

Welcome to E-XFL.COM

### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

### Details

E·XFl

| Product Status             | Obsolete                                                                      |
|----------------------------|-------------------------------------------------------------------------------|
| Core Processor             | F <sup>2</sup> MC-16FX                                                        |
| Core Size                  | 16-Bit                                                                        |
| Speed                      | 32MHz                                                                         |
| Connectivity               | CANbus, I <sup>2</sup> C, LINbus, SCI, UART/USART                             |
| Peripherals                | DMA, LCD, LVD, POR, PWM, WDT                                                  |
| Number of I/O              | 65                                                                            |
| Program Memory Size        | 96KB (96K x 8)                                                                |
| Program Memory Type        | FLASH                                                                         |
| EEPROM Size                | -                                                                             |
| RAM Size                   | 4K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.7V ~ 5.5V                                                                   |
| Data Converters            | A/D 14x8/10b                                                                  |
| Oscillator Type            | Internal                                                                      |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                            |
| Mounting Type              | Surface Mount                                                                 |
| Package / Case             | 80-LQFP                                                                       |
| Supplier Device Package    | 80-LQFP (12x12)                                                               |
| Purchase URL               | https://www.e-xfl.com/product-detail/infineon-technologies/mb96f683rbpmc-gse2 |
|                            |                                                                               |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong





### ■A/D converter

#### □ SAR-type

- □ 8/10-bit resolution
- □ Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- □ Range Comparator Function
- □ Scan Disable Function
- □ ADC Pulse Detection Function

### ■Source Clock Timers

Three independent clock timers (23-bit RC clock timer, 23-bit Main clock timer, 17-bit Sub clock timer)

### ■Hardware Watchdog Timer

- □ Hardware watchdog timer is active after reset
- □ Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

### ■Reload Timers

- □ 16-bit wide
- □ Prescaler with 1/2<sup>1</sup>, 1/2<sup>2</sup>, 1/2<sup>3</sup>, 1/2<sup>4</sup>, 1/2<sup>5</sup>, 1/2<sup>6</sup> of peripheral clock frequency
- □ Event count function

### ■Free-Running Timers

- □ Signals an interrupt on overflow
- □ Prescaler with 1, 1/2<sup>1</sup>, 1/2<sup>2</sup>, 1/2<sup>3</sup>, 1/2<sup>4</sup>, 1/2<sup>5</sup>, 1/2<sup>6</sup>, 1/2<sup>7</sup>, 1/2<sup>8</sup> of peripheral clock frequency
- ■Input Capture Units
  - □ 16-bit wide
  - □ Signals an interrupt upon external event
  - □ Rising edge, Falling edge or Both (rising & falling) edges sensitive

### ■Programmable Pulse Generator

- □ 16-bit down counter, cycle and duty setting registers
- □ Can be used as 2 × 8-bit PPG
- □ Interrupt at trigger, counter borrow and/or duty match
- □ PWM operation and one-shot operation
- □ Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- □ Can be triggered by software or reload timer
- □ Can trigger ADC conversion
- □ Timing point capture

### Stepping Motor Controller

- Stepping Motor Controller with integrated high current output drivers
- □ Four high current outputs for each channel
- □ Two synchronized 8/10-bit PWMs per channel
- Internal prescaling for PWM clock: 1, 1/4, 1/5, 1/6, 1/8, 1/10, 1/12, 1/16 of peripheral clock
- Dedicated power supply for high current output drivers

- ■LCD Controller
- □ LCD controller with up to 4COM × 32SEG
- □ Internal or external voltage generation
- $\square$  Duty cycle: Selectable from options: 1/2, 1/3 and 1/4
- □ Fixed 1/3 bias
- □ Programmable frame period
- □ Clock source selectable from four options (main clock, peripheral clock, subclock or RC oscillator clock)
- Internal divider resistors or external divider resistors
- □ On-chip data memory for display
- LCD display can be operated in Timer Mode
- □ Blank display: selectable
- □ All SEG, COM and V pins can be switched between general and specialized purposes
- Sound Generator
- □ 8-bit PWM signal is mixed with tone frequency from 16-bit reload counter
- □ PWM clock by internal prescaler: 1, 1/2, 1/4, 1/8 of peripheral clock

### Real Time Clock


- Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
- Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
- □ Read/write accessible second/minute/hour registers
- Can signal interrupt every half second/second/minute/hour/day
- Internal clock divider and prescaler provide exact 1s clock

### External Interrupts

- □ Edge or Level sensitive
- □ Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- □ Selected USART channels SIN have an external interrupt for wake-up
- Non Maskable Interrupt
  - □ Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
  - $\hfill\square$  Once enabled, cannot be disabled other than by reset
  - □ High or Low level sensitive
  - □ Pin shared with external interrupt 0

### ■I/O Ports

- $\square$  Most of the external pins can be used as general purpose I/O
- $\square$  All push-pull outputs (except when used as I^2C SDA/SCL line)
- □ Bit-wise programmable as input/output or peripheral signal
- □ Bit-wise programmable input enable
- One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- □ Bit-wise programmable pull-up resistor





### Built-in On Chip Debugger (OCD)

□ One-wire debug tool interface

□ Break function:

- Hardware break: 6 points (shared with code event)
- Software break: 4096 points
- □ Event function
  - Code event: 6 points (shared with hardware break)
  - · Data event: 6 points
- Event sequencer: 2 levels + reset
- □ Execution time measurement function
- □ Trace function: 42 branches
- □ Security function

- Flash Memory
  - □ Dual operation flash allowing reading of one Flash bank while programming or erasing the other bank
  - Command sequencer for automatic execution of programming algorithm and for supporting DMA for programming of the Flash Memory
  - □ Supports automatic programming, Embedded Algorithm
- UWrite/Erase/Erase-Suspend/Resume commands
- $\hfill\square$  A flag indicating completion of the automatic algorithm
- □ Erase can be performed on each sector individually □ Sector protection
- $\hfill\square$  Flash Security feature to protect the content of the Flash
- Low voltage detection during Flash erases or writes

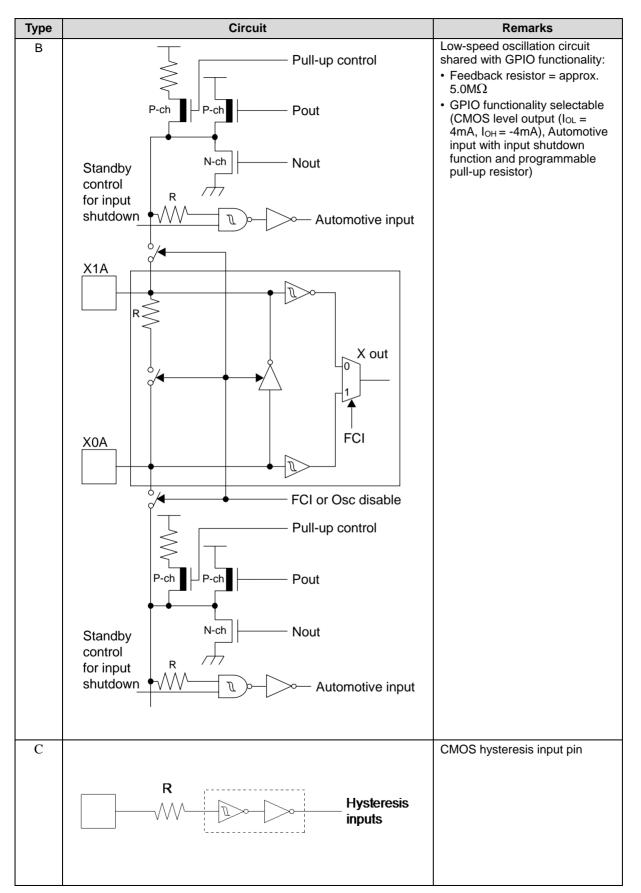


## 1. Product Lineup

| Features                                          |           | CY96680                                        | Remark                                                                      |
|---------------------------------------------------|-----------|------------------------------------------------|-----------------------------------------------------------------------------|
| Product Type                                      |           | Flash Memory Product                           |                                                                             |
| Subclock                                          |           | Subclock can be set by software                |                                                                             |
| Dual Operation Flash Memory                       | RAM       | -                                              |                                                                             |
| 64.5KB + 32KB 4KB                                 |           | CY96F683R, CY96F683A                           | Product Options<br>R: MCU with CAN                                          |
| 128.5KB + 32KB                                    | 4KB       | CY96F685R, CY96F685A                           | A: MCU without CAN                                                          |
| Package                                           |           | LQFP-80<br>LQH080                              |                                                                             |
| DMA                                               |           | 2ch                                            |                                                                             |
| USART                                             |           | 2ch                                            | LIN-USART 0/1                                                               |
| with automatic LIN-Head<br>transmission/reception | ler       | Yes (only 1ch)                                 | LIN-USART 0                                                                 |
| with 16 byte RX- and TX-FIFO                      |           | No                                             |                                                                             |
| l <sup>2</sup> C                                  |           | 1ch                                            | I <sup>2</sup> C 0                                                          |
| 8/10-bit A/D Converter                            |           | 14ch                                           | AN 8 to 13/16 to 23                                                         |
| with Data Buffer                                  |           | No                                             |                                                                             |
| with Range Comparator                             |           | Yes                                            |                                                                             |
| with Scan Disable                                 |           | Yes                                            |                                                                             |
| with ADC Pulse Detection                          | n         | Yes                                            |                                                                             |
| 16-bit Reload Timer (RLT)                         |           | 3ch                                            | RLT 1/2/6                                                                   |
| 16-bit Free-Running Timer (FRT)                   |           | 2ch                                            | FRT 0/1                                                                     |
| 16-bit Input Capture Unit (ICU)                   |           | 4ch<br>(2 channels for LIN-USART)              | ICU 0/1/4/5<br>(ICU 0/1 for LIN-USART)                                      |
| 8/16-bit Programmable Pulse Genera                | tor (PPG) | 4ch (16-bit) / 8ch (8-bit)                     | PPG 0 to 3                                                                  |
| with Timing point capture                         |           | Yes                                            | 1100100                                                                     |
| with Start delay                                  | ,         | No                                             |                                                                             |
| with Ramp                                         |           | No                                             |                                                                             |
| CAN Interface                                     |           | 1ch                                            | CAN 0<br>32 Message Buffers                                                 |
| Stepping Motor Controller (SMC)                   |           | 2ch                                            | SMC 0/1                                                                     |
| External Interrupts (INT)                         |           | 7ch                                            | INT 0 to 4/6/7                                                              |
| Non-Maskable Interrupt (NMI)                      |           | 1ch                                            |                                                                             |
| Sound Generator (SG)                              |           | 1ch                                            | SG 0                                                                        |
| LCD Controller                                    |           | 4COM × 32SEG                                   | COM 0 to 3<br>SEG 1 to 12/19 to 24/<br>30/36 to 39/42/45 to 47/<br>52 to 56 |
| Real Time Clock (RTC)                             |           | 1ch                                            |                                                                             |
| I/O Ports                                         |           | 63 (Dual clock mode)<br>65 (Single clock mode) |                                                                             |
| Clock Calibration Unit (CAL)                      |           | 1ch                                            |                                                                             |
| Clock Output Function                             |           | 2ch                                            |                                                                             |
| Low Voltage Detection Function                    |           | Yes                                            | Low voltage detection function<br>can be<br>disabled by software            |
| Hardware Watchdog Timer                           |           | Yes                                            |                                                                             |
| On-chip RC-oscillator                             |           | Yes                                            |                                                                             |
| On-chip Debugger                                  |           | Yes                                            |                                                                             |

### Note:

All signals of the peripheral function in each product cannot be allocated by limiting the pins of package.


It is necessary to use the port relocate function of the general I/O port according to your function use.



| Pin No. | I/O Circuit Type* | Pin Name           |
|---------|-------------------|--------------------|
| 77      | М                 | P03_4 / RX0 / INT4 |
| 78      | Н                 | P03_5 / TX0        |
| 79      | Н                 | P03_6 / INT0 / NMI |
| 80      | Supply            | V <sub>cc</sub>    |

\*: See "I/O Circuit Type" for details on the I/O circuit types.







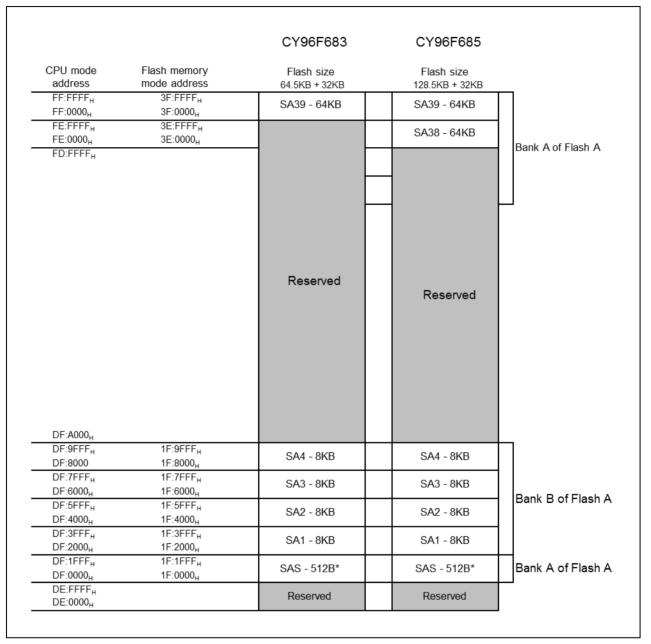
# 7. Memory Map

| FF:FFFF <sub>H</sub> |              |
|----------------------|--------------|
|                      | USER ROM*1   |
| DE:0000 <sub>H</sub> |              |
| DD:FFFF <sub>H</sub> |              |
|                      | Reserved     |
|                      | Reserved     |
| 10:0000 <sub>H</sub> |              |
| 0F:C000 <sub>H</sub> | Boot-ROM     |
| 0E:9000 <sub>H</sub> | Peripheral   |
|                      |              |
|                      |              |
|                      | Reserved     |
|                      |              |
| 01:0000 <sub>H</sub> |              |
| 01.0000H             | ROM/RAM      |
| 00:8000 <sub>H</sub> | MIRROR       |
|                      | Internal RAM |
| RAMSTART0*2          | bank0        |
|                      |              |
|                      | Reserved     |
| 00.0000              |              |
| 00:0C00 <sub>H</sub> |              |
| 00:0380 <sub>H</sub> | Peripheral   |
| 00:0180 <sub>H</sub> | GPR*3        |
| 00:0100 <sub>H</sub> | DMA          |
| 00:00F0 <sub>H</sub> | Reserved     |
| 00:0000 <sub>H</sub> | Peripheral   |

\*1: For details about USER ROM area, see "User ROM Memory Map For Flash Devices" on the following pages.

\*2: For RAMSTART addresses see the table on the next page.

\*3: Unused GPR banks can be used as RAM area.


GPR: General-Purpose Register

The DMA area is only available if the device contains the corresponding resource.

The available RAM and ROM area depends on the device.



# 9. User ROM Memory Map For Flash Devices



\*: Physical address area of SAS-512B is from DF:0000<sub>H</sub> to DF:01FF<sub>H</sub>. Others (from DF:0200<sub>H</sub> to DF:1FFF<sub>H</sub>) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF: 0000<sub>H</sub> -DF:01FF<sub>H</sub>. SAS cannot be used for E<sup>2</sup>PROM emulation.



# **10. Serial Programming Communication Interface**

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

| CY96680                                 |        |      |  |  |  |  |  |
|-----------------------------------------|--------|------|--|--|--|--|--|
| Pin Number USART Number Normal Function |        |      |  |  |  |  |  |
| 37                                      |        | SINO |  |  |  |  |  |
| 38                                      | USART0 | SOT0 |  |  |  |  |  |
| 39                                      |        | SCK0 |  |  |  |  |  |
| 3                                       |        | SIN1 |  |  |  |  |  |
| 4                                       | USART1 | SOT1 |  |  |  |  |  |
| 5                                       |        | SCK1 |  |  |  |  |  |



# 11. Interrupt Vector Table

| Vector<br>Number | Offset in<br>Vector Table | Vector Name | Cleared by<br>DMA | Index in<br>ICR to<br>Program | Description                     |
|------------------|---------------------------|-------------|-------------------|-------------------------------|---------------------------------|
| 0                | 3FCн                      | CALLV0      | No                | -                             | CALLV instruction               |
| 1                | 3F8 <sub>H</sub>          | CALLV1      | No                | -                             | CALLV instruction               |
| 2                | 3F4н                      | CALLV2      | No                | -                             | CALLV instruction               |
| 3                | 3F0н                      | CALLV3      | No                | -                             | CALLV instruction               |
| 4                | 3ЕСн                      | CALLV4      | No                | -                             | CALLV instruction               |
| 5                | 3E8 <sub>H</sub>          | CALLV5      | No                | -                             | CALLV instruction               |
| 6                | 3E4 <sub>H</sub>          | CALLV6      | No                | -                             | CALLV instruction               |
| 7                | 3Е0н                      | CALLV7      | No                | -                             | CALLV instruction               |
| 8                | 3DCн                      | RESET       | No                | -                             | Reset vector                    |
| 9                | 3D8н                      | INT9        | No                | -                             | INT9 instruction                |
| 10               | 3D4 <sub>H</sub>          | EXCEPTION   | No                | -                             | Undefined instruction execution |
| 11               | 3D0н                      | NMI         | No                | -                             | Non-Maskable Interrupt          |
| 12               | ЗССн                      | DLY         | No                | 12                            | Delayed Interrupt               |
| 13               | 3С8н                      | RC_TIMER    | No                | 13                            | RC Clock Timer                  |
| 14               | 3C4 <sub>H</sub>          | MC_TIMER    | No                | 14                            | Main Clock Timer                |
| 15               | 3C0 <sub>Н</sub>          | SC_TIMER    | No                | 15                            | Sub Clock Timer                 |
| 16               | ЗВСн                      | LVDI        | No                | 16                            | Low Voltage Detector            |
| 17               | 3В8н                      | EXTINT0     | Yes               | 17                            | External Interrupt 0            |
| 18               | 3B4 <sub>H</sub>          | EXTINT1     | Yes               | 18                            | External Interrupt 1            |
| 19               | 3B0 <sub>H</sub>          | EXTINT2     | Yes               | 19                            | External Interrupt 2            |
| 20               | ЗАСн                      | EXTINT3     | Yes               | 20                            | External Interrupt 3            |
| 21               | 3А8н                      | EXTINT4     | Yes               | 21                            | External Interrupt 4            |
| 22               | 3A4 <sub>H</sub>          | -           | -                 | 22                            | Reserved                        |
| 23               | 3А0н                      | EXTINT6     | Yes               | 23                            | External Interrupt 6            |
| 24               | 39C <sub>H</sub>          | EXTINT7     | Yes               | 24                            | External Interrupt 7            |
| 25               | 398н                      | -           | -                 | 25                            | Reserved                        |
| 26               | 394 <sub>Н</sub>          | -           | -                 | 26                            | Reserved                        |
| 27               | 390н                      | -           | -                 | 27                            | Reserved                        |
| 28               | 38Сн                      | -           | -                 | 28                            | Reserved                        |
| 29               | 388 <sub>н</sub>          | -           | -                 | 29                            | Reserved                        |
| 30               | 384н                      | -           | -                 | 30                            | Reserved                        |
| 31               | 380н                      | -           | -                 | 31                            | Reserved                        |
| 32               | 37Сн                      | -           | -                 | 32                            | Reserved                        |
| 33               | 378 <sub>Н</sub>          | CAN0        | No                | 33                            | CAN Controller 0                |
| 34               | 374 <sub>H</sub>          | -           | -                 | 34                            | Reserved                        |
| 35               | 370н                      | -           | -                 | 35                            | Reserved                        |
| 36               | 36Сн                      | -           | -                 | 36                            | Reserved                        |
| 37               | 368н                      | -           | -                 | 37                            | Reserved                        |
| 38               | 364 <sub>H</sub>          | PPG0        | Yes               | 38                            | Programmable Pulse Generator 0  |
| 39               | 360н                      | PPG1        | Yes               | 39                            | Programmable Pulse Generator 1  |



### ■ Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- 3. Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1  $M\Omega$ ).

Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.

- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of Styrofoam or other highly static-prone materials for storage of completed board assemblies.

### **12.3 Precautions for Use Environment**

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

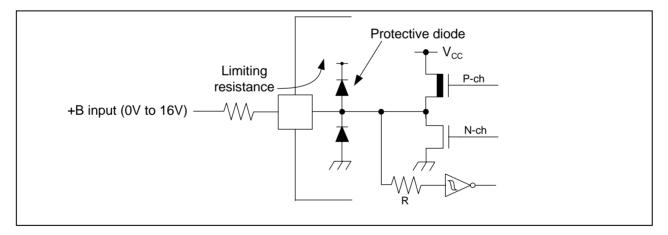
CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.



# **14. Electrical Characteristics**

### 14.1 Absolute Maximum Ratings


| Parameter                          | Symbol               | Condition               |                       | ating                 | Unit | Remarks                                             |
|------------------------------------|----------------------|-------------------------|-----------------------|-----------------------|------|-----------------------------------------------------|
|                                    |                      |                         | Min                   | Max                   |      |                                                     |
| Power supply voltage*1             | Vcc                  | -                       | Vss - 0.3             | Vss + 6.0             | V    |                                                     |
| Analog power supply voltage*1      | AVcc                 | -                       | Vss - 0.3             | Vss + 6.0             | V    | $Vcc = AVcc^{*2}$                                   |
| Analog reference<br>voltage*1      | AVRH                 | -                       | V <sub>SS</sub> - 0.3 | V <sub>SS</sub> + 6.0 | V    | AV <sub>CC</sub> ≥ AVRH,<br>AVRH ≥ AV <sub>SS</sub> |
| SMC Power supply*1                 | DVcc                 | -                       | Vss - 0.3             | Vss + 6.0             | V    | Vcc = AVcc= DVcc <sup>*2</sup>                      |
| LCD power supply voltage*1         | V0 to V3             | -                       | Vss - 0.3             | Vss + 6.0             | V    | V0 to V3 must not<br>exceed Vcc                     |
| Input voltage*1                    | Vi                   | -                       | Vss - 0.3             | Vss + 6.0             | V    | $V_{I} \leq (D)V_{CC} + 0.3V^{*3}$                  |
| Output voltage*1                   | Vo                   | -                       | V <sub>SS</sub> - 0.3 | V <sub>SS</sub> + 6.0 | V    | $V_0 \le (D)V_{CC} + 0.3V^{*3}$                     |
| Maximum Clamp<br>Current           |                      | -                       | -4.0                  | +4.0                  | mA   | Applicable to general<br>purpose I/O pins *4        |
| Total Maximum<br>Clamp Current     | Σ I <sub>CLAMP</sub> | -                       | -                     | 21                    | mA   | Applicable to general<br>purpose I/O pins *4        |
|                                    | IOL                  | -                       | -                     | 15                    | mA   | Normal port                                         |
| "L" level maximum                  |                      | T <sub>A</sub> = -40°C  | -                     | 52                    | mA   |                                                     |
| output current                     | IOLSMC               | T <sub>A</sub> = +25°C  | -                     | 39                    | mA   | High current port                                   |
| output ourrent                     | IOLSMC               | T <sub>A</sub> = +85°C  | -                     | 32                    | mA   | riigh current port                                  |
|                                    |                      | T <sub>A</sub> = +105°C | -                     | 30                    | mA   |                                                     |
|                                    | IOLAV                | -                       | -                     | 4                     | mA   | Normal port                                         |
| "L" level average                  |                      | T <sub>A</sub> = -40°C  | -                     | 40                    | mA   |                                                     |
|                                    | 1                    | T <sub>A</sub> = +25°C  | -                     | 30                    | mA   | Ligh ourrent part                                   |
| output current                     | IOLAVSMC             | T <sub>A</sub> = +85°C  | -                     | 25                    | mA   | High current port                                   |
|                                    |                      | T <sub>A</sub> = +105°C | -                     | 23                    | mA   | ]                                                   |
| "L" level maximum                  | ΣΙοι                 | -                       | -                     | 46                    | mA   | Normal port                                         |
| overall output current             | ΣIOLSMC              | -                       | -                     | 180                   | mA   | High current port                                   |
| "L" level average                  | ΣΙ <sub>ΟLAV</sub>   | -                       | -                     | 23                    | mA   | Normal port                                         |
| overall output current             | ΣIOLAVSMC            | -                       | -                     | 90                    | mA   | High current port                                   |
|                                    | Іон                  | -                       | -                     | -15                   | mA   | Normal port                                         |
|                                    | 1011                 | T <sub>A</sub> = -40°C  | -                     | -52                   | mA   |                                                     |
| "H" level maximum                  |                      | $T_{A}$ = +25°C         | -                     | -39                   | mA   |                                                     |
| output current                     | Іонѕмс               | T <sub>A</sub> = +85°C  | -                     | -32                   | mA   | High current port                                   |
|                                    |                      | T <sub>A</sub> = +105°C | -                     | -30                   | mA   |                                                     |
|                                    | IOHAV                | -                       | -                     | -4                    | mA   | Normal port                                         |
|                                    | ·OTAV                | T <sub>A</sub> = -40°C  | -                     | -40                   | mA   |                                                     |
| "H" level average                  |                      | $T_{A}$ = +25°C         | -                     | -30                   | mA   |                                                     |
| output current                     | IOHAVSMC             | T <sub>A</sub> = +85°C  | -                     | -25                   | mA   | High current port                                   |
|                                    |                      | $T_{A}$ = +105°C        | -                     | -23                   | mA   | 1                                                   |
| "H" level maximum                  | ΣΙΟΗ                 | -                       | -                     | -46                   | mA   | Normal port                                         |
| overall output current             | ΣІонѕмс              | -                       | -                     | -180                  | mA   | High current port                                   |
| "H" level average                  | ΣΙΟΗΑΝ               | -                       | -                     | -23                   | mA   | Normal port                                         |
| overall output current             |                      | -                       | -                     | -23                   | mA   | High current port                                   |
| Power<br>consumption* <sup>5</sup> | PD                   | T <sub>A</sub> = +105°C | -                     | 317 <sup>*6</sup>     | mW   |                                                     |
| Operating ambient temperature      | TA                   | -                       | -40                   | +105                  | °C   |                                                     |
| Storage temperature                | T <sub>STG</sub>     | -                       | -55                   | +150                  | °C   |                                                     |



- \*1: This parameter is based on  $V_{SS} = AV_{SS} = DV_{SS} = 0V$ .
- \*2: AV<sub>CC</sub> and V<sub>CC</sub> and D<sub>VCC</sub> must be set to the same voltage. It is required that AVCC does not exceed V<sub>CC</sub>, DV<sub>CC</sub> and that the voltage at the analog inputs does not exceed AV<sub>CC</sub> when the power is switched on.
- \*3: VI and Vo should not exceed Vcc + 0.3V. VI should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the ICLAMP rating supersedes the VI rating. Input/Output voltages of high current ports depend on DVcc. Input/Output voltages of standard ports depend on Vcc.

\*4:

- Applicable to all general purpose I/O pins (Pnn\_m).
- Use within recommended operating conditions.
- · Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V<sub>CC</sub> pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply
  voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.
- Sample recommended circuits:



\*5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

$$PD = P_{IO} + P_{IN}$$

PIO =  $\Sigma$  (V<sub>OL</sub> × I<sub>OL</sub> + V<sub>OH</sub> × I<sub>OH</sub>) (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$  (internal power dissipation)

 $I_{CC}$  is the total core current consumption into  $V_{CC}$  as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 $I_{\text{A}}$  is the analog current consumption into  $\mathsf{AV}_{\text{CC}}.$ 

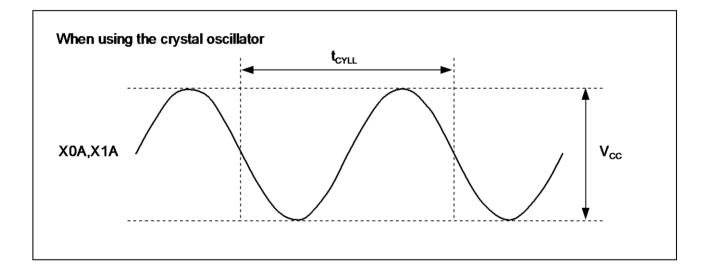
\*6: Worst case value for a package mounted on single layer PCB at specified T<sub>A</sub> without air flow.

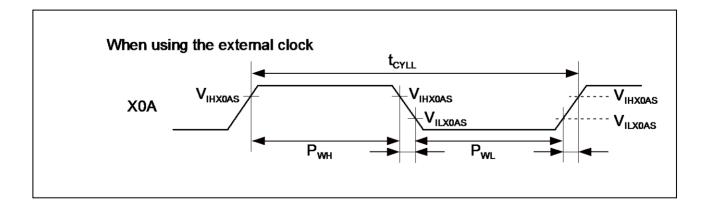
### WARNING

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.



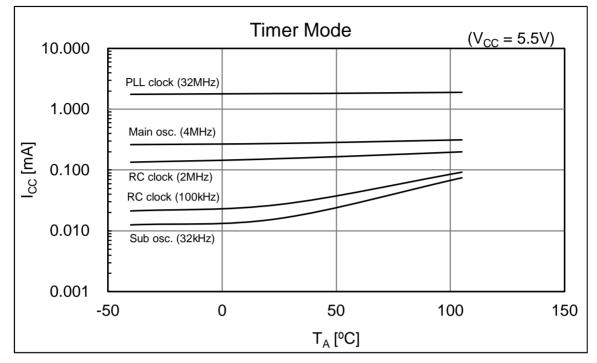
| Parameter                     | Symbol   | Pin  | Conditions                                                                                                        | Value |                                                          | Unit | Remarks |                         |    |                        |
|-------------------------------|----------|------|-------------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------|------|---------|-------------------------|----|------------------------|
|                               | •••••••  | Name |                                                                                                                   | Min   | Тур                                                      | Max  | •       |                         |    |                        |
|                               |          |      | PLL Sleep mode with<br>CLKS1/2 = CLKP1/2 = 32MHz                                                                  |       | 6.5                                                      | -    | mA      | T <sub>A</sub> = +25°C  |    |                        |
|                               | ICCSPLL  |      | (CLKRC and CLKSC stopped)                                                                                         | -     | -                                                        | 13   | mA      | T <sub>A</sub> = +105°C |    |                        |
|                               |          | 0    | Main Sleep mode with<br>CLKS1/2 = CLKP1/2 = 4MHz,<br>SMCR:LPMSS = 0                                               | -     | 0.9                                                      | -    | mA      | T <sub>A</sub> = +25°C  |    |                        |
|                               | ICCSMAIN |      | (CLKPLL, CLKRC and CLKSC stopped)                                                                                 | -     | -                                                        | 4    | mA      | T <sub>A</sub> = +105°C |    |                        |
| Power supply current in Sleep | Іссяксн  | Vcc  | RC Sleep mode with CLKS1/2 =<br>CLKP1/2 = CLKRC = 2MHz,<br>SMCR:LPMSS = 0<br>(CLKMC, CLKPLL and CLKSC<br>stopped) | -     | 0.5                                                      | -    | mA      | T <sub>A</sub> = +25°C  |    |                        |
| modes <sup>*1</sup>           | ICCSRCH  |      |                                                                                                                   | -     | -                                                        | 3.5  | mA      | T <sub>A</sub> = +105°C |    |                        |
|                               | ICCSRCL  |      |                                                                                                                   |       | RC Sleep mode with CLKS1/2 =<br>CLKP1/2 = CLKRC = 100kHz | -    | 0.06    | -                       | mA | T <sub>A</sub> = +25°C |
|                               |          | -    | (CLKMC, CLKPLL and CLKSC stopped)                                                                                 | -     | -                                                        | 2.7  | mA      | T <sub>A</sub> = +105°C |    |                        |
|                               | Іссѕѕив  |      | Sub Sleep mode with<br>CLKS1/2 = CLKP1/2 = 32kHz,                                                                 |       | 0.04                                                     | -    | mA      | T <sub>A</sub> = +25°C  |    |                        |
|                               |          |      | (CLKMC, CLKPLL and CLKRC stopped)                                                                                 | -     | -                                                        | 2.5  | mA      | T <sub>A</sub> = +105°C |    |                        |

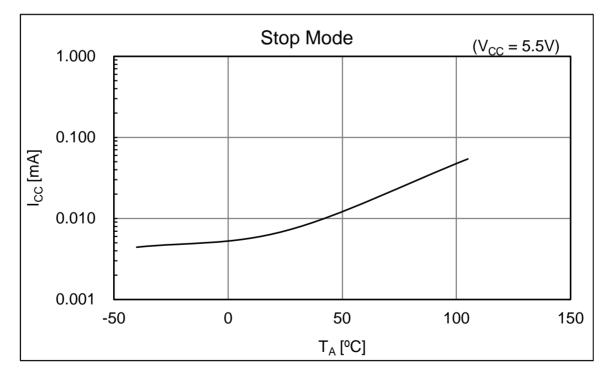




| Parameter                     | Symbol              | Pin  | Conditions                                              |     | Value | 9    | Unit | Remarks                 |    |                        |
|-------------------------------|---------------------|------|---------------------------------------------------------|-----|-------|------|------|-------------------------|----|------------------------|
| Falameter                     | Symbol              | Name | Conditions                                              | Min | Тур   | Max  | Unit | Relliarks               |    |                        |
|                               | lootpu              |      | PLL Timer mode with CLKPLL =                            |     |       |      | 1800 | 2245                    | μΑ | T <sub>A</sub> = +25°C |
|                               |                     |      | 32MHz (CLKRC and CLKSC stopped)                         | -   | -     | 3140 | μΑ   | T <sub>A</sub> = +105°C |    |                        |
|                               |                     |      | Main Timer mode with<br>CLKMC = 4MHz,<br>SMCR:LPMSS = 0 | -   | 285   | 325  | μA   | T <sub>A</sub> = +25°C  |    |                        |
|                               | ICCIMAIN            |      | (CLKPLL, CLKRC and CLKSC stopped)                       | -   | -     | 1055 | μA   | T <sub>A</sub> = +105°C |    |                        |
| Power supply current in Timer | Ісствен             | Vcc  | RC Timer mode with<br>CLKRC = 2MHz,<br>SMCR:LPMSS = 0   | -   | 160   | 210  | μA   | T <sub>A</sub> = +25°C  |    |                        |
| modes <sup>*2</sup>           |                     | V CC | (CLKPLL, CLKMC and CLKSC stopped)                       | -   | -     | 970  | μΑ   | T <sub>A</sub> = +105°C |    |                        |
|                               |                     |      | RC Timer mode with<br>CLKRC = 100kHz                    | -   | 30    | 70   | μΑ   | T <sub>A</sub> = +25°C  |    |                        |
|                               |                     | _    | (CLKPLL, CLKMC and CLKSC stopped)                       | -   | -     | 820  | μΑ   | T <sub>A</sub> = +105°C |    |                        |
|                               | I <sub>CCTSUB</sub> |      | Sub Timer mode with<br>CLKSC = 32kHz                    | -   | 25    | 55   | μΑ   | T <sub>A</sub> = +25°C  |    |                        |
|                               | ICCISUB             |      | (CLKMC, CLKPLL and CLKRC stopped)                       | -   | -     | 800  | μΑ   | T <sub>A</sub> = +105°C |    |                        |



### 14.4.2 Sub Clock Input Characteristics


|                            |                   | $(V_{CC} =$     | $AV_{CC} = DV_{CC} = 2$ | 2.7V to 5.5 | 5V, $V_{SS} = AV$ | $V_{\rm SS} = {\rm D}{\rm V}_{\rm S}$ | s = 0V, T | $T_{\rm A} = -40^{\circ}{\rm C} \text{ to} + 105^{\circ}{\rm C}$ |
|----------------------------|-------------------|-----------------|-------------------------|-------------|-------------------|---------------------------------------|-----------|------------------------------------------------------------------|
| Parameter                  | Symbol            | Pin             | Conditions              |             | Value             |                                       | Unit      | Remarks                                                          |
| Farameter                  | Symbol            | Name            | Conditions              | Min         | Тур               | Max                                   | Onit      | Relliarks                                                        |
|                            |                   |                 | -                       | -           | 32.768            | -                                     | kHz       | When using an<br>oscillation circuit                             |
| Input frequency            | fc∟               | fc∟ X0A,<br>X1A | -                       | -           | -                 | 100                                   | kHz       | When using an<br>opposite phase<br>external clock                |
|                            |                   | X0A             | -                       | -           | -                 | 50                                    | kHz       | When using a single phase external clock                         |
| Input clock cycle          | t <sub>CYLL</sub> | -               | -                       | 10          | -                 | -                                     | μs        |                                                                  |
| Input clock pulse<br>width | -                 | -               | Рwн/tcyll,<br>Рwi/tcyll | 30          | -                 | 70                                    | %         |                                                                  |





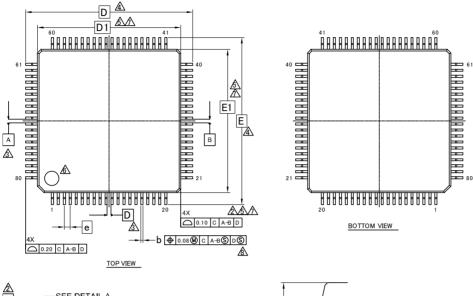


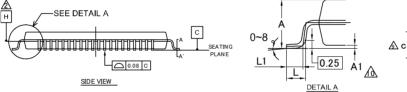

### ■CY96F685








### ■Used setting


| Mode       | Selected Source<br>Clock | Clock/Regulator and FLASH Settings                                                                                                            |
|------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| Run mode   | PLL                      | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32MHz                                                                                                  |
|            | Main osc.                | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 4MHz                                                                                                   |
|            | RC clock fast            | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 2MHz                                                                                                   |
|            | RC clock slow            | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 100kHz                                                                                                 |
|            | Sub osc.                 | CLKS1 = CLKS2 = CLKB = CLKP1 = CLKP2 = 32kHz                                                                                                  |
| Sleep mode | PLL                      | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32MHz<br>Regulator in High Power Mode,<br>(CLKB is stopped in this mode)                                      |
|            | Main osc.                | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 4MHz<br>Regulator in High Power Mode,<br>(CLKB is stopped in this mode)                                       |
|            | RC clock fast            | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 2MHz<br>Regulator in High Power Mode,<br>(CLKB is stopped in this mode)                                       |
|            | RC clock slow            | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 100kHz<br>Regulator in Low Power Mode,<br>(CLKB is stopped in this mode)                                      |
|            | Sub osc.                 | CLKS1 = CLKS2 = CLKP1 = CLKP2 = 32kHz<br>Regulator in Low Power Mode,<br>(CLKB is stopped in this mode)                                       |
| Timer mode | PLL                      | CLKMC = 4MHz, CLKPLL = 32MHz<br>(System clocks are stopped in this mode)<br>Regulator in High Power Mode,<br>FLASH in Power-down / reset mode |
|            | Main osc.                | CLKMC = 4MHz<br>(System clocks are stopped in this mode)<br>Regulator in High Power Mode,<br>FLASH in Power-down / reset mode                 |
|            | RC clock fast            | CLKMC = 2MHz<br>(System clocks are stopped in this mode)<br>Regulator in High Power Mode,<br>FLASH in Power-down / reset mode                 |
|            | RC clock slow            | CLKMC = 100kHz<br>(System clocks are stopped in this mode)<br>Regulator in Low Power Mode,<br>FLASH in Power-down / reset mode                |
|            | Sub osc.                 | CLKMC = 32 kHz<br>(System clocks are stopped in this mode)<br>Regulator in Low Power Mode,<br>FLASH in Power-down / reset mode                |
| Stop mode  | stopped                  | (All clocks are stopped in this mode)<br>Regulator in Low Power Mode,<br>FLASH in Power-down / reset mode                                     |





### **17. Package Dimension**





| SYMBOL  | DIMENSIONS |           |      |  |  |
|---------|------------|-----------|------|--|--|
| OTMIDOL | MIN.       | MIN. NOM. |      |  |  |
| А       | —          | —         | 1.70 |  |  |
| A1      | 0.05       | —         | 0.15 |  |  |
| b       | 0.15       |           | 0.27 |  |  |
| с       | 0.09       | —         | 0.20 |  |  |
| D       | 14         | 1.00 BSC  | ).   |  |  |
| D1      | 12         | 2.00 BSC  | ).   |  |  |
| е       | 0          | .50 BSC   | ;    |  |  |
| Е       | 14         | 1.00 BSC  | ).   |  |  |
| E1      | 12.00 BSC. |           |      |  |  |
| L       | 0.45       | 0.60      | 0.75 |  |  |
| L1      | 0.30       | 0.50      | 0.70 |  |  |

#### NOTES

1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm)

- A DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- A DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.

- A DATOMS AD AND D TO BE DETERMINED AT DATOM PLANE N. A TO BE DETERMINED AT SEATING PLANE C. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM D1 AND L AT DATUM PLANE H.
- DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- DIMENSION & DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED & MAXIMUM BY MORE THAN 0.08mm, DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- A THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-11501 \*\*

h

SECTION A-A

PACKAGE OUTLINE, 80 LEAD LQFP 12.0X12.0X1.7 MM LQH080 Rev \*\*



# 18. Major Changes

## Spansion Publication Number: MB96680\_DS704-00002

| Page            | Section                                                                   | Change Results                                                                                                                                                                                                                                                                                                                                                             |  |  |
|-----------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Revision 2.0    |                                                                           |                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 40              | Electrical Characteristics<br>3. DC Characteristics<br>(1) Current Rating | Changed the Value of "Power supply current in Timer modes"<br>$I_{CCTPLL}$<br>Typ: 1880µA $\rightarrow$ 1800µA (T <sub>A</sub> = +25°C)                                                                                                                                                                                                                                    |  |  |
| Revision 2      | 2.1                                                                       |                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| -               | -                                                                         | Company name and layout design change                                                                                                                                                                                                                                                                                                                                      |  |  |
| Rev.*B          |                                                                           |                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| -               | Marketing Part Numbers changed from an MB prefix to a CY prefix.          |                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 6, 8, 64,<br>65 | <ol> <li>Product Lineup</li> <li>Pin Assignment</li> </ol>                | Package description modified to JEDEC description.<br>FPT-80P-M21 $\rightarrow$ LQH080                                                                                                                                                                                                                                                                                     |  |  |
|                 | 16. Ordering Information<br>17. Package Dimension                         |                                                                                                                                                                                                                                                                                                                                                                            |  |  |
| 64              | 16. Ordering Information                                                  | Revised Marketing Part Numbers as follows:<br>Before)<br>MCU with CAN controller<br>MB96F683RBPMC-GSE1<br>MB96F683RBPMC-GSE2<br>MB96F685RBPMC-GSE2<br>MCU without CAN controller<br>MB96F683ABPMC-GSE2<br>MB96F685ABPMC-GSE2<br>After)<br>MCU with CAN controller<br>MB96F683RBPMC-GS-UJE1<br>MB96F685RBPMC-GS-UJE1<br>MCU without CAN controller<br>MB96F683ABPMC-GS-UJE1 |  |  |



## **Document History**

## Document Title: CY96680 Series F<sup>2</sup>MC-16FX 16-Bit Microcontroller

Document Number: 002-04705

| Revision | ECN     | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                         |
|----------|---------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **       | -       | TORS               | 01/31/2014         | Migrated to Cypress and assigned document number 002-04705<br>No change to document contents or format.                                                                                                                                       |
| *A       | 5147098 | TORS               | 08/22/2016         | Updated to Cypress format.                                                                                                                                                                                                                    |
| *В       | 6003420 | МІҮН               | 12/25/2017         | Revised the following items:<br>Marketing Part Numbers changed from an MB prefix to a CY prefix.<br>1. Product Lineup<br>3. Pin Assignment<br>16. Ordering Information<br>17. Package Dimension<br>For details, please see 18. Major Changes. |