Microchip Technology - PIC16LC771-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	I ² C, SPI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	15
Program Memory Size	7KB (4K x 14)
Program Memory Type	OTP
EEPROM Size	
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 5.5V
Data Converters	A/D 6x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lc771-e-so

Email: info@E-XFL.COM

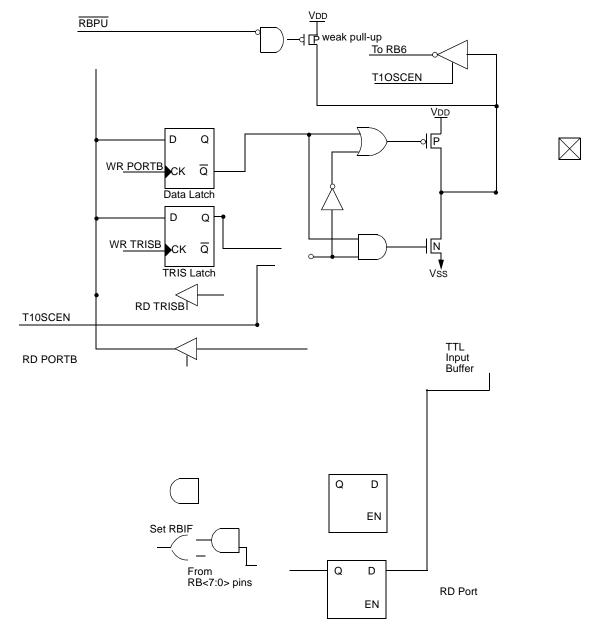
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC16C717/770/771

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Details on Page:
Bank 1											
80h ⁽³⁾	INDF	Addressing	this location	uses content	s of FSR to ad	dress data m	emory (not a	a physical reg	gister)	0000 0000	23
81h	OPTION_REG	RBPU	INTEDG	TOCS	TOSE	PSA	PS2	PS1	PS0	1111 1111	15
82h ⁽³⁾	PCL	Program Co	ounter's (PC)	Least Signifi	cant Byte					0000 0000	22
83h ⁽³⁾	STATUS	IRP	RP1	RP0	TO	PD	Z	DC	С	0001 1xxx	14
84h ⁽³⁾	FSR	Indirect data	a memory ad	dress pointer						xxxx xxxx	23
85h	TRISA	PORTA Dat	a Direction F	legister						1111 1111	25
86h	TRISB	PORTB Dat	ta Direction F	Register						1111 1111	33
87h	—	Unimpleme	nted							_	—
88h	—	Unimpleme	nted							_	_
89h	_	Unimpleme	nted							_	—
8Ah ^(1,3)	PCLATH	_	_	_	Write Buffer fo	or the upper	5 bits of the I	Program Cou	unter	0 0000	22
8Bh (3)	INTCON	GIE	PEIE	TOIE	INTE	RBIE	T0IF	INTF	RBIF	0000 000x	16
8Ch	PIE1	—	ADIE		—	SSPIE	CCP1IE	TMR2IE	TMR1IE	-0 0000	17
8Dh	PIE2	LVDIE	—		—	BCLIE	—	—	—	0 0	19
8Eh	PCON	—	—		—	OSCF	—	POR	BOR	1-qq	21
8Fh	_	Unimpleme	Unimplemented							_	—
90h	_	Unimpleme	nted							_	_
91h	SSPCON2	GCEN	ACKSTAT	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	0000 0000	69
92h	PR2	Timer2 Peri	od Register							1111 1111	52
93h	SSPADD	Synchronou	is Serial Port	(I ² C mode)	Address Regist	er				0000 0000	76
94h	SSPSTAT	SMP	CKE	D/A	Р	S	R/W	UA	BF	0000 0000	66
95h	WPUB	PORTB We	ak Pull-up C	ontrol						1111 1111	34
96h	IOCB	PORTB Inte	errupt on Cha	ange Control						1111 0000	34
97h	P1DEL	PWM 1 Del	ay value							0000 0000	62
98h	—	Unimpleme	nted							_	—
99h	_	Unimpleme	nted							_	—
9Ah	—	Unimpleme	nted							_	—
9Bh	REFCON	VRHEN	VRLEN	VRHOEN	VRLOEN	—	—	—	—	0000	102
9Ch	LVDCON	—	—	BGST	LVDEN	LVV3	LVV2	LVV1	LVV0	00 0101	101
9Dh	ANSEL	—	—	Analog Chai	nnel Select					11 1111	25
9Eh	ADRESL	A/D Low By	te Result Re	gister						xxxx xxxx	107
9Fh	ADCON1	ADFM	VCFG2	VCFG1	VCFG0	_				0000	107

TABLE 2-1: PIC16C717/770/771 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 $\label{eq:legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented read as '0'.$


Shaded locations are unimplemented, read as '0'.

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for the PC<12:8> whose contents are transferred to the upper byte of the program counter.

2: Other (non Power-up) Resets include external RESET through MCLR and Watchdog Timer Reset.

3: These registers can be addressed from any bank.

FIGURE 3-10: BLOCK DIAGRA M OF THE RB7/T1OSI/P1D

9.1.5 SLAVE MODE

In Slave mode, the data is transmitted and received as the external clock pulses appear on SCK. When the last bit is latched the interrupt flag bit SSPIF (PIR1<3>) is set.

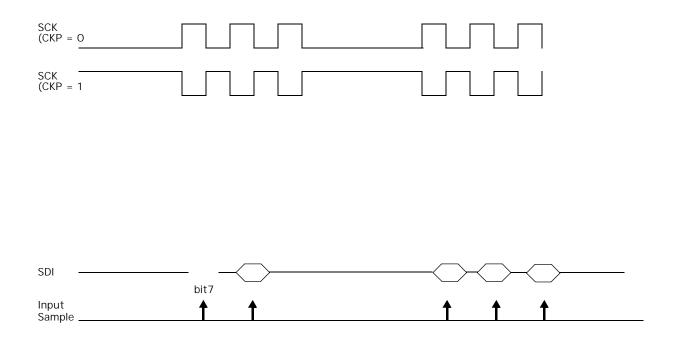
While in Slave mode, the external clock is supplied by the external clock source on the SCK pin. This external clock must meet the minimum high and low times as specified in the electrical specifications.

While in SLEEP mode, the slave can transmit/receive data. When a byte is received, the device will wake-up from SLEEP.

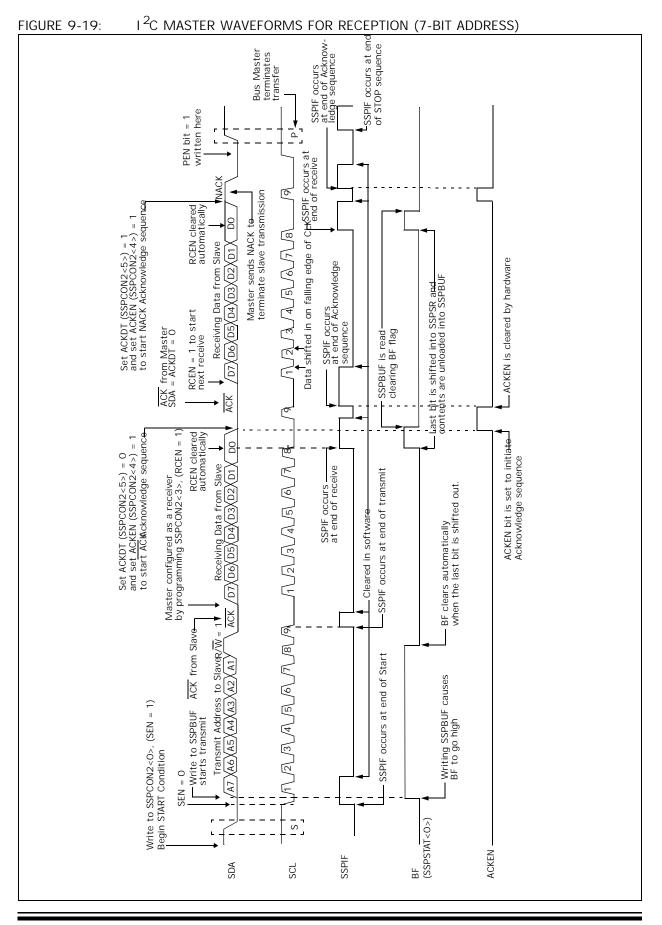
9.1.6 SLAVE SELECT SYNCHRONIZATION

SPI must be in Slave models SSpin control enabled SSPCON:0 0100. The pin must not be driven low for tpenSto function as an input an input. This disables transmissions from the SDO. TRISB1 must be set. When the psin is low, transmission and reception are enabled and since it cannot create a bus conflict.

SDO pin is driven. When thenSgoes high, the SDO pin is no longer driven, even if in the middle a transmitted bte, and becomes a floating output. External pull-publ-down resistors may be desirable, depending on the application.


Note	1: When the SPI module is in Slave mode
	with SS pin control enabled, (SSP-
	CON<3:0> =0100) the SPI module will
	RESET if the SS pin is set tod.

2: If the SPI is used in Slave Mode with CKE = '1', then \overline{SS} pin control must be enabled.


When the SPI module RESETS, the bit counter is forced to 0. This can be done by either forcing the SS pin to a high level or clearing the SSPEN bit.

The SS pin allows a Snchronous Slave mode. The oemulate two-wire communication, the SDO pin can be connected to the SDI pin. When the SPI needs to operate as a receiver, the SDO pin can be configured The SDI can always be left as an input (SDI function)

FIGURE 9-4: SLAVE SYNCHRONIZATI ON WAVEFORM

PIC16C717/770/771

11.4 A/D Conversions

Example 11-1 shows an example that performs an A/D conversion. The port pins are configured as analog inputs. The analog reference VREF+ is the device AVDD and the analog reference VREF- is the device AVSS. The A/D interrupt is enabled and the A/D conversion clock is TRC. The conversion is performed on the AN0 channel.

EXAMPLE	11-1: P	ERFC	RMING AN	A/D	CONVERSION
BCE	SULATS	PD 0	:Select	Bank	1

-			
	BSF	STATUS, RPO	;Select Bank 1
	CLRF	ADCON1	;Configure A/D Voltage Reference
	MOVLW	0x01	
	MOVWF	ANSEL	disable ANO digital input buffer;
	MOVWF	TRISA	;RA0 is input mode
	BSF	PIE1, ADIE	;Enable A/D interrupt
	BCF	STATUS, RPO	;Select Bank 0
	MOVLW	0xC1	;RC clock, A/D is on,
			;Ch 0 is selected
	MOVWF	ADCON0	;
	BCF	PIR1, ADIF	;Clear A/D Int Flag
	BSF	INTCON, PEIE	;Enable Peripheral
	BSF	INTCON, GIE	;Enable All Interrupts
;			
;	Ensure t	hat the required	d sampling time for the
;	selected	input channel h	nas lapsed. Then the
;	conversi	on may be starte	ed.
	BSF	ADCON0, GO	;Start A/D Conversion
		:	;The ADIF bit will be
			;set and the GO/DONE bit
		:	;cleared upon completion-
			; of the A/D conversion.
;	Wait for	A/D completion	and read ADRESH:ADRESL for result.
1			

; (Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1		Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
OSC1 /				MAN				
CLKOUT ⁽³⁾		/	1	Tost ⁽¹⁾	/	<u>, </u>	\/	/
INT pin	ı i			· · ·		1 1		
INTF flag (INTCON<1>)—				/		1 1 1		
GIE bit	I		Processor			Interrup	t Latency ⁽²⁾	
(INTCON<7>)	1		SLEEP			i	I I	
INSTRUCTION	FLOW		1			1 1	· · ·	
РС 🗶	PC 👌	PC+1	<u>Х РС</u>	C+2	PC+2	X PC + 2	X 0004h X	0005h
Instruction { Ir fetched	nst(PC) = SLEEF	P Inst(PC + 1)	1	1 1 1	Inst(PC + 2)	1 1 1	Inst(0004h)	Inst(0005h)
Instruction j	Inst(PC - 1)	SLEEP	1 1 1	1 1 1	Inst(PC + 1)	Dummy cycle	Dummy cycle	Inst(0004h)

3: CLKOUT is not available in these osc modes, but shown here for timing reference.

WAKE-UP FROM SI FEP THROUGH INTERRUPT

12.14 Program Verification/Code Protection

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

Note: Microchip does not recommend code protecting windowed devices. Code protected devices are not reprogrammable.

12.15 ID Locations

FIGURE 12-12-

Four memory locations (2000h - 2003h) are designated as ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution but are readable and writable during program/verify. It is recommended that only the 4 Least Significant bits of the ID location are used.

12.16 In-Circuit Serial Programming (ICSP[™])

PIC16CXXX microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground, and the programming voltage. This allows customers to manufacture boards with unprogrammed devices, and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

For complete details of serial programming, please refer to the In-Circuit Serial Programming (ICSP™) Guide, (DS30277).

PIC16C717/770/771

NOTES:

13.0 INSTRUCTION SET SUMMARY

Each PIC16CXXX instruction is a 14-bit word divided into an OPCODE which specifies the instruction type and one or more operands which further specify the operation of the instruction. The PIC16CXX instruction set summary in Table 13-2 lists **byte-oriented**, **bit-oriented**, and **literal and control** operations. Table 13-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is zero, the result is placed in the W register. If 'd' is one, the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an eight or eleven bit constant or literal value.

TABLE 13-1: OPCODE FIELD DESCRIPTIONS

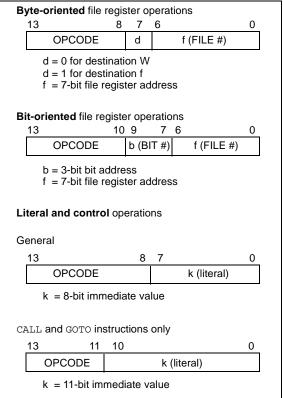
Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1) The assembler will generate code with $x = 0$. It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1
PC	Program Counter
TO	Time-out bit
PD	Power-down bit

The instruction set is highly orthogonal and is grouped into three basic categories:

- Byte-oriented operations
- Bit-oriented operations
- Literal and control operations

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles with the second cycle executed as a NOP. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time is 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 2 μ s. Table 13-2 lists the instructions recognized by the MPASMTM assembler.

Figure 13-1 shows the general formats that the instructions can have.


Note:	То	maintain	upward	l compa	tibility	with
	futu	ire PIC160	CXXX pi	roducts,	do not	use
	the	OPTION a	nd TRIS	s instructi	ons.	

All examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

FIGURE 13-1: GENERAL FORMAT FOR INSTRUCTIONS

A description of each instruction is available in the PIC Mid-Range MCU Family Reference Manual, (DS33023).

14.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/
 - MPLIB[™] Object Librarian
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - ICEPIC™ In-Circuit Emulator
- In-Circuit Debugger
 - MPLAB ICD
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART[®] Plus Entry-Level Development Programmer
- Low Cost Demonstration Boards
 - PICDEMTM 1 Demonstration Board
 - PICDEM 2 Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 17 Demonstration Board
 - KEELOQ[®] Demonstration Board

14.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8-bit microcontroller market. The MPLAB IDE is a Windows[®]-based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- A full-featured editor
- A project manager
- Customizable toolbar and key mapping
- A status bar
- On-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC MCU emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
 - machine code

The ability to use MPLAB IDE with multiple debugging tools allows users to easily switch from the cost-effective simulator to a full-featured emulator with minimal retraining.

14.2 MPASM Assembler

The MPASM assembler is a full-featured universal macro assembler for all PIC MCUs.

The MPASM assembler has a command line interface and a Windows shell. It can be used as a stand-alone application on a Windows 3.x or greater system, or it can be used through MPLAB IDE. The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, an absolute LST file that contains source lines and generated machine code, and a COD file for debugging.

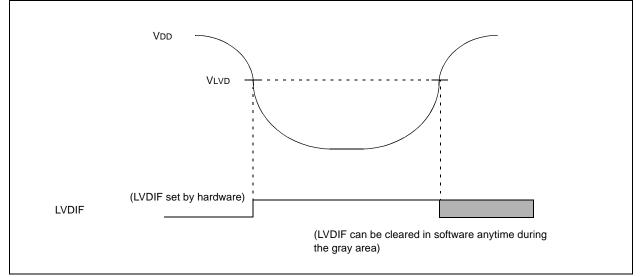
The MPASM assembler features include:

- Integration into MPLAB IDE projects.
- User-defined macros to streamline assembly code.
- Conditional assembly for multi-purpose source files.
- Directives that allow complete control over the assembly process.

14.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI 'C' compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers, respectively. These compilers provide powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compilers provide symbol information that is compatible with the MPLAB IDE memory display.

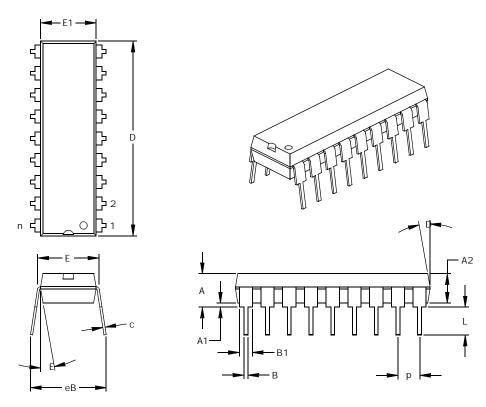

TABLE 14-1: DEVELOPMENT TOOLS FROM MICROCHIP

	PIC12CXX	PIC14000	PIC16C5X	PIC16C6X	PIC16CXX	PIC16F62	7081019	KTO31019	PIC16C8)	PIC16F8X	PIC16C9X	PIC17C4)	(TOTIOI9	PIC18CXX	PIC18FXX	83CXX 52CXX/ 54CXX/	исаххх	КХХЭЯЭМ	MCP2510
MPLAB [®] Integrated Development Environment	>	^	>	>	>	>	>	>	^	^	>	>	>	>	~				
MPLAB [®] C17 C Compiler												>	~						
MPLAB [®] C18 C Compiler														>	~				
MPASM TM Assembler/ MPLINK TM Object Linker	~	^	`	>	~	~	>	^	>	>	`	>	>	>	~	~	>		
MPLAB® ICE In-Circuit Emulator	>	>	>	>	>	**`^	>	>	>	>	>	>	>	>	>				
ICEPIC TM In-Circuit Emulator	~		>	>	>		~	>	>		~								
ggge MPLAB® ICD In-Circuit Debugger				*/*			*^			>					>				
PICSTART® Plus Entry Level Development Programmer	>	>	`	>	`	**`	`	`	>	>	`	`	>	`	>				
PRO MATE® II Diversal Device Programmer D	~	^	^	>	>	**/	^	~	^	^	^	>	>	>	>	~	>		
PICDEM TM 1 Demonstration Board			>		>		* +		>			>							
PICDEM TM 2 Demonstration Board				≁			<↓ ✓							>	~				
PICDEM TM 3 Demonstration Board											>								
PICDEM TM 14A Demonstration Board		^																	
PICDEM TM 17 Demonstration Board													>						
KEELoq® Evaluation Kit																	~		
KEELoq® Transponder Kit																	~		
microlD TM Programmer's Kit																		>	
125 kHz microlD™ Developer's Kit																		>	
125 kHz Anticollision microlD™ Developer's Kit																		^	
13.56 MHz Anticollision microlD™ Developer's Kit																		^	
MCP2510 CAN Developer's Kit																			>

© 1999-2013 Microchip Technology Inc.

15.4.2 LOW VOLTAGE DETECT MODULE (LVD)

TABLE 15-8:	ELECTRICAL CHARACTERISTICS: LVD
-------------	---------------------------------

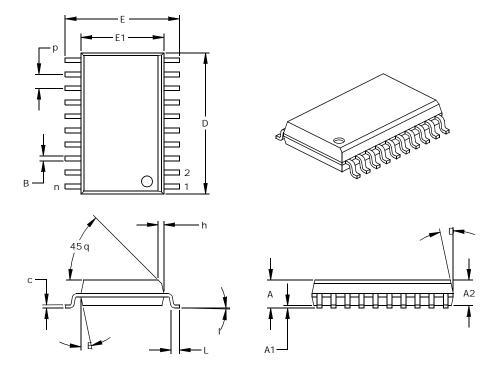

$\begin{tabular}{lllllllllllllllllllllllllllllllllll$									
Param. No.	Charac	teristic	Symbol	Min	Тур†	Max	Units	Conditions	
D420*	LVD Voltage	LVV = 0100		2.5	2.58	2.66	V		
		LVV = 0101		2.7	2.78	2.86	V		
		LVV = 0110		2.8	2.89	2.98	V		
		LVV = 0111		3.0	3.1	3.2	V		
		LVV = 1000		3.3	3.41	3.52	V		
		LVV = 1001	Vlvd	3.5	3.61	3.72	V		
		LVV = 1010		3.6	3.72	3.84	V		
		LVV = 1011		3.8	3.92	4.04	V		
		LVV = 1100		4.0	4.13	4.26	V		
		LVV = 1101	1	4.2	4.33	4.46	V		
		LVV = 1110		4.5	4.64	4.78	V		

These parameters are characterized but not tested.

Note 1: Production tested at Tamb = 25°C. Specifications over temperature limits ensured by characterization.

17.2 18-Lead Plastic Dual In-line (P) 300 mil (PDIP)

For the most current package drawings, please see the Microchip Packaging Specification Note: at http://www.microchip.com/packaging


	Units		INCHES*		N	1ILLIMETERS	
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	D	5	10	15	5	10	15
Mold Draft Angle Bottom	E	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

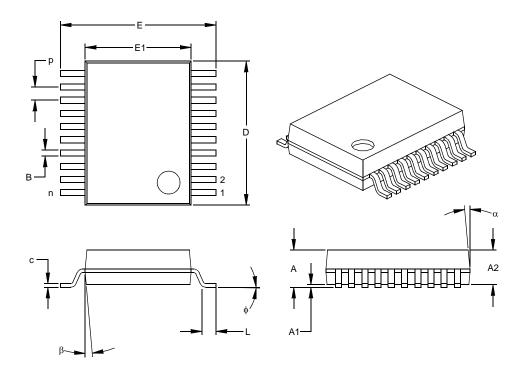
Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

20-Lead Plastic Small Outline (SO) Wide, 300 mi (SOIC) 17.7

Note: For the most current package drawings, please see the Microchip Packaging Specification at http://www.microchip.com/packaging

	Units			INCHES*			MILLIMETERS			
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX			
Number of Pins	n		20			20				
Pitch	р		.050			1.27				
Overall Height	А	.093	.099	.104	2.36	2.50	2.64			
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39			
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30			
Overall Width	E	.394	.407	.420	10.01	10.34	10.67			
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59			
Overall Length	D	.496	.504	.512	12.60	12.80	13.00			
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74			
Foot Length	L	.016	.033	.050	0.41	0.84	1.27			
Foot Angle	Ι	0	4	8	C) 4	ļ			
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33			
Lead Width	В	.014	.017	.020	0.36	0.42	0.5			
Mold Draft Angle Top	D	0	12	15	0	12	15			
Mold Draft Angle Bottom	E	0	12	15	0	12	15			

* Controlling Parameter § Significant Characteristic


Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010 (0.254mm) per side. JEDEC Equivalent: MS-013

Drawing No. CO4-094

20-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP) 17.8

For the most current package drawings, please see the Microchip Packaging Specification located Note: at http://www.microchip.com/packaging

Units			INCHES*			MILLIMETERS		
on Limits	MIN	NOM	MAX	MIN	NOM	MAX		
n		20			20			
р		.026			0.65			
А	.068	.073	.078	1.73	1.85	1.98		
A2	.064	.068	.072	1.63	1.73	1.83		
A1	.002	.006	.010	0.05	0.15	0.25		
Е	.299	.309	.322	7.59	7.85	8.18		
E1	.201	.207	.212	5.11	5.25	5.38		
D	.278	.284	.289	7.06	7.20	7.34		
L	.022	.030	.037	0.56	0.75	0.94		
С	.004	.007	.010	0.10	0.18	0.25		
φ	0	4	8	0.00	101.60	203.20		
В	.010	.013	.015	0.25	0.32	0.38		
α	0	5	10	0	5	10		
β	0	5	10	0	5	10		
	n n P A A2 A1 E E1 D L c φ B α	on Limits MIN n P A .068 A2 .064 A1 .002 E .299 E1 .201 D .278 L .022 c .004 φ 0 B .010 α 0	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-150 Drawing No. C04-072

NOTES:

NOTES: