

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Obsolete
Core Processor	F ² MC-16FX
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, I ² C, LINbus, SCI, UART/USART
Peripherals	DMA, LCD, LVD, POR, PWM, WDT
Number of I/O	65
Program Memory Size	160KB (160K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 14x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	80-LQFP
Supplier Device Package	80-LQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/mb96f685rbpmc-gse2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

■A/D converter

□ SAR-type

- □ 8/10-bit resolution
- □ Signals interrupt on conversion end, single conversion mode, continuous conversion mode, stop conversion mode, activation by software, external trigger, reload timers and PPGs
- □ Range Comparator Function
- □ Scan Disable Function
- □ ADC Pulse Detection Function

■Source Clock Timers

Three independent clock timers (23-bit RC clock timer, 23-bit Main clock timer, 17-bit Sub clock timer)

■Hardware Watchdog Timer

- □ Hardware watchdog timer is active after reset
- □ Window function of Watchdog Timer is used to select the lower window limit of the watchdog interval

■Reload Timers

- □ 16-bit wide
- □ Prescaler with 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶ of peripheral clock frequency
- □ Event count function

■Free-Running Timers

- □ Signals an interrupt on overflow
- □ Prescaler with 1, 1/2¹, 1/2², 1/2³, 1/2⁴, 1/2⁵, 1/2⁶, 1/2⁷, 1/2⁸ of peripheral clock frequency
- ■Input Capture Units
 - □ 16-bit wide
 - □ Signals an interrupt upon external event
 - □ Rising edge, Falling edge or Both (rising & falling) edges sensitive

■Programmable Pulse Generator

- □ 16-bit down counter, cycle and duty setting registers
- □ Can be used as 2 × 8-bit PPG
- □ Interrupt at trigger, counter borrow and/or duty match
- □ PWM operation and one-shot operation
- □ Internal prescaler allows 1, 1/4, 1/16, 1/64 of peripheral clock as counter clock or of selected Reload timer underflow as clock input
- □ Can be triggered by software or reload timer
- □ Can trigger ADC conversion
- □ Timing point capture

Stepping Motor Controller

- □ Stepping Motor Controller with integrated high current output drivers
- □ Four high current outputs for each channel
- □ Two synchronized 8/10-bit PWMs per channel
- Internal prescaling for PWM clock: 1, 1/4, 1/5, 1/6, 1/8, 1/10, 1/12, 1/16 of peripheral clock
- Dedicated power supply for high current output drivers

- ■LCD Controller
- □ LCD controller with up to 4COM × 32SEG
- □ Internal or external voltage generation
- \square Duty cycle: Selectable from options: 1/2, 1/3 and 1/4
- □ Fixed 1/3 bias
- □ Programmable frame period
- □ Clock source selectable from four options (main clock, peripheral clock, subclock or RC oscillator clock)
- Internal divider resistors or external divider resistors
- □ On-chip data memory for display
- LCD display can be operated in Timer Mode
- □ Blank display: selectable
- □ All SEG, COM and V pins can be switched between general and specialized purposes
- Sound Generator
- □ 8-bit PWM signal is mixed with tone frequency from 16-bit reload counter
- □ PWM clock by internal prescaler: 1, 1/2, 1/4, 1/8 of peripheral clock

Real Time Clock

- Operational on main oscillation (4MHz), sub oscillation (32kHz) or RC oscillation (100kHz/2MHz)
- Capable to correct oscillation deviation of Sub clock or RC oscillator clock (clock calibration)
- Read/write accessible second/minute/hour registers
- Can signal interrupt every half second/second/minute/hour/day
- Internal clock divider and prescaler provide exact 1s clock

External Interrupts

- □ Edge or Level sensitive
- □ Interrupt mask bit per channel
- Each available CAN channel RX has an external interrupt for wake-up
- □ Selected USART channels SIN have an external interrupt for wake-up
- Non Maskable Interrupt
 - □ Disabled after reset, can be enabled by Boot-ROM depending on ROM configuration block
 - $\hfill\square$ Once enabled, cannot be disabled other than by reset
 - □ High or Low level sensitive
 - □ Pin shared with external interrupt 0

■I/O Ports

- \square Most of the external pins can be used as general purpose I/O
- \square All push-pull outputs (except when used as I^2C SDA/SCL line)
- □ Bit-wise programmable as input/output or peripheral signal
- □ Bit-wise programmable input enable
- One input level per GPIO-pin (either Automotive or CMOS hysteresis)
- □ Bit-wise programmable pull-up resistor

4. Pin Description

Pin Name	Feature	Description
ADTG	ADC	A/D converter trigger input pin
ANn	ADC	A/D converter channel n input pin
AVcc	Supply	Analog circuits power supply pin
AVRH	ADC	A/D converter high reference voltage input pin
AVss	Supply	Analog circuits power supply pin
С	Voltage regulator	Internally regulated power supply stabilization capacitor pin
CKOTn	Clock Output function	Clock Output function n output pin
CKOTn_R	Clock Output function	Relocated Clock Output function n output pin
CKOTXn	Clock Output function	Clock Output function n inverted output pin
COMn	LCD	LCD Common driver pin
DEBUG I/F	OCD	On Chip Debugger input/output pin
DVcc	Supply	SMC pins power supply
DVss	Supply	SMC pins power supply
FRCKn	Free-Running Timer	Free-Running Timer n input pin
FRCKn_R	Free-Running Timer	Relocated Free-Running Timer n input pin
INn	ICU	Input Capture Unit n input pin
INn_R	ICU	Relocated Input Capture Unit n input pin
INTn	External Interrupt	External Interrupt n input pin
INTn_R	External Interrupt	Relocated External Interrupt n input pin
MD	Core	Input pin for specifying the operating mode
NMI	External Interrupt	Non-Maskable Interrupt input pin
Pnn_m	GPIO	General purpose I/O pin
PPGn	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_R	PPG	Relocated Programmable Pulse Generator n output pin (16bit/8bit)
PPGn_B	PPG	Programmable Pulse Generator n output pin (16bit/8bit)
PWMn	SMC	SMC PWM high current output pin
RSTX	Core	Reset input pin
RXn	CAN	CAN interface n RX input pin
SCKn	USART	USART n serial clock input/output pin
SCLn	I ² C	I ² C interface n clock I/O input/output pin
SDAn	I ² C	I ² C interface n serial data I/O input/output pin
SEGn	LCD	LCD Segment driver pin
SGAn	Sound Generator	Sound Generator amplitude output pin
SGOn	Sound Generator	Sound Generator sound/tone output pin
SINn	USART	USART n serial data input pin
SOTn	USART	USART n serial data output pin
TINn	Reload Timer	Reload Timer n event input pin
TINn_R	Reload Timer	Relocated Reload Timer n event input pin
TOTn	Reload Timer	Reload Timer n output pin
TOTn_R	Reload Timer	Relocated Reload Timer n output pin

8. RAMSTART Addresses

Devices	Bank 0 RAM Size	RAMSTART0		
CY96F683 CY96F685	4KB	00:7200н		

9. User ROM Memory Map For Flash Devices

*: Physical address area of SAS-512B is from DF:0000_H to DF:01FF_H. Others (from DF:0200_H to DF:1FFF_H) is mirror area of SAS-512B. Sector SAS contains the ROM configuration block RCBA at CPU address DF: 0000_H -DF:01FF_H. SAS cannot be used for E²PROM emulation.

10. Serial Programming Communication Interface

USART pins for Flash serial programming (MD = 0, DEBUG I/F = 0, Serial Communication mode)

CY96680									
Pin Number	USART Number	Normal Function							
37		SIN0							
38	USART0	SOT0							
39		SCK0							
3		SIN1							
4	USART1	SOT1							
5		SCK1							

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
40	35Сн	PPG2	Yes	40	Programmable Pulse Generator 2
41	358н	PPG3	Yes	41	Programmable Pulse Generator 3
42	354 _Н	-	-	42	Reserved
43	350н	-	-	43	Reserved
44	34Сн	-	-	44	Reserved
45	348н	-	-	45	Reserved
46	344 _H	-	-	46	Reserved
47	340 _Н	-	-	47	Reserved
48	33Сн	-	-	48	Reserved
49	338н	-	-	49	Reserved
50	334н	-	-	50	Reserved
51	330 _Н	-	-	51	Reserved
52	32C _H	-	-	52	Reserved
53	328н	-	-	53	Reserved
54	324н	-	-	54	Reserved
55	320н	-	-	55	Reserved
56	31C _H	-	-	56	Reserved
57	318н	-	-	57	Reserved
58	314 _Н	-	-	58	Reserved
59	310н	RLT1	Yes	59	Reload Timer 1
60	30Cн	RLT2	Yes	60	Reload Timer 2
61	308 _Н	-	-	61	Reserved
62	304н	-	-	62	Reserved
63	300н	-	-	63	Reserved
64	2FCн	RLT6	Yes	64	Reload Timer 6
65	2F8 _H	ICU0	Yes	65	Input Capture Unit 0
66	2F4 _H	ICU1	Yes	66	Input Capture Unit 1
67	2F0н	-	-	67	Reserved
68	2ECн	-	-	68	Reserved
69	2E8 _H	ICU4	Yes	69	Input Capture Unit 4
70	2E4 _H	ICU5	Yes	70	Input Capture Unit 5
71	2E0н	-	-	71	Reserved
72	2DCн	-	-	72	Reserved
73	2D8н	-	-	73	Reserved
74	2D4 _H	-	-	74	Reserved
75	2D0 _H	-	-	75	Reserved
76	2CCн	-	-	76	Reserved
77	2С8н	-	-	77	Reserved
78	2С4н	-	-	78	Reserved
79	2C0 _Н	-	-	79	Reserved
80	2BCн	-	-	80	Reserved

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
81	2В8н	-	-	81	Reserved
82	2B4 _H	-	-	82	Reserved
83	2B0 _H	-	-	83	Reserved
84	2ACн	-	-	84	Reserved
85	2А8н	-	-	85	Reserved
86	2A4 _H	-	-	86	Reserved
87	2А0н	-	-	87	Reserved
88	29C _H	-	-	88	Reserved
89	298н	FRT0	Yes	89	Free-Running Timer 0
90	294н	FRT1	Yes	90	Free-Running Timer 1
91	290н	-	-	91	Reserved
92	28C _H	-	-	92	Reserved
93	288 _Н	RTC0	No	93	Real Time Clock
94	284н	CAL0	No	94	Clock Calibration Unit
95	280н	SG0	No	95	Sound Generator 0
96	27Сн	IIC0	Yes	96	I ² C interface 0
97	278 _Н	-	-	97	Reserved
98	274 _H	ADC0	Yes	98	A/D Converter 0
99	270н	-	-	99	Reserved
100	26Сн	-	-	100	Reserved
101	268н	LINR0	Yes	101	LIN USART 0 RX
102	264 _H	LINT0	Yes	102	LIN USART 0 TX
103	260н	LINR1	Yes	103	LIN USART 1 RX
104	25Сн	LINT1	Yes	104	LIN USART 1 TX
105	258н	-	-	105	Reserved
106	254 _H	-	-	106	Reserved
107	250 _Н	-	-	107	Reserved
108	24C _H	-	-	108	Reserved
109	248н	-	-	109	Reserved
110	244 _H	-	-	110	Reserved
111	240 _H	-	-	111	Reserved
112	23Сн	-	-	112	Reserved
113	238н	-	-	113	Reserved
114	234н	-	-	114	Reserved
115	230н	-	-	115	Reserved
116	22C _H	-	-	116	Reserved
117	228н	-	-	117	Reserved
118	224н	-	-	118	Reserved
119	220н	-	-	119	Reserved
120	21C _H	-	-	120	Reserved

Vector Number	Offset in Vector Table	Vector Name	Cleared by DMA	Index in ICR to Program	Description
121	218н	-	-	121	Reserved
122	214н	-	-	122	Reserved
123	210 _н	-	-	123	Reserved
124	20Сн	-	-	124	Reserved
125	208н	-	-	125	Reserved
126	204н	-	-	126	Reserved
127	200н	-	-	127	Reserved
128	1FC _H	-	-	128	Reserved
129	1F8н	-	-	129	Reserved
130	1F4н	-	-	130	Reserved
131	1F0н	-	-	131	Reserved
132	1EC _H	-	-	132	Reserved
133	1E8 _Н	FLASHA	Yes	133	Flash memory A interrupt
134	1E4н	-	-	134	Reserved
135	1E0н	-	-	135	Reserved
136	1DCн	-	-	136	Reserved
137	1D8 _H	-	-	137	Reserved
138	1D4н	-	-	138	Reserved
139	1D0 _Н	ADCRC0	No	139	A/D Converter 0 - Range Comparator
140	1CC _H	ADCPD0	No	140	A/D Converter 0 - Pulse detection
141	1C8н	-	-	141	Reserved
142	1C4 _Н	-	-	142	Reserved
143	1C0 _н	-	-	143	Reserved

13. Handling Devices

Special Care is Required for the following when Handling the Device:

- Latch-up prevention
- · Unused pins handling
- External clock usage
- Notes on PLL clock mode operation
- Power supply pins (V_{cc}/V_{ss})
- · Crystal oscillator and ceramic resonator circuit
- Turn on sequence of power supply to A/D converter and analog inputs
- · Pin handling when not using the A/D converter
- Notes on Power-on
- · Stabilization of power supply voltage
- SMC power supply pins
- Serial communication
- Mode Pin (MD)

13.1 Latch-Up Prevention

CMOS IC chips may suffer latch-up under the following conditions:

- A voltage higher than Vcc or lower than Vss is applied to an input or output pin.
- A voltage higher than the rated voltage is applied between V_{cc} pins and V_{ss} pins.
- The AV $_{\mbox{CC}}$ power supply is applied before the V $_{\mbox{CC}}$ voltage.

Latch-up may increase the power supply current dramatically, causing thermal damages to the device.

For the same reason, extra care is required to not let the analog power-supply voltage (AV_{CC}, AVRH) exceed the digital power-supply voltage.

13.2 Unused Pins Handling

Unused input pins can be left open when the input is disabled (corresponding bit of Port Input Enable register PIER = 0).

Leaving unused input pins open when the input is enabled may result in misbehavior and possible permanent damage of the device. To prevent latch-up, they must therefore be pulled up or pulled down through resistors which should be more than $2k\Omega$.

Unused bidirectional pins can be set either to the output state and be then left open, or to the input state with either input disabled or external pull-up/pull-down resistor as described above.

13.3 External Clock Usage

The permitted frequency range of an external clock depends on the oscillator type and configuration.

See AC Characteristics for detailed modes and frequency limits. Single and opposite phase external clocks must be connected as follows:

13.3.1 Single Phase External Clock for Main Oscillator

When using a single phase external clock for the Main oscillator, X0 pin must be driven and X1 pin left open. And supply 1.8V power to the external clock.

13.3.2 Single Phase External Clock for Sub Oscillator

When using a single phase external clock for the Sub oscillator, "External clock mode" must be selected and

X0A/P04_0 pin must be driven. X1A/P04_1 pin can be configured as GPIO.

13.3.3 Opposite Phase External Clock

When using an opposite phase external clock, X1 (X1A) pins must be supplied with a clock signal which has the opposite phase to the X0 (X0A) pins. Supply level on X0 and X1 pins must be 1.8V.

13.4 Notes on PLL Clock Mode Operation

If the microcontroller is operated with PLL clock mode and no external oscillator is operating or no external clock is supplied, the microcontroller attempts to work with the free oscillating PLL. Performance of this operation, however, cannot be guaranteed.

13.5 Power Supply Pins (V_{cc}/V_{ss})

It is required that all V_{CC} -level as well as all V_{SS} -level power supply pins are at the same potential. If there is more than one V_{CC} or V_{SS} level, the device may operate incorrectly or be damaged even within the guaranteed operating range.

V_{cc} and V_{ss} pins must be connected to the device from the power supply with lowest possible impedance.

The smoothing capacitor at V_{cc} pin must use the one of a capacity value that is larger than Cs.

Besides this, as a measure against power supply noise, it is required to connect a bypass capacitor of about 0.1μ F between V_{cc} and V_{ss} pins as close as possible to V_{cc} and V_{ss} pins.

13.6 Crystal Oscillator and ceramic resonator Circuit

Noise at X0, X1 pins or X0A, X1A pins might cause abnormal operation. It is required to provide bypass capacitors with shortest possible distance to X0, X1 pins and X0A, X1A pins, crystal oscillator (or ceramic resonator) and ground lines, and, to the utmost effort, that the lines of oscillation circuit do not cross the lines of other circuits.

It is highly recommended to provide a printed circuit board art work surrounding X0, X1 pins and X0A, X1A pins with a ground area for stabilizing the operation.

It is highly recommended to evaluate the quartz/MCU or resonator/MCU system at the quartz or resonator manufacturer, especially when using low-Q resonators at higher frequencies.

13.7 Turn on Sequence of Power Supply to A/D Converter and Analog Inputs

It is required to turn the A/D converter power supply (AV_{CC}, AVRH) and analog inputs (ANn) on after turning the digital power supply (V_{CC}) on.

It is also required to turn the digital power off after turning the A/D converter supply and analog inputs off. In this case, AVRH must not exceed AV_{CC} . Input voltage for ports shared with analog input ports also must not exceed AV_{CC} (turning the analog and digital power supplies simultaneously on or off is acceptable).

- *1: This parameter is based on $V_{SS} = AV_{SS} = DV_{SS} = 0V$.
- *2: AV_{CC} and V_{CC} and D_{VCC} must be set to the same voltage. It is required that AVCC does not exceed V_{CC}, DV_{CC} and that the voltage at the analog inputs does not exceed AV_{CC} when the power is switched on.
- *3: VI and Vo should not exceed Vcc + 0.3V. VI should also not exceed the specified ratings. However if the maximum current to/from an input is limited by some means with external components, the ICLAMP rating supersedes the VI rating. Input/Output voltages of high current ports depend on DVcc. Input/Output voltages of standard ports depend on Vcc.

*4:

- Applicable to all general purpose I/O pins (Pnn_m).
- Use within recommended operating conditions.
- · Use at DC voltage (current).
- The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the +B signal is applied the input current to microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the V_{CC} pin, and this may affect other devices.
- Note that if a +B signal is input when the microcontroller power supply is off (not fixed at 0V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the +B input is applied during power-on, the power supply is provided from the pins and the resulting supply
 voltage may not be sufficient to operate the Power reset.
- The DEBUG I/F pin has only a protective diode against VSS. Hence it is only permitted to input a negative clamping current (4mA). For protection against positive input voltages, use an external clamping diode which limits the input voltage to maximum 6.0V.
- Sample recommended circuits:

*5: The maximum permitted power dissipation depends on the ambient temperature, the air flow velocity and the thermal conductance of the package on the PCB.

The actual power dissipation depends on the customer application and can be calculated as follows:

$$PD = P_{IO} + P_{IN}$$

PIO = Σ (V_{OL} × I_{OL} + V_{OH} × I_{OH}) (I/O load power dissipation, sum is performed on all I/O ports)

 $P_{INT} = V_{CC} \times (I_{CC} + I_A)$ (internal power dissipation)

 I_{CC} is the total core current consumption into V_{CC} as described in the "DC characteristics" and depends on the selected operation mode and clock frequency and the usage of functions like Flash programming.

 I_{A} is the analog current consumption into $\mathsf{AV}_{\text{CC}}.$

*6: Worst case value for a package mounted on single layer PCB at specified T_A without air flow.

WARNING

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

14.3.2 Pin Characteristics

Doromotor	Symbol Bin Name Conditions			Value		Unit	Domorko	
Farameter	Symbol	Fin Name	Conditions	Min	Тур	Max	Unit	Remarks
	Mar	Port	-	V _{CC} × 0.7	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	VIH	Pnn_m	-	Vcc × 0.8	-	V _{CC} + 0.3	V	AUTOMOTIVE Hysteresis input
	VIHX0S	X0	External clock in "Fast Clock Input mode"	VD × 0.8	-	VD	V	VD=1.8V±0.15V
"H" level input voltage	VIHXOAS	X0A	External clock in "Oscillation mode"	Vcc × 0.8	-	V _{CC} + 0.3	V	
	Vihr	RSTX	-	Vcc × 0.8	-	V _{CC} + 0.3	V	CMOS Hysteresis input
	VIHM	MD	-	V _{CC} - 0.3	-	Vcc + 0.3	V	CMOS Hysteresis input
	VIHD	DEBUG I/F	-	2.0	-	Vcc + 0.3	V	TTL Input
	Port		-	V _{SS} - 0.3	-	V _{CC} × 0.3	V	CMOS Hysteresis input
	VIL	Pnn_m	-	V _{SS} - 0.3	-	V _{CC} × 0.5	V	AUTOMOTIVE Hysteresis input
	VILXOS	X0	External clock in "Fast Clock Input mode"	Vss	-	VD × 0.2	V	VD=1.8V±0.15V
"L" level input voltage	VILXOAS	X0A	External clock in "Oscillation mode"	V _{SS} - 0.3	-	V _{CC} × 0.2	V	
	Vilr	RSTX	-	V _{SS} - 0.3	-	Vcc × 0.2	V	CMOS Hysteresis input
	VILM	MD	-	V _{SS} - 0.3	-	V _{SS} + 0.3	V	CMOS Hysteresis input
	Vild	DEBUG I/F	-	V _{SS} - 0.3	-	0.8	V	TTL Input

$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$)

Paramotor	Symbol	Din Namo	Conditions	Value		Unit	Pomarks	
Farameter	Symbol	Fin Name	Conditions	Min	Тур	Max	Unit	Relliarks
			$4.5V \le (D)V_{CC} \le 5.5V$					
	Marin	1mA turo	I _{ОН} = -4mA	(D)V _{CC}			V	
	V OH4	4mA type	2.7V ≤ (D)V _{CC} < 4.5V	- 0.5	-		v	
			I _{OH} = -1.5mA					
			$4.5V \le DV_{CC} \le 5.5V$					
			lон = -52mA					T 10°C
			2.7V ≤ DV _{CC} < 4.5V					$I_{A} = -40$ C
			I _{OH} = -18mA					
			$4.5V \le DV_{CC} \le 5.5V$					
			Iон = -39mA					T. = ±25°C
"H" loval		High	$2.7V \le DV_{CC} < 4.5V$					$1_{A} = +23 \text{ C}$
	Voue	Drivo	I _{OH} = -16mA	DVcc			V	
voltage	V OH30	type*	$4.5V \le DV_{CC} \le 5.5V$	- 0.5	-	DVCC	v	
vollage		type	loн = -32mA					T +85°C
			2.7V ≤ DV _{CC} < 4.5V					$I_A = +05 \text{ C}$
			loн = -14.5mA					
			$4.5V \le DV_{CC} \le 5.5V$					
			loн = -30mA					T₁ = ±105°C
			$2.7V \le DV_{CC} < 4.5V$					14 = 1100 0
			lон = -14mA					
	Voue	3mA type	$4.5V \le V_{CC} \le 5.5V$			Vec		
			lон = -3mA	Vcc			V	
	V OH3		$2.7V \le V_{CC} < 4.5V$	- 0.5	-	VCC	v	
			loн = -1.5mA					
	Vol4	4mA type	$4.5V \le (D)V_{CC} \le 5.5V$		-			
			$I_{OL} = +4mA$			0.4	V	
			2.7V ≤ (D)V _{CC} < 4.5V				v	
			lo∟ = +1.7mA					
			$4.5V \le DV_{CC} \le 5.5V$					
			I _{OL} = +52mA					T₄ – -40°C
			$2.7V \le DV_{CC} < 4.5V$					14 - 40 0
			$I_{OL} = +22mA$					
			$4.5V \le DV_{CC} \le 5.5V$					
			I _{OL} = +39mA					T₄ = +25°C
"I " Joy ol		High	$2.7V \le DV_{CC} < 4.5V$					14 - 120 0
	Vol 30	Drive	I _{OL} = +18mA	_	-	0.5	V	
voltago	V OLSO	type*	$4.5V \le DV_{CC} \le 5.5V$			0.0	, v	
vollage		.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	I _{OL} = +32mA					T₄ = +85°C
			$2.7V \le DV_{CC} < 4.5V$					14 - 100 0
			I _{OL} = +14mA					
			$4.5V \le DV_{CC} \le 5.5V$					
			I _{OL} = +30mA					T _≜ = +105°C
			$2.7V \le DV_{CC} < 4.5V$					14 - 1100 0
			lo∟ = +13.5mA					
	Vol 3	3mA type	$2.7V \leq V_{CC} < 5.5V$	-	-	0.4	V	
	• 013	5	Io∟ = +3mA				ļ	
	Voir	DEBUG	$V_{CC} = 2.7V$	0		0.25	V	
	VOLD	I/F	I _{OL} = +25mA			0.20	ľ.	

14.4.2 Sub Clock Input Characteristics

$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V \text{ to } 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +105^{\circ}C)$									
Parameter	Symbol	Pin Name	Conditions		Value		l loit	Remarks	
Parameter	Symbol			Min	Тур	Max	Unit		
Input frequency	fcL	X0A, X1A	-	-	32.768	-	kHz	When using an oscillation circuit	
			-	-	-	100	kHz	When using an opposite phase external clock	
		X0A	-	-	-	50	kHz	When using a single phase external clock	
Input clock cycle	t _{CYLL}	-	-	10	-	-	μs		
Input clock pulse width	-	-	Рwн/tcyll, Pwl/tcyll	30	-	70	%		

14.4.5 Operating Conditions of PLL

Parameter	Symbol	Value			Unit	Pomarka	
Farameter	Symbol	Min	Тур	Max	Onit	i ciliai ka	
PLL oscillation stabilization wait time	t _{LOCK}	1	-	4	ms	For CLKMC = 4MHz	
PLL input clock frequency	fplli	4	-	8	MHz		
PLL oscillation clock frequency	fclkvco	56	-	108	MHz	Permitted VCO output frequency of PLL (CLKVCO)	
PLL phase jitter	t _{PSKEW}	-5	-	+5	ns	For CLKMC (PLL input clock) ≥ 4MHz	

(V_{CC} = AV_{CC} = DV_{CC} = 2.7V to 5.5V, V_{SS} = AV_{SS} = DV_{SS} = 0V, T_A = - 40°C to + 105°C)

14.4.6 Reset Input

(Vcc = AVcc = DVcc = 2.7V to 5.5V, Vss = AVss = DVss = 0V, $T_A = -40^{\circ}C$ to + 105°C)

Parameter	Symbol	Pin Name	Va	Unit		
i didiliotor	Cymbol		Min	Max	Onic	
Reset input time	t=	RSTX	10	-	μS	
Rejection of reset input time	IRSIL		1	-	μS	

14.4.8 USART Timing

Parameter	Symbol	Pin Name	Conditions	$4.5V \le V_{CC} < 5.5V$		$2.7V \le V_{CC} < 4.5V$		l lmit
Farameter				Min	Max	Min	Max	Unit
Serial clock cycle time	tscyc	SCKn		4tclkp1	-	4t _{CLKP1}	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVI}	SCKn, SOTn	Internal shift clock mode	- 20	+ 20	- 30	+ 30	ns
$SOT \to SCK \uparrow delay \ time$	tovsнi	SCKn, SOTn		N×t _{CLKP1} - 20 [*]	-	N×tclkp1 - 30 [*]	-	ns
$SIN \to SCK \uparrow setup time$	tı∨sнı	SCKn, SINn		t _{CLKP1} + 45	-	t _{CLKP1} + 55	-	ns
$SCK \uparrow \to SIN \text{ hold time}$	tsнıxı	SCKn, SINn		0	-	0	-	ns
Serial clock "L" pulse width	t _{SLSH}	SCKn	External shift clock mode	t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
Serial clock "H" pulse width	ts∺s∟	SCKn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
$SCK \downarrow \to SOT \text{ delay time}$	t _{SLOVE}	SCKn, SOTn		-	2t _{CLKP1} + 45	-	2t _{CLKP1} + 55	ns
$SIN \to SCK \uparrow setup time$	tivshe	SCKn, SINn		t _{CLKP1} /2 + 10	-	t _{CLKP1} /2 + 10	-	ns
SCK $\uparrow \rightarrow$ SIN hold time	tSHIXE	SCKn, SINn		t _{CLKP1} + 10	-	t _{CLKP1} + 10	-	ns
SCK fall time	t _F	SCKn		-	20	-	20	ns
SCK rise time	t _R	SCKn		-	20	-	20	ns

$(V_{CC} = AV_{CC} = DV_{CC} = 2.7V$ to 5.5V, $V_{SS} = AV_{SS} = DV_{SS} = 0V$, $T_A = -40^{\circ}C$ to $+105^{\circ}C$, $C_L=50pF$)

Notes:

- · AC characteristic in CLK synchronized mode.
- C_L is the load capacity value of pins when testing.
- Depending on the used machine clock frequency, the maximum possible baud rate can be limited by some parameters. These parameters are shown in "CY96600 series HARDWARE MANUAL".
- tCLKP1 indicates the peripheral clock 1 (CLKP1), Unit: ns
- These characteristics only guarantee the same relocate port number. For example, the combination of SCKn and SOTn_R is not guaranteed.

*: Parameter N depends on t_{SCYC} and can be calculated as follows:

- If $t_{SCYC} = 2 \times k \times t_{CLKP1}$, then N = k, where k is an integer > 2
- If $t_{SCYC} = (2 \times k + 1) \times t_{CLKP1}$, then N = k + 1, where k is an integer > 1

14.5.2 Accuracy and Setting of the A/D Converter Sampling Time

If the external impedance is too high or the sampling time too short, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting the A/D conversion precision.

To satisfy the A/D conversion precision, a sufficient sampling time must be selected. The required sampling time (T_{samp}) depends on the external driving impedance R_{ext} , the board capacitance of the A/D converter input pin C_{ext} and the AV_{CC} voltage level. The following replacement model can be used for the calculation:

Rext: External driving impedance

Cext: Capacitance of PCB at A/D converter input

CVIN: Analog input capacity (I/O, analog switch and ADC are contained)

RVIN: Analog input impedance (I/O, analog switch and ADC are contained)

The following approximation formula for the replacement model above can be used:

 $T_{samp} = 7.62 \times (R_{ext} \times C_{ext} + (R_{ext} + R_{VIN}) \times C_{VIN})$

- Do not select a sampling time below the absolute minimum permitted value. $(0.5\mu s \text{ for } 4.5V \le AV_{CC} \le 5.5V, 1.2\mu s \text{ for } 2.7V \le AV_{CC} < 4.5V)$
- If the sampling time cannot be sufficient, connect a capacitor of about 0.1µF to the analog input pin.
- A big external driving impedance also adversely affects the A/D conversion precision due to the pin input leakage current IIL (static current before the sampling switch) or the analog input leakage current IAIN (total leakage current of pin input and comparator during sampling). The effect of the pin input leakage current IIL cannot be compensated by an external capacitor.
- The accuracy gets worse as |AVRH AV_{SS}| becomes smaller.

■CY96F685

Document History

Document Title: CY96680 Series F²MC-16FX 16-Bit Microcontroller

Document Number: 002-04705

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	TORS	01/31/2014	Migrated to Cypress and assigned document number 002-04705 No change to document contents or format.
*A	5147098	TORS	08/22/2016	Updated to Cypress format.
*В	6003420	МІҮН	12/25/2017	Revised the following items: Marketing Part Numbers changed from an MB prefix to a CY prefix. 1. Product Lineup 3. Pin Assignment 16. Ordering Information 17. Package Dimension For details, please see 18. Major Changes.