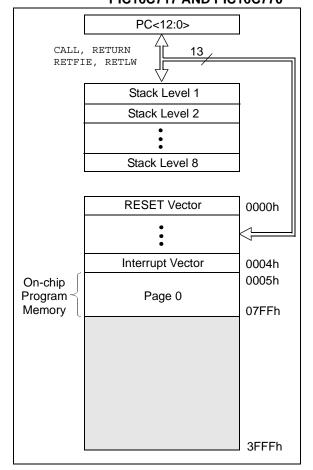
PIC16C717/770/771

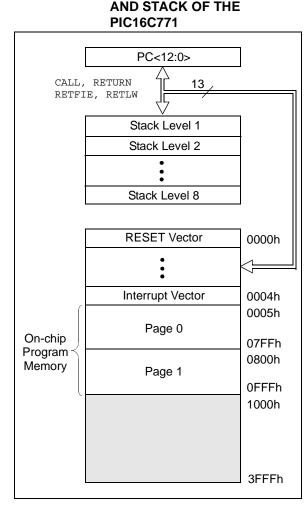
PROGRAM MEMORY MAP

FIGURE 2-2:

2.0 MEMORY ORGANIZATION

There are two memory blocks in each of these PIC[®] microcontrollers. Each block (Program Memory and Data Memory) has its own bus, so that concurrent access can occur.


Additional information on device memory may be found in the PICmicro[™] Mid-Range MCU Family Reference Manual, (DS33023).


2.1 Program Memory Organization

The PIC16C717/770/771 devices have a 13-bit program counter capable of addressing an 8K x 14 program memory space. The PIC16C717 and the PIC16C770 have 2K x 14 words of program memory. The PIC16C771 has 4K x 14 words of program memory. Accessing a location above the physically implemented address will cause a wrap-around.

The RESET vector is at 0000h and the interrupt vector is at 0004h.

FIGURE 2-1: PROGRAM MEMORY MAP AND STACK OF THE PIC16C717 AND PIC16C770

2.2 Data Memory Organization

The data memory is partitioned into multiple banks, which contain the General Purpose Registers and the Special Function Registers. Bits RP1 and RP0 are the bank select bits.

RP1	RP0	(STATUS<6:5>)
= 01	 Bank0 Bank1 Bank2 Bank3 	

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain special function registers. Some frequently used special function registers from one bank are mirrored in another bank for code reduction and quicker access.

2.2.1 GENERAL PURPOSE REGISTER FILE

The register file can be accessed either directly, or indirectly, through the File Select Register FSR.

FIGURE 2-3: REGISTER FILE MAP

A	File ddress	A	File ddress		File Address	Δ	File ddress
Indirect addr.(*)	00h	Indirect addr.(*)	80h	Indirect addr.(*)	100h	Indirect addr.(*)	180h
TMR0	01h	OPTION_REG	81h	TMR0	101h	OPTION REG	181h
PCL	02h	PCL	82h	PCL	102h	PCL	182h
STATUS	03h	STATUS	83h	STATUS	103h	STATUS	183h
FSR	04h	FSR	84h	FSR	104h	FSR	184h
PORTA	05h	TRISA	85h		105h	- I OIL	185h
PORTB	06h	TRISB	86h	PORTB	106h	TRISB	186h
	07h		87h		107h		187h
	08h		88h		108h		188h
	09h		89h		109h		189h
PCLATH	0Ah	PCLATH	8Ah	PCLATH	10Ah	PCLATH	18Ah
INTCON	0Bh	INTCON	8Bh	INTCON	10Bh	INTCON	18Bh
PIR1	0Ch	PIE1	8Ch	PMDATL	10Ch	PMCON1	18Ch
PIR2	0Dh	PIE2	8Dh	PMADRL	10Dh		18Dh
TMR1L	0Eh	PCON	8Eh	PMDATH	10Eh		18Eh
TMR1H	0Fh		8Fh	PMADRH	10Fh		18Fh
T1CON	10h		90h		110h		190h
TMR2	11h	SSPCON2	91h		111h		191h
T2CON	12h	PR2	92h		112h		192h
SSPBUF	13h	SSPADD	93h		113h		193h
SSPCON	14h	SSPSTAT	94h		114h		194h
CCPR1L	15h	WPUB	95h		115h		195h
CCPR1H	16h	IOCB	96h		116h		196h
CCP1CON	17h	P1DEL	97h		117h		197h
	18h		98h		118h		198h
	19h		99h		119h		199h
	1Ah		9Ah		11Ah		19Ah
	1Bh	REFCON	9Bh		11Bh		19Bh
	1Ch	LVDCON	9Ch		11Ch		19Ch
	1Dh	ANSEL	9Dh		11Dh		19Dh
ADRESH	1Eh	ADRESL	9Eh		11Eh		19Eh
ADCON0	1Fh	ADCON1	9Fh		11Fh		19Fh
	20h		A0h		120h		1A0h
General Purpose Register		General Purpose Register 80 Bytes		General Purpose Register 80 Bytes			
96 Bytes			EFh		16Fh		1EFh
-		accesses 70h-7Fh	F0h	accesses 70h - 7Fh	170h	accesses 70h - 7Fh	1F0h
Bank 0	7Fh	Bank 1	FFh	Bank 2	17Fh	Bank 3	1FFh

Unimplemented data memory locations, read as '0'.
 * Not a physical register.

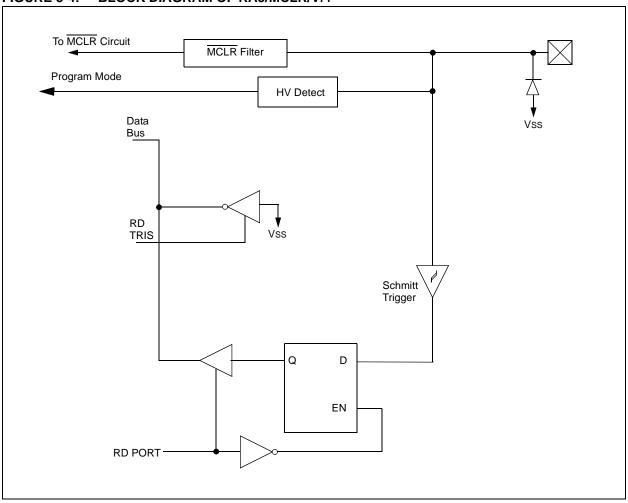
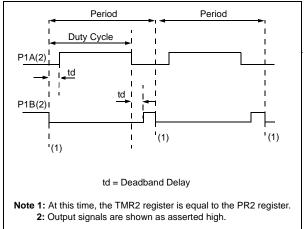



FIGURE 3-4: BLOCK DIAGRAM OF RA5/MCLR/VPP

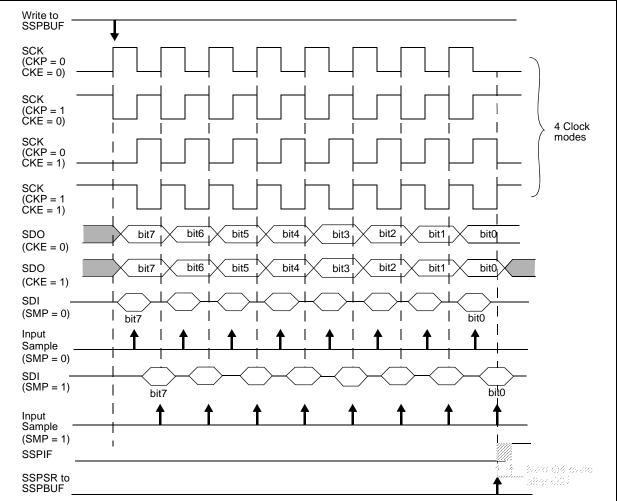
8.3.4 OUTPUT POLARITY CONFIGURATION

The CCP1M<1:0> bits in the CCP1CON register allow user to choose the logic conventions (asserted high/ low) for each of the outputs. See Register 8-1 for further details.

The PWM output polarities must be selected before the PWM outputs are enabled. Charging the polarity configuration while the PWM outputs are active is not recommended, since it may result in unpredictable operation.

9.1.4 MASTER MODE

The master can initiate the data transfer at any time because it controls the SCK. The master determines when the slave (Processor 2, Figure 9-2) is to broad-cast data by the software protocol.


In Master mode, the data is transmitted/received as soon as the SSPBUF register is written to. If the SPI module is only going to receive, the SDO output could be disabled (programmed as an input). The SSPSR register will continue to shift in the signal present on the SDI pin at the programmed clock rate. As each byte is received, it will be loaded into the SSPBUF register as if a normal received byte (interrupts and status bits appropriately set). This could be useful in receiver applications as a "line activity monitor".

The clock polarity is selected by appropriately programming bit CKP (SSPCON<4>). This then would give waveforms for SPI communication as shown in Figure 9-3, Figure 9-5 and Figure 9-6, where the MSb is transmitted first. In Master mode, the SPI clock rate (bit rate) is user programmable to be one of the following:

- Fosc/4 (or Tcy)
- Fosc/16 (or 4 Tcy)
- Fosc/64 (or 16 Tcy)
- Timer2 output/2

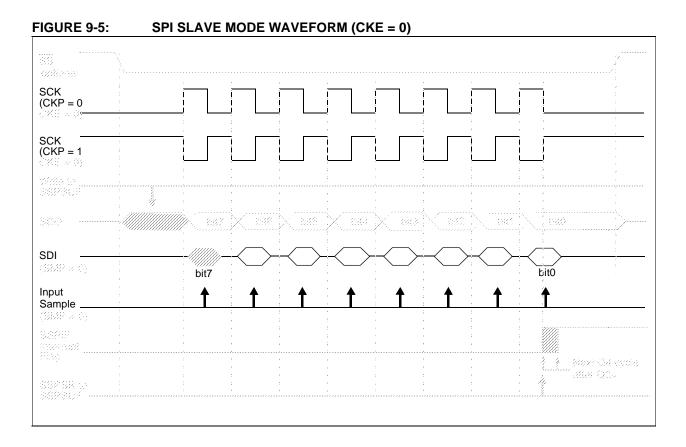
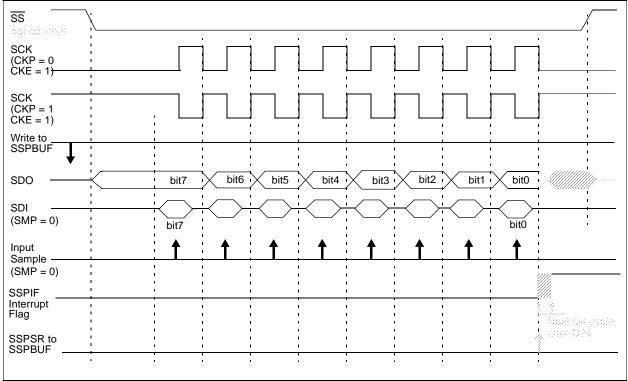

This allows a maximum bit clock frequency (at 20 MHz) of 8.25 MHz.

Figure 9-3 shows the waveforms for Master mode. When CKE = 1, the SDO data is valid before there is a clock edge on SCK. The change of the input sample is shown based on the state of the SMP bit. The time when the SSPBUF is loaded with the received data is shown.



PIC16C717/770/771

FIGURE 9-6: SPI SLAVE MODE WAVEFORM (CKE = 1)

9.2 MSSP I²C Operation

The MSSP module in I^2C mode fully implements all master and slave functions (including general call support) and provides interrupts on START and STOP bits in hardware to determine when the bus is free (multimaster function). The MSSP module implements the Standard mode specifications, as well as 7-bit and 10-bit addressing.

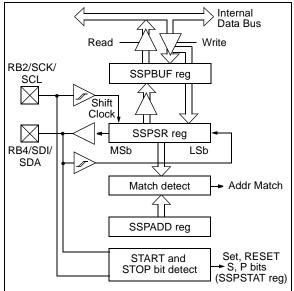
Two pins are used to transfer data. They are the SCL pin (clock) and the SDA pin (data). The MSSP module functions are enabled by setting SSP Enable bit SSPEN (SSPCON<5>). The SCL and SDA pins are "glitch" filtered when operating as inputs. This filter functions in both the 100 kHz and 400 kHz modes. When these pins operate as outputs in the 100 kHz mode, there is a slew rate control of the pin that is independent of device frequency.

Before selecting any I^2C mode, the SCL and SDA pins must be programmed as inputs by setting the appropriate TRIS bits. This allows the MSSP module to configure and drive the I/O pins as required by the I^2C protocol.

The MSSP module has six registers for I^2C operation. They are listed below.

- SSP Control Register (SSPCON)
- SSP Control Register2 (SSPCON2)
- SSP STATUS Register (SSPSTAT)
- Serial Receive/Transmit Buffer (SSPBUF)
- SSP Shift Register (SSPSR) Not directly accessible
- SSP Address Register (SSPADD)

The SSPCON register allows for control of the I^2C operation. Four mode selection bits (SSPCON<3:0>) configure the MSSP as any one of the following I^2C modes:


- I²C Slave mode (7-bit address)
- I²C Slave mode (10-bit address)
- I²C Master mode SCL Freq = FOSC / [4 • (SSPADD + 1)]
- I²C Slave mode with START and STOP interrupts (7-bit address)
- I²C Slave mode with START and STOP interrupts (10-bit address)
- Firmware Controlled Master mode

The SSPSTAT register gives the status of the data transfer. This information includes detection of a START (S) or STOP (P) bit. It specifies whether the received byte was data or address, if the next byte is the completion of 10-bit address, and if this will be a read or write data transfer.

SSPBUF is the register to which the transfer data is written, and from which the transfer data is read. The SSPSR register shifts the data in or out of the device. In receive operations, the SSPBUF and SSPSR create a doubled, buffered receiver. This allows reception of the next byte to begin before reading the last byte of received data. When the complete byte is received, it is

transferred from the SSPSR register to the SSPBUF register and flag bit SSPIF is set. If another complete byte is received before the SSPBUF register is read a receiver overflow occurs, in which case, the SSPOV bit (SSPCON<6>) is set and the byte in the SSPSR is lost.

FIGURE 9-7: I²C SLAVE MODE BLOCK DIAGRAM

9.2.1 UPWARD COMPATIBILITY WITH SSP MODULE

The MSSP module includes three SSP modes of operation to maintain upward compatibility with the SSP module. These modes are:

- Firmware controlled Master mode (slave idle)
- 7-bit Slave mode with START and STOP condition interrupts.
- 10-bit Slave mode with START and STOP condition interrupts.

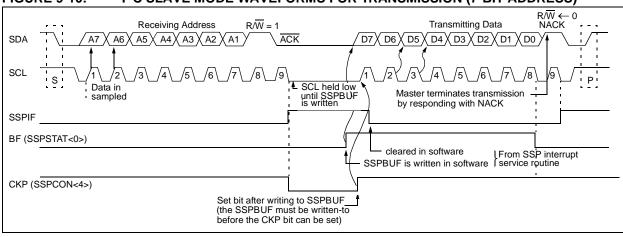
The firmware controlled Master mode enables the START and STOP condition interrupts but all other I²C functions are generated through firmware including:

- · Generating the START and STOP conditions
- · Generating the SCL clock
- Supplying the SDA bits in the proper time and phase relationship to the SCL signal.

In firmware controlled Master mode, the SCL and SDA lines are manipulated by clearing and setting the corresponding TRIS bits. The output level is always low irrespective of the value(s) in the PORT register. A '1' is output by setting the TRIS bit and a '0' is output by clearing the TRIS bit

The 7-bit and 10-bit Slave modes with START and STOP condition interrupts operate identically to the MSSP Slave modes except that START and STOP conditions generate SSPIF interrupts.

9.2.2.4 SLAVE TRANSMISSION


When the R/W bit of the incoming address byte is set and an address match occurs, the R/W bit of the SSP-STAT register is set. The received address is loaded into the SSPBUF register on the falling edge of the eighth SCL pulse. The ACK pulse will be sent on the ninth bit, and the SCL pin is held low. The slave module automatically stretches the clock by holding the SCL line low so that the master will be unable to assert another clock pulse until the slave is finished preparing the transmit data. The transmit data must be loaded into the SSPBUF register, which also loads the SSPSR register. The CKP bit (SSPCON<4>) must then be set to release the SCL pin from the forced low condition. The eight data bits are shifted out on the falling edges of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 9-10).

The \overline{ACK} or NACK signal from the master-receiver is latched on the rising edge of the ninth SCL input pulse. The master-receiver terminates slave transmission by

sending a NACK. If the SDA line is high (NACK), then the data transfer is complete. When the NACK is latched by the slave, the slave logic is RESET which also resets the R/W bit to '0'. The slave module then monitors for another occurrence of the START bit. The slave firmware knows not to load another byte into the SSPBUF register by sensing that the buffer is empty (BF = 0) and the R/W bit has gone low. If the SDA line is low (ACK), the R/W bit remains high indicating that the next transmit data must be loaded into the SSPBUF register.

An MSSP interrupt (SSPIF flag) is generated for each data transfer byte on the falling edge of the ninth clock pulse. The SSPIF flag bit must be cleared in software. The SSPSTAT register is used to determine the status of the byte transfer.

For more information about the I²C Slave mode, refer to Application Note AN734, "Using the PIC[®] SSP for Slave l^2C^{TM} Communication".

FIGURE 9-10: I²C SLAVE MODE WAVEFORMS FOR TRANSMISSION (7-BIT ADDRESS)

11.0 ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE

The analog-to-digital (A/D) converter module has six inputs for the PIC16C717/770/771.

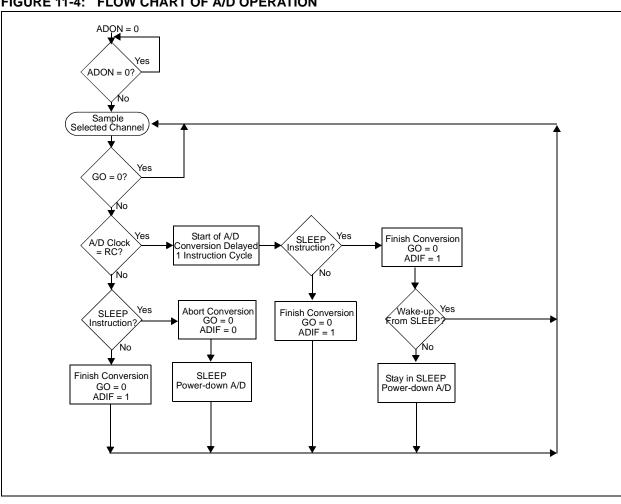
The PIC16C717 analog-to-digital converter (A/D) allows conversion of an analog input signal to a corresponding 10-bit digital value, while the A/D converter in the PIC16C770/771 allows conversion to a corresponding 12-bit digital value. The A/D module has up to 6 analog inputs, which are multiplexed into one sample and hold. The output of the sample and hold is the input into the converter, which generates the result via successive approximation. The analog reference voltages are software selectable to either the device's analog positive and negative supply voltages (AVDD/AVSS), the voltage level on the VREF+ and VREF- pins, or internal voltage references if enabled (VRH, VRL).

The A/D converter can be triggered by setting the GO/ DONE bit, or by the special event Compare mode of the ECCP module. When conversion is complete, the GO/DONE bit returns to '0', the ADIF bit in the PIR1 register is set, and an A/D interrupt will occur, if enabled.

The A/D converter has a unique feature of being able to operate while the device is in SLEEP mode. To operate in SLEEP, the A/D conversion clock must be derived from the A/D's internal RC oscillator. The A/D module has four registers. These registers are:

- A/D Result Register Low ADRESL
- A/D Result Register High ADRESH
- A/D Control Register 0 (ADCON0)
- A/D Control Register 1 (ADCON1)

A device RESET forces all registers to their RESET state. This forces the A/D module to be turned off and any conversion is aborted.


11.1 Control Registers

The ADCON0 register, shown in Register 11-1, controls the operation of the A/D module. The ADCON1 register, shown in Register 11-2, configures the functions of the port pins, the voltage reference configuration and the result format. The ANSEL register, shown in Register 3-1, selects between the Analog or Digital Port Pin modes. The port pins can be configured as analog inputs or as digital I/O.

The combination of the ADRESH and ADRESL registers contain the result of the A/D conversion. The register pair is referred to as the ADRES register. When the A/D conversion is complete, the result is loaded into ADRES, the GO/DONE bit (ADCON0<2>) is cleared, and the A/D interrupt flag ADIF is set. The block diagram of the A/D module is shown in Figure 11-3.

11.5 A/D Converter Module Operation

Figure 11-4 shows the flowchart of the A/D converter module.

FIGURE 11-4: FLOW CHART OF A/D OPERATION

12.0 SPECIAL FEATURES OF THE CPU

These devices have a host of features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- Oscillator Selection
- RESET
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Interrupts
- Watchdog Timer (WDT)
- Low-voltage detection
- SLEEP
- Code protection
- ID locations
- In-circuit serial programming (ICSP)

These devices have a Watchdog Timer, which can be shut off only through configuration bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 72 ms (nominal) on power-up type RESETS only (POR, BOR), designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external RESET circuitry.

SLEEP mode is designed to offer a very low current Power-down mode. The user can wake-up from SLEEP through external RESET, Watchdog Timer Wake-up, or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The INTRC and ER oscillator options save system cost while the LP crystal option saves power. A set of configuration bits are used to select various options.

Additional information on special features is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

12.1 Configuration Bits

The configuration bits can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. These bits are mapped in program memory location 2007h.

The user will note that address 2007h is beyond the user program memory space.

Some of the core features provided may not be necessary to each application that a device may be used for. The configuration word bits allow these features to be configured/enabled/disabled as necessary. These features include code protection, Brown-out Reset and its trip point, the Power-up Timer, the watchdog timer and the devices Oscillator mode. As can be seen in Register 12-1, some additional configuration word bits have been provided for Brown-out Reset trip point selection.

REGISTER 12-1: CONFIGURATION WORD FOR 16C717/770/771 DEVICE

CP	CP	BORV1	BORV0	CP	CP	_	BODEN	MCLRE	PWRTE	WDTE	FOSC2	FOSC1	FOSC0
bit13													bit0
bit 13-12, 9-8	1 = 0	Code prote	Memory C ection off m memory i										
bit 11-10:													
bit 7:	Unin	nplement	ted: Read a	as '1'									
bit 6:	1 = E	Brown-out	vn-out Dete t Detect Res t Detect Res	set enab	ed	_{it} (1)							
bit 5:	 5: MCLRE: RA5/MCLR pin function select 1 = RA5/MCLR pin function is MCLR 0 = RA5/MCLR pin function is digital input, MCLR internally tied to VDD 												
bit 4:	1 = F	PWRTE : Power-up Timer Enable bit ⁽¹⁾ 1 = PWRT disabled 0 = PWRT enabled											
bit 3:	1 = \	WDTE: Watchdog Timer Enable bit 1 = WDT enabled 0 = WDT disabled											
bit 2-0:	000 001 010 011 100 101 110	= LP osci = XT osci = HS osci = EC: I/O = INTRC = INTRC = ER osci	Oscillator S Ilator: Cryst Illator: Cryst function or oscillator: I, oscillator: Cyst illator: I/O fu illator: CLK	tal/Resor tal/Resor tal/Resor RA6/OS O function CLKOUT unction c	hator on F nator on F nator on F SC2/CLK on on RA function on n RA6/O	RA6/OSC RA6/OSC DUT pin, 6/OSC2/(on RA6/C SC2/CLK	2/CLKOUT 2/CLKOUT CLKIN fun CLKOUT p SC2/CLK OUT pin, F	F and RA7 F and RA7 ction on F in, I/O fur OUT pin, Resistor o	7/OSC1/C 7/OSC1/C RA7/OSC1 nction on F I/O functio n RA7/OS	LKIN LKIN I/CLKIN RA7/OSC on on RA7 SC1/CLKI	7/OSC1/C N	LKIN	
	Ensure	the Powe	out Reset a r-up Timer must be giv	is enable	d anytim	e Brown-o	out Reset i	s enabled		dless of th	ne value o	f bit <mark>PWR</mark>	TE.

Legend			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	1 = bit is set	0 = bit is cleared	x = bit is unknown

13.1 Instruction Descriptions

ADDLW	Add Literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \le k \le 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the eight bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (destination)
Status Affected:	Z
Description:	AND the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

ADDWF	Add W and f
Syntax:	[<i>label</i>] ADDWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) + (f) \rightarrow (destination)
Status Affected:	C, DC, Z
Description:	Add the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in reg- ister 'f'.

BCF	Bit Clear f
Syntax:	[<i>label</i>] BCF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$0 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

ANDLW	AND Literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the eight bit literal 'k'. The result is placed in the W register.

BSF	Bit Set f
Syntax:	[<i>label</i>] BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f < b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

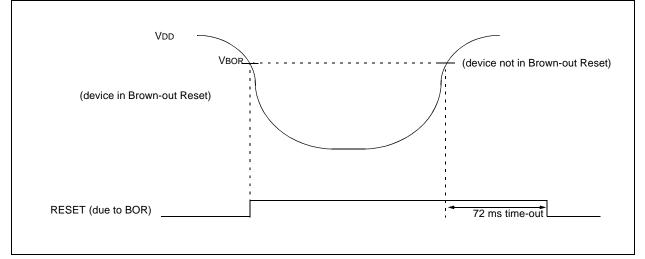
RETFIE	Return from Interrupt	RLF	Rotate Left f through Carry
Syntax:	[label] RETFIE	Syntax:	[<i>label</i>] RLF f,d
Operands:	None	Operands:	$0 \le f \le 127$
Operation:	$TOS \rightarrow PC$,		d ∈ [0,1]
	$1 \rightarrow GIE$	Operation:	See description below
Status Affected:	None	Status Affected:	С
		Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.

RETLW	Return with Literal in W	RRF	Rotate Right f through Carry			
Syntax:	[<i>label</i>] RETLW k	Syntax:	[<i>label</i>] RRF f,d			
Operands: Operation:	$0 \le k \le 255$ k \rightarrow (W);	Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$			
Operation.	$TOS \rightarrow PC$	Operation:	See description below			
Status Affected:	None	Status Affected:	С			
Description:	The W register is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two cycle instruction.	Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in reg- ister 'f'. Register f			

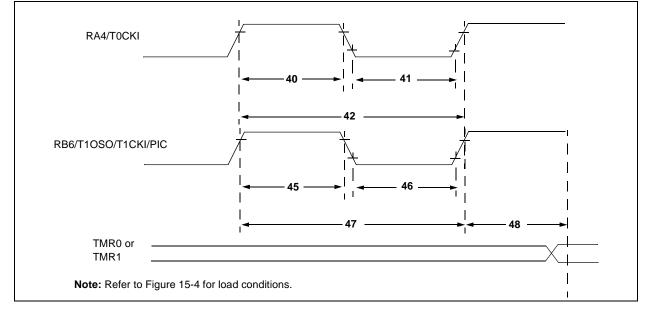
RETURN	Return from Subroutine	SLEEP				
Syntax:	[label] RETURN	Syntax:	[label SLEEP			
Operands:	None]			
Operation:	$TOS \rightarrow PC$	Operands:	None			
Status Affected:	None	Operation:	$00h \rightarrow WDT$,			
Description:	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two cycle	Status Affected:	0 → WDT prescaler, 1 → TO, 0 → PD TO, PD			
	instruction.	Description:	The power-down status bit, PD is cleared. Time-out status bit, TO is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEE mode with the oscillator stoppe			

See Section 12.8 for more

details.


TABLE 15-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER,
AND BROWN-OUT RESET REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30*	TMCL	MCLR Pulse Width (low)	2	—	—	μs	VDD = 5V, -40°C to +85°C
31*	Twdt	Watchdog Timer Time-out Period (No Prescaler)	7	18	33	ms	VDD = 5V, -40°C to +85°C
32*	Tost	Oscillation Start-up Timer Period		1024 Tosc		—	Tosc = OSC1 period
33*	TPWRT	Power up Timer Period	28	72	132	ms	VDD = 5V, -40°C to +85°C
34*	TIOZ	I/O Hi-impedance from MCLR Low or Watchdog Timer Reset	_	—	2.1	μs	
35*	TBOR	Brown-out Reset pulse width	100	—	—	μS	$VDD \le VBOR (D005)$


These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 15-9: BROWN-OUT RESET CHARACTERISTICS

FIGURE 15-10: TIMER0 AND TIMER1 EXTERNAL CLOCK TIMINGS

TABLE 15-6:	ENHANCED CAPTURE/COMPARE/PWM REQUIREMENTS (ECCP)
-------------	--

Param. No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions	
50*	TccL	CCP1 input low time	No Prescaler		0.5Tcy + 20	—	_	ns	
			With Prescaler	PIC16 C 717/770/771	10	_	_	ns	
				PIC16 LC 717/770/771	20	—	_	ns	
51*	TccH	CCP1 input high time	No Prescaler		0.5Tcy + 20	—	_	ns	
			With Prescaler	PIC16 C 717/770/771	10	_	_	ns	
				PIC16 LC 717/770/771	20	—	_	ns	
52*	TccP	CCP1 input period			<u>3Tcy + 40</u> N	—	_	ns	N = prescale value (1, 4 or 16)
53* TccR		CCP1 output fall time		PIC16 C 717/770/771	—	10	25	ns	
				PIC16 LC 717/770/771	—	25	45	ns	
54*	TccF	CCP1 output fall time		PIC16 C 717/770/771	—	10	25	ns	
				PIC16 LC 717/770/771	—	25	45	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

16.0 DC AND AC CHARACTERISTICS GRAPHS AND TABLES

The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "Maximum" or "minimum" represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over the whole temperature range.

The FOSC IDD was determined using an external sinusoidal clock source with a peak amplitude ranging from VSS to VDD.

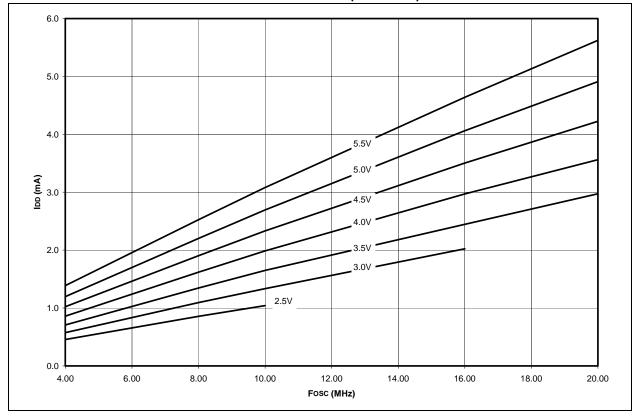
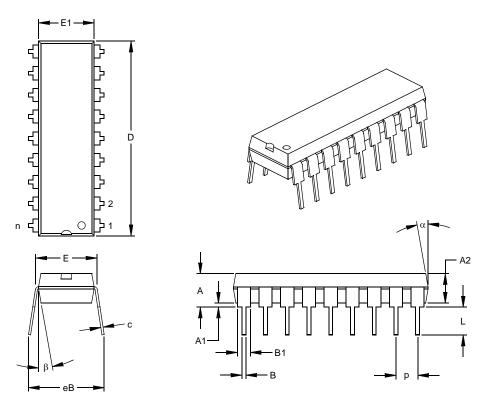



FIGURE 16-1: MAXIMUM IDD VS. FOSC OVER VDD (HS MODE)

18-Lead Plastic Dual In-line (P) – 300 mil (PDIP) 17.2

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

Units				MILLIMETERS			
Dimension Limits			MAX	MIN	NOM	MAX	
n		18			18		
р		.100			2.54		
А	.140	.155	.170	3.56	3.94	4.32	
A2	.115	.130	.145	2.92	3.30	3.68	
A1	.015			0.38			
E	.300	.313	.325	7.62	7.94	8.26	
E1	.240	.250	.260	6.10	6.35	6.60	
D	.890	.898	.905	22.61	22.80	22.99	
L	.125	.130	.135	3.18	3.30	3.43	
С	.008	.012	.015	0.20	0.29	0.38	
B1	.045	.058	.070	1.14	1.46	1.78	
В	.014	.018	.022	0.36	0.46	0.56	
eB	.310	.370	.430	7.87	9.40	10.92	
α	5	10	15	5	10	15	
Mold Draft Angle Bottom β			15	5	10	15	
	n Limits n P A A2 A1 E E1 D L C B1 B eB α	n MIN n P A .140 A2 .115 A1 .015 E .300 E1 .240 D .890 L .125 C .008 B1 .045 B .014 eB .310 α 5	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

* Controlling Parameter § Significant Characteristic

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Derwing No. CO4 007

Drawing No. C04-007

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. & KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 1999-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 9781620769713

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mulfacture of development systems is ISO 9001:2000 certified.