

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	65
Program Memory Size	96KB (96K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 14x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f683rbpmc-gse1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1.	Product Lineup	6
2.	Block Diagram	7
3.	Pin Assignment	8
4.	Pin Description	9
5 .	Pin Circuit Type	11
6.	I/O Circuit Type	14
	Метогу Мар	
	RAMSTART Addresses	
	User ROM Memory Map For Flash Devices	
	Serial Programming Communication Interface	
	Interrupt Vector Table	
12.	Handling Precautions	
12.1		
12.2		
12.3		
13.	Handling Devices	
13.1		
13.2		
13.3		
	3.1 Single Phase External Clock for Main Oscillator	
	3.2 Single Phase External Clock for Sub Oscillator	
13.3	3.3 Opposite Phase External Clock	
13.4		
13.5		
13.6	,	
13.7		
13.8	3 Pin Handling when not using the A/D Converter	33
13.9	Notes on Power-on	33
13.1	0 Stabilization of Power Supply Voltage	33
13.1	1 SMC Power Supply Pins	33
13.1	2 Serial Communication	33
13.1	13 Mode Pin (MD)	33
14.	Electrical Characteristics	34
14.1	Absolute Maximum Ratings	34
14.2	2 Recommended Operating Conditions	36
14.3		
14.3	3.1 Current Rating	37
14.3	3.2 Pin Characteristics	41
	AC Characteristics	
14.4	1.1 Main Clock Input Characteristics	44
	1.2 Sub Clock Input Characteristics	
	1.3 Built-in RC Oscillation Characteristics	
	1.4 Internal Clock Timing	
	1.5 Operating Conditions of PLL	
	1.6 Reset Input	
14.4	1.7 Power-on Reset Timing	48

14.4.8 USART Timing 14.4.9 External Input Timing	49
14.4.9 External Input Timing	51
14.4.10 I ² C Timing	52
14.5 A/D Converter	53
14.5.1 Electrical Characteristics for the A/D Converter	53
14.5.2 Accuracy and Setting of the A/D Converter Sampling Time	54
14.5.3 Definition of A/D Converter Terms	55
14.6 High Current Output Slew Rate	57
14.7 Low Voltage Detection Function Characteristics	
14.8 Flash Memory Write/Erase Characteristics	60
15. Example Characteristics	61
16. Ordering Information	64
17. Package Dimension	65
18. Major Changes	66
Document History	67
Sales, Solutions, and Legal Information	68

4. Pin Description

Pin Name	Feature	Description
ADTG	ADC	A/D converter trigger input pin
ANn	ADC	A/D converter channel n input pin
AVcc	Supply	Analog circuits power supply pin
AVRH	ADC	A/D converter high reference voltage input pin
AVss	Supply	Analog circuits power supply pin
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin
CKOTn	Clock Output function	Clock Output function n output pin
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin
CKOTXn	Clock Output function	Clock Output function n inverted output pin
COMn	LCD	LCD Common driver pin
DEBUG I/F	OCD	On Chip Debugger input/output pin
DVcc	Supply	SMC pins power supply
DVss	Supply	SMC pins power supply
FRCKn	Free-Running Timer	Free-Running Timer n input pin
FRCKn_R	Free-Running Timer	Relocated Free-Running Timer n input pin
INn	ICU	Input Capture Unit n input pin
INn_R	ICU	Relocated Input Capture Unit n input pin
INTn	External Interrupt	External Interrupt n input pin
INTn_R	External Interrupt	Relocated External Interrupt n input pin
MD	Core	Input pin for specifying the operating mode
NMI	External Interrupt	Non-Maskable Interrupt input pin
Pnn_m	GPIO	General purpose I/O pin
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_R	PPG	Relocated Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PWMn	SMC	SMC PWM high current output pin
RSTX	Core	Reset input pin
RXn	CAN	CAN interface n RX input pin
SCKn	USART	USART n serial clock input/output pin
SCLn	l ² C	I ² C interface n clock I/O input/output pin
SDAn	l ² C	I ² C interface n serial data I/O input/output pin
SEGn	LCD	LCD Segment driver pin
SGAn	Sound Generator	Sound Generator amplitude output pin
SGOn	Sound Generator	Sound Generator sound/tone output pin
SINn	USART	USART n serial data input pin
SOTn	USART	USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TINn_R	Reload Timer	Relocated Reload Timer n event input pin
TOTn	Reload Timer	Reload Timer n output pin
TOTn_R	Reload Timer	Relocated Reload Timer n output pin

5. Pin Circuit Type

Pin No.	I/O Circuit Type*	Pin Name
1	Supply	V _{ss}
2	F	С
3	М	P03_7 / INT1 / SIN1
4	Н	P13_0 / INT2 / SOT1
5	Р	P13_1 / INT3 / SCK1 / SEG42
6	J	P00_7 / SEG19 / SGO0
7	J	P01_0 / SEG20 / SGA0
8	J	P02_2 / SEG30 / CKOT0_R
9	J	P06_3 / FRCK0 / SEG52
10	J	P06_4 / IN0 / SEG53 / TTG0
11	J	P06_5 / IN1 / SEG54 / TTG1
12	J	P06_6 / TIN1 / SEG55 / IN4_R
13	J	P06_7 / TOT1 / SEG56 / IN5_R
14	К	P05_0 / AN8
15	К	P05_1 / AN9
16	Supply	AV _{cc}
17	G	AVRH
18	Supply	AV _{ss}
19	К	P05_2 / AN10
20	К	P05_3 / AN11
21	К	P05_4 / AN12 / INT2_R / WOT_R
22	К	P05_5 / AN13
23	Н	P05_6 / TIN2
24	Н	P05_7 / TOT2
25	R	P08_0 / PWM1P0 / AN16
26	R	P08_1 / PWM1M0 / AN17
27	R	P08_2 / PWM2P0 / AN18
28	R	P08_3 / PWM2M0 / AN19
29	Supply	DVcc
30	Supply	DVss
31	R	P08_4 / PWM1P1 / AN20
32	R	P08_5 / PWM1M1 / AN21
33	R	P08_6 / PWM2P1 / AN22
34	R	P08_7 / PWM2M1 / AN23
35	Н	P13_2 / PPG0 / FRCK1
36	Н	P13_3 / PPG1 / WOT
37	Р	P13_4 / SIN0 / INT6 / SEG45

Pin No.	I/O Circuit Type*	Pin Name
77	М	P03_4 / RX0 / INT4
78	Н	P03_5 / TX0
79	Н	P03_6 / INT0 / NMI
80	Supply	V _{cc}

*: See "I/O Circuit Type" for details on the I/O circuit types.

7. Memory Map

FF:FFFF _H	
	USER ROM*1
DE:0000 _H	
DD:FFFF _H	
	Reserved
	Reserved
10:0000 _H	
0F:C000 _H	Boot-ROM
0E:9000 _H	Peripheral
	Reserved
01:0000 _H	
01.0000H	ROM/RAM
00:8000 _H	MIRROR
	Internal RAM
RAMSTART0*2	bank0
	Reserved
00.0000	
00:0C00 _H	
00:0380 _H	Peripheral
00:0180 _H	GPR*3
00:0100 _H	DMA
00:00F0 _H	Reserved
00:0000 _H	Peripheral

*1: For details about USER ROM area, see "User ROM Memory Map For Flash Devices" on the following pages.

*2: For RAMSTART addresses see the table on the next page.

*3: Unused GPR banks can be used as RAM area.

GPR: General-Purpose Register

The DMA area is only available if the device contains the corresponding resource.

The available RAM and ROM area depends on the device.

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

CY96680							
Pin Number USART Number Normal Function							
37		SINO					
38	USART0	SOT0					
39		SCK0					
3		SIN1					
4	USART1	SOT1					
5		SCK1					

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

12.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress's recommended conditions. For detailed information about mount conditions, contact your sales representative.

■Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

■Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

■Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.

When you open Dry Package that recommends humidity 40% to 70% relative humidity.

- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

- *1: This parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0V$.
- *2: AV_{CC} and V_{CC} and D_{VCC} must be set to the same voltage. It is required that AVCC does not exceed V_{CC}, DV_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.
- *3: VI and Vo should not exceed Vcc + 0.3V. VI should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the ICLAMP rating supersedes the VI rating. Input/Output voltages of high current ports depend on DVcc. Input/Output voltages of standard ports depend on Vcc.

*4:

- Applicable to all general purpose I/O pins (Pnn_m).
- Use within recommended operating conditions.
- · Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply
 voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.
- Sample recommended circuits:

*5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

$$PD = P_{IO} + P_{IN}$$

PIO = Σ (V_{OL} × I_{OL} + V_{OH} × I_{OH}) (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_A is the analog current consumption into AV_{CC}.

*6: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

WARNING

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

Parameter	Symbol	Pin Name	Conditions	Value		Unit	Remarks	
Farameter	Symbol	Fin Name	Conditions	Min	Тур	Max	Unit	Reillai KS
Input leak	11.	Pnn_m	V _{SS} < V _I < V _{CC} AV _{SS} < V _I < AV _{CC} , AVRH	- 1	-	+ 1	μΑ	Single port pin except high current output I/O for SMC
current	11	P08_m	DVss < VI < DVcc AVss < VI < AVcc, AVRH	- 3	-	+ 3	μΑ	
Total LCD leak current	Σ IILCD	All SEG/ COM pin	Vcc = 5.0V	-	0.5	10	μΑ	Maximum leakage current of all LCD pins
Internal LCD divide resistance	RLCD	Between V3 and V2, V2 and V1, V1 and V0	Vcc = 5.0V	6.25	12.5	25	kΩ	
Pull-up resistance value	R _{PU}	Pnn_m	Vcc = 5.0V ±10%	25	50	100	kΩ	
Pull-down resistance value	Rdown	P08_m	Vcc = 5.0V ±10%	25	50	100	kΩ	
Input capacitance	Cin	Other than C, Vcc, Vss, DVcc DVss, AVcc, AVss, AVRH, P08_m	-	-	5	15	pF	
		P08_m	-	-	15	30	pF	

*: In the case of driving stepping motor directly or high current outputs, set "1" to the bit in the Port High Drive Register (PHDRnn:HDx="1").

14.4.2 Sub Clock Input Characteristics

$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$								
Parameter	Symbol	Pin Name	Conditions	Value			Unit	Remarks
Falailletei	Symbol			Min	Тур	Max	Onit	Relliarks
	ncy f _{CL} X	VOA	-	-	32.768	-	kHz	When using an oscillation circuit
Input frequency		X0A, X1A	-	-	-	100	kHz	When using an opposite phase external clock
			X0A	-	-	-	50	kHz
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs	
Input clock pulse width	-	-	Рwн/tcyll, Рwi/tcyll	30	-	70	%	

14.4.3 Built-in RC Oscillation Characteristics

Parameter	Symbol		Value			Remarks	
Falameter	Symbol	Min	Тур	Max	Unit	Remarks	
Clock frequency	f _{RC}	50	100	200	kHz	When using slow frequency of RC oscillator	
		1	2	4	MHz	When using fast frequency of RC oscillator	
RC clock stabilization	abilization t _{RCSTAB} 80 64	80	160	320	μS	When using slow frequency of RC oscillator (16 RC clock cycles)	
time		64	128	256	μs	When using fast frequency of RC oscillator (256 RC clock cycles)	

(V_{CC} = AV_{CC} = DV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = - 40°C to + 105°C)

14.4.4 Internal Clock Timing

$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 105^{\circ}C)$								
Parameter	Symbol	Va	Unit					
i arameter	Cymbol	Min	Мах					
Internal System clock frequency (CLKS1 and CLKS2)	fclks1, fclks2	-	54	MHz				
Internal CPU clock frequency (CLKB), Internal peripheral clock frequency (CLKP1)	fclkb, fclkp1	-	32	MHz				
Internal peripheral clock frequency (CLKP2)	fclkp2	-	32	MHz				

14.4.7 Power-on Reset Timing

Parameter	Symbol	Pin Name	Value			Unit	
Falameter			Min	Тур	Max	Onic	
Power on rise time	t _R	Vcc	0.05	-	30	ms	
Power off time	toff	Vcc	1	-	-	ms	

(V_{CC} = AV_{CC} = DV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = - 40°C to + 105°C)

14.4.10 PC Timing

Parameter	Symbol	Conditions	Typical Mode		High-Speed Mode ^{*4}		Unit
			Min	Max	Min	Max	
SCL clock frequency	fscl		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	μs
SCL clock "L" width	tLOW		4.7	-	1.3	-	μs
SCL clock "H" width	tніgн		4.0	-	0.6	-	μs
(Repeated) START condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	t susta	C _L = 50pF,	4.7	-	0.6	-	μs
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}	R = (Vp/I _{OL})*1	0	3.45* ²	0	0.9 ^{*3}	μs
Data setup time $SDA \downarrow \uparrow \rightarrow SCL \uparrow$	t SUDAT		250	-	100	-	ns
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsusтo		4.0	-	0.6	-	μs
Bus free time between "STOP condition" and "START condition"	t _{BUS}		4.7	-	1.3	-	μs
Pulse width of spikes which will be suppressed by input noise filter	tsp	-	0	(1-1.5) × t _{CLKP1} *5	0	(1-1.5) × t _{CLKP1} *5	ns

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$)

*1: R and C_L represent the pull-up resistance and load capacitance of the SCL and SDA lines, respectively.

Vp indicates the power supply voltage of the pull-up resistance and IoL indicates VoL guaranteed current.

*2: The maximum t_{HDDAT} only has to be met if the device does not extend the "L" width (t_{LOW}) of the SCL signal.

*3: A high-speed mode I²C bus device can be used on a standard mode I²C bus system as long as the device satisfies the requirement of "t_{SUDAT} \geq 250ns".

*4: For use at over 100kHz, set the peripheral clock1 (CLKP1) to at least 6MHz.

*5: t_{CLKP1} indicates the peripheral clock1 (CLKP1) cycle time.

14.5 A/D Converter

14.5.1 Electrical Characteristics for the A/D Converter

		Pin	Value					
Parameter	Symbol	Name	Min	Тур	Мах	Unit	Remarks	
Resolution	-	-	-	-	10	bit		
Total error	-	-	- 3.0	-	+ 3.0	LSB		
Nonlinearity error	-	-	- 2.5	-	+ 2.5	LSB		
Differential Nonlinearity error	-	-	- 1.9	-	+ 1.9	LSB		
Zero transition voltage	Vot	ANn	Тур - 20	AV _{ss} + 0.5LSB	Тур + 20	mV		
Full scale transition voltage	V _{FST}	ANn	Тур - 20	AVRH - 1.5LSB	Тур + 20	mV		
Compare time*		-	1.0	-	5.0	μs	$4.5V \le AV_{CC} \le 5.5V$	
Compare time	-	-	2.2	-	8.0	μS	$2.7V \leq AV_{CC} < 4.5V$	
Sampling time*	-	-	0.5	-	-	μS	$4.5V \le AV_{CC} \le 5.5V$	
Sampling time			1.2	-	-	μS	$2.7V \le AV_{CC} < 4.5V$	
Power supply	IA		-	2.0	3.1	mA	A/D Converter active	
current	Іан	AV _{cc}	-	-	3.3	μΑ	A/D Converter not operated	
Reference power I _R	AVRH	-	520	810	μΑ	A/D Converter active		
(between AVRH and AV_{SS})	I _{RH}		-	-	1.0	μΑ	A/D Converter not operated	
Analog input		AN8 to 13	-	-	15.5	pF	Normal outputs	
capacity	CVIN	AN16 to 23	-	-	17.4	pF	High current outputs	
Analog impedance	Rvin	ANn	-	-	1450	Ω	$4.5V \le AV_{CC} \le 5.5V$	
<u> </u>			-	-	2700	Ω	$2.7V \le AV_{CC} < 4.5V$	
Analog port input		AN8 to 13	- 1.0	-	+ 1.0	μA	AVss <vain <<="" td=""></vain>	
current (during I _{AIN} conversion)		AN16 to 23	- 3.0	-	+ 3.0	μA	AVSS < VAIN < AV _{CC} , AVRH	
Analog input voltage	Vain	ANn	AVss	-	AVRH	V		
Reference voltage range	-	AVRH	AV _{CC} - 0.1	-	AVcc	V		
Variation between channels	-	ANn	-	-	4.0	LSB		

 $(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$)

*: Time for each channel.

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (T_{samp}) depends on the external driving impedance R_{ext} , the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

RVIN: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used:

 $T_{samp} = 7.62 \times (R_{ext} \times C_{ext} + (R_{ext} + R_{VIN}) \times C_{VIN})$

- Do not select a sampling time below the absolute minimum permitted value. $(0.5\mu s \text{ for } 4.5V \le AV_{CC} \le 5.5V, 1.2\mu s \text{ for } 2.7V \le AV_{CC} < 4.5V)$
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

14.7 Low Voltage Detection Function Characteristics

		(VCC = AVCC = DVCC = 2.7 V IO	5.5V, VSS – AVSS		v, TA = - 1 0 O	0 + 103 0)	
				Value			
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
	VDL0	CILCR:LVL = 0000 _B	2.70	2.90	3.10	V	
	V _{DL1}	$CILCR:LVL = 0001_B$	2.79	3.00	3.21	V	
	V _{DL2}	$CILCR:LVL = 0010_B$	2.98	3.20	3.42	V	
Detected voltage*1	V _{DL3}	CILCR:LVL = 0011 _B	3.26	3.50	3.74	V	
Ĵ	V _{DL4}	CILCR:LVL = 0100 _B	3.45	3.70	3.95	V	
	V _{DL5}	CILCR:LVL = 0111 _B	3.73	4.00	4.27	V	
	V _{DL6}	CILCR:LVL = 1001 _B	3.91	4.20	4.49	V	
Power supply voltage change rate ^{*2}	dV/dt	-	- 0.004	-	+ 0.004	V/µs	
Hysteresis width		CILCR:LVHYS=0	-	-	50	mV	
	VHYS	CILCR:LVHYS=1	80	100	120	mV	
Stabilization time	TLVDSTAB	-	-	-	75	μs	
Detection delay time	td	-	-	-	30	μS	

(Vcc = AVcc = DVcc = 2.7V to 5.5V, Vss = AVss = DVss = 0V, T_A = - 40°C to + 105°C)

*1: If the power supply voltage fluctuates within the time less than the detection delay time (td), there is a possibility that the low voltage detection will occur or stop after the power supply voltage passes the detection range.

*2: In order to perform the low voltage detection at the detection voltage (V_{DLX}), be sure to suppress fluctuation of the power supply voltage within the limits of the change ration of power supply voltage.

16. Ordering Information

MCU with CAN Controller

Part Number	Flash Memory	Package*		
CY96F683RBPMC-GS-UJE1	Flash A	80-pin plastic LQFP		
	(96.5KB)	(LQH080)		
CY96F685RBPMC-GS-UJE1	Flash A	80-pin plastic LQFP		
	(160.5KB)	(LQH080)		

*: For details about package, see "Package Dimension".

MCU without CAN Controller

Part Number	Flash Memory	Package*		
CY96F683ABPMC-GS-UJE1	Flash A	80-pin plastic LQFP		
	(96.5KB)	(LQH080)		

*: For details about package, see "Package Dimension".

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

Arm [®] Cortex [®] Microcontrollers	cypress.com/arm
Automotive	cypress.com/automotive
Clocks & Buffers	cypress.com/clocks
Interface	cypress.com/interface
Internet of Things	cypress.com/iot
Memory	cypress.com/memory
Microcontrollers	cypress.com/mcu
PSoC	cypress.com/psoc
Power Management ICs	cypress.com/pmic
Touch Sensing	cypress.com/touch
USB Controllers	cypress.com/usb
Wireless Connectivity	cypress.com/wireless

PSoC[®] Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU

Cypress Developer Community

Community | Projects | Videos | Blogs | Training | Components

Technical Support

cypress.com/support

Arm and Cortex are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere

© Cypress Semiconductor Corporation, 2013-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and othes not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress' unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware product. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. No computing device can be absolutely secure. Therefore, despite security measures implemented in Cypress hardware or software products, Cypress does not assume any liability arising out of any security breach, such as unauthorized access to or use of a Cypress product. In addition, the products described in these materials may contain design defects or errors known as errata which may cause the product to deviate from published specifications. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or system, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemni

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.