

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	50MHz
Connectivity	SMBus (2-Wire/I ² C), SPI, UART/USART
Peripherals	POR, PWM, Temp Sensor, WDT
Number of I/O	21
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	512 x 8
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 20x10b; D/A 2x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	24-WFQFN Exposed Pad
Supplier Device Package	24-QFN (4x4)
Purchase URL	https://www.e-xfl.com/product-detail/silicon-labs/c8051f370-a-gmr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 22.6. Selective Address Read (Single Pute)	115
Figure 22.0. Selective Address Read (Multiple Byte)	140
Figure 22.7. Selective Address Read (Multiple Bytes)	. 140
Figure 23.1. CRC0 Block Diagram	. 147
Figure 23.2. Bit Reverse Register	. 149
Figure 24.1. Reset Sources	. 155
Figure 24.2. Power-On and VDD Monitor Reset Timing	. 156
Figure 26.1. Oscillator Options	. 164
Figure 26.2. External Crystal Example	. 170
Figure 27.1. Port I/O Functional Block Diagram	. 173
Figure 27.2. Port I/O Cell Block Diagram	. 174
Figure 27.3. Crossbar Priority Decoder - Possible Pin Assignments	. 178
Figure 27.4. Crossbar Priority Decoder Example	. 179
Figure 28.1. SMBus0 Block Diagram	. 192
Figure 28.2. Typical SMBus Configuration	. 193
Figure 28.3. SMBus Transaction	. 194
Figure 28.4. Typical SMBus SCL Generation	. 196
Figure 28.5. Typical Master Write Sequence	. 211
Figure 28.6. Typical Master Read Sequence	. 212
Figure 28.7. Typical Slave Write Sequence	. 213
Figure 28.8. Typical Slave Read Sequence	. 214
Figure 29.1. UART0 Block Diagram	. 220
Figure 29.2. UART0 Baud Rate Logic	. 221
Figure 29.3. UART Interconnect Diagram	. 222
Figure 29.4. 8-Bit UART Timing Diagram	. 222
Figure 29.5. 9-Bit UART Timing Diagram	. 223
Figure 29.6. UART Multi-Processor Mode Interconnect Diagram	. 224
Figure 30.1. SPI Block Diagram	. 228
Figure 30.2. Multiple-Master Mode Connection Diagram	. 230
Figure 30.3. 3-Wire Single Master and 3-Wire Single Slave Mode Connection Diac	Iram
231	
Figure 30.4. 4-Wire Single Master Mode and 4-Wire Slave Mode Connection Diag	Iram
231	
Figure 30.5. Master Mode Data/Clock Timing	. 233
Figure 30.6. Slave Mode Data/Clock Timing (CKPHA = 0)	. 233
Figure 30.7. Slave Mode Data/Clock Timing (CKPHA = 1)	. 234
Figure 30.8. SPI Master Timing (CKPHA = 0)	. 238
Figure 30.9. SPI Master Timing (CKPHA = 1)	. 239
Figure 30.10. SPI Slave Timing (CKPHA = 0)	. 239
Figure 30.11. SPI Slave Timing (CKPHA = 1)	. 240
Figure 31.1. T0 Mode 0 Block Diagram	. 246
Figure 31.2. T0 Mode 2 Block Diagram	. 247
Figure 31.3. T0 Mode 3 Block Diagram	. 248
Figure 31.4. Timer 2 16-Bit Mode Block Diagram	. 253
Figure 31.5. Timer 2 8-Bit Mode Block Diagram	. 254
Figure 31.6. Timer 2 Low-Frequency Oscillation Capture Mode Block Diagram	. 255

Table 29.2. Timer Settings for Standard Baud Rates	
Using an External 22.1184 MHz Oscillator	227
Table 30.1. SPI Slave Timing Parameters	241
Table 32.1. PCA Timebase Input Options	276
Table 32.2. PCA0CPM and PCA0PWM Bit Settings for PCA	
Capture/Compare Modules	278
Table 32.3. Watchdog Timer Timeout Intervals1	287

7.2. Electrical Characteristics

Table 7.2. Global Electrical Characteristics

-40 to +105 °C (C8051F39x), -40 to +85 °C (C8051F37x), 50 MHz system clock, unless otherwise specified.

Parameter	Test Condition	Min	Тур	Max	Unit
Supply Voltage (V _{DD})	Normal Operation	V _{RST} ¹	3.0	3.6	V
	Writing or Erasing Flash Memory	1.8	3.0	3.6	V
Digital Supply RAM Data Retention Voltage			1.5		V
SYSCLK (System Clock) ²		0		50	MHz
T _{SYSH} (SYSCLK High Time)		9.5			ns
T _{SYSL} (SYSCLK Low Time)		9.5			ns
Specified Operating	C8051F39x	-40	<u> </u>	+105	°C
Temperature Range	C8051F37x	-40	'	+85	°C
Digital Supply Current—CPU	Active (Normal Mode, Fetching Instru	ictions f	rom Fla	sh)	
I _{DD} ^{3, 4}	V _{DD} = 3.6 V, F = 50 MHz	<u> </u>	7.1	7.8	mA
	$V_{DD} = 3.0 V, F = 50 MHz$	-	7.0	7.7	mA
	$V_{DD} = 3.6 V, F = 25 MHz$	-	4.6	5.2	mA
	V _{DD} = 3.0 V, F = 25 MHz	-	4.5	5.1	mA
	V _{DD} = 3.6 V, F = 1 MHz	-	0.35	—	mA
	V _{DD} = 3.0 V, F = 1 MHz	-	0.35	—	mA
	V _{DD} = 3.0 V, F = 80 kHz		0.25		mA

Notes:

1. Given in Table 7.4 on page 36.

2. SYSCLK must be at least 32 kHz to enable debugging.

3. Based on device characterization data; Not production tested.

4. Digital Supply Current depends on the particular code being executed. The values in this table are obtained with the CPU executing an "sjmp \$" loop, which is the compiled form of a while(1) loop in C. One iteration requires 3 CPU clock cycles, and the Flash memory is read on each cycle. The supply current will vary slightly based on the physical location of the sjmp instruction and the number of Flash address lines that toggle as a result. In the worst case, current can increase by up to 30% if the sjmp loop straddles a 64-byte Flash address boundary (e.g., 0x007F to 0x0080). Real-world code with larger loops and longer linear sequences will have few transitions across the 64-byte boundary.

Table 7.2. Global Electrical Characteristics (Continued)

-40 to +105 °C (C8051F39x), -40 to +85 °C (C8051F37x), 50 MHz system clock, unless otherwise specified.

Parameter	Test Condition	Min	Тур	Max	Unit
Digital Supply Current—CPU I	nactive (Idle Mode, Not Fetching Inst	ructions	s from F	lash)	
I _{DD} ³	V _{DD} = 3.6 V, F = 50 MHz	—	3.9	4.5	mA
	V _{DD} = 3.0 V, F = 50 MHz	—	3.8	4.4	mA
	V _{DD} = 3.6 V, F = 25 MHz	—	2.1	2.5	mA
	V _{DD} = 3.0 V, F = 25 MHz	_	2.0	2.4	mA
	V _{DD} = 3.6 V, F = 1 MHz	—	0.15	_	mA
	V _{DD} = 3.0 V, F = 1 MHz	—	0.15	_	mA
	V _{DD} = 3.0 V, F = 80 kHz	—	0.1	—	mA
Digital Supply Current (Suspend Mode)	Oscillator not running, V _{DD} Monitor Disabled, Regulator running (STOPCF = 0)	_	73	—	μA
Digital Supply Current (Stop Mode)	Oscillator not running, V _{DD} Monitor Disabled, Regulator running (STOPCF = 0)		75	—	μA
Digital Supply Current (Stop Mode, Regulator Shutdown)	Oscillator not running, V _{DD} Monitor Disabled, Regulator Shutdown (STOPCF = 1)		0.2	—	μA

Notes:

1. Given in Table 7.4 on page 36.

2. SYSCLK must be at least 32 kHz to enable debugging.

3. Based on device characterization data; Not production tested.

4. Digital Supply Current depends on the particular code being executed. The values in this table are obtained with the CPU executing an "simp \$" loop, which is the compiled form of a while(1) loop in C. One iteration requires 3 CPU clock cycles, and the Flash memory is read on each cycle. The supply current will vary slightly based on the physical location of the simp instruction and the number of Flash address lines that toggle as a result. In the worst case, current can increase by up to 30% if the simp loop straddles a 64-byte Flash address boundary (e.g., 0x007F to 0x0080). Real-world code with larger loops and longer linear sequences will have few transitions across the 64-byte boundary.

SFR Definition 12.1. REF0CN: Reference Control

Bit	7	6	5	4	3	2	1	0
Name	REFBGS			REGOVR	REFSL	TEMPE	BIASE	REFBE
Туре	R/W	R	R	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD1; SFR Page = All Pages

Bit	Name	Function
7	REFBGS	Reference Buffer Gain Select.
		This bit selects between 1x and 2x gain for the on-chip voltage ref- erence buffer. 0: 2x Gain 1: 1x Gain
6:5	Unused	Read = 00b; Write = Don't care.
4	REGOVR	Regulator Reference Override.
		This bit "overrides" the REFSL bit, and allows the internal regulator to be used as a reference source.0: The voltage reference source is selected by the REFSL bit.1: The internal regulator is used as the voltage reference.
3	REFSL	Voltage Reference Select.
		This bit selects the ADCs voltage reference. 0: V _{REF} pin used as voltage reference. 1: V _{DD} used as voltage reference.
2	TEMPE	Temperature Sensor Enable Bit.
		0: Internal Temperature Sensor off. 1: Internal Temperature Sensor on.
1	BIASE	Internal Analog Bias Generator Enable Bit.
		0: Internal Bias Generator off. 1: Internal Bias Generator on.
0	REFBE	 On-chip Reference Buffer Enable Bit. 0: On-chip Reference Buffer off. 1: On-chip Reference Buffer on. Internal voltage reference driven on the V_{REF} pin.

SFR Definition 15.6. PSW: Program Status Word

Bit	7	6	5	4	3	2	1	0
Name	CY	AC	F0	RS[1:0]		OV	F1	PARITY
Туре	R/W	R/W	R/W	R/W		R/W	R/W	R
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xD0; SFR Page = All Pages; Bit-Addressable

Bit	Name	Function
7	CY	Carry Flag. This bit is set when the last arithmetic operation resulted in a carry (addition) or a borrow (subtraction). It is cleared to logic 0 by all other arithmetic operations.
6	AC	Auxiliary Carry Flag.
		This bit is set when the last arithmetic operation resulted in a carry into (addition) or a borrow from (subtraction) the high order nibble. It is cleared to logic 0 by all other arithmetic operations.
5	F0	User Flag 0.
		This is a bit-addressable, general purpose flag for use under soft- ware control.
4:3	RS[1:0]	Register Bank Select.
		These bits select which register bank is used during register accesses. 00: Bank 0, Addresses 0x00-0x07 01: Bank 1, Addresses 0x08-0x0F 10: Bank 2, Addresses 0x10-0x17 11: Bank 3, Addresses 0x18-0x1F
2	OV	Overflow Flag.
		 This bit is set to 1 under the following circumstances: An ADD, ADDC, or SUBB instruction causes a sign-change overflow. A MUL instruction results in an overflow (result is greater than 255). A DIV instruction causes a divide-by-zero condition. The OV bit is cleared to 0 by the ADD, ADDC, SUBB, MUL, and DIV instructions in all other cases.
1	F1	User Flag 1.
		This is a bit-addressable, general purpose flag for use under soft- ware control.
0	PARITY	Parity Flag.
		This bit is set to logic 1 if the sum of the eight bits in the accumula- tor is odd and cleared if the sum is even.

26.2. Programmable Internal High-Frequency (H-F) Oscillator

All C8051F39x/37x devices include a programmable internal high-frequency oscillator that defaults as the system clock after a system reset. The internal oscillator period can be adjusted via the OSCICL register as defined by SFR Definition 26.2.

On C8051F39x/37x devices, OSCICL is factory calibrated to obtain a 49 MHz base frequency.

The system clock may be derived directly from the programmed internal oscillator, or from a divided version, with factors of 2, 4, 8, or 16, as defined by the IFCN bits in register OSCICN. The divide value defaults to 16 following a reset.

26.2.1. Internal Oscillator Suspend Mode

When software writes a logic 1 to SUSPEND (OSCICN.5), the internal oscillator is suspended. If the system clock is derived from the internal oscillator, the input clock to the peripheral or CIP-51 will be stopped until one of the following events occur:

- Port 0 Match Event.
- Port 1 Match Event.
- Comparator 0 enabled and output is logic 0.
- Timer3 Overflow Event.

When one of the oscillator awakening events occur, the internal oscillator, CIP-51, and affected peripherals resume normal operation, regardless of whether the event also causes an interrupt. The CPU resumes execution at the instruction following the write to SUSPEND.

SFR Definition 26.2. OSCICL: Internal H-F Oscillator Calibration

Bit	7	6	5	4	3	2	1	0
Name		OSCICL[6:0]						
Туре	R	R/W						
Reset	0	Varies	Varies	Varies	Varies	Varies	Varies	Varies

SFR Address = 0xB3; SFR Page = All Pages

Bit	Name	Function
7	Unused	Unused. Read = 0; Write = Don't Care
6:0	OSCICL[6:0]	Internal Oscillator Calibration Bits.
		These bits determine the internal oscillator period. When set to 000000b, the H-F oscillator operates at its fastest setting. When set to 1111111b, the H-F oscillator operates at its slowest setting. The reset value is factory calibrated to generate an internal oscillator frequency of 49 MHz.

27.2.2. Assigning Port I/O Pins to Digital Functions

Any Port pins not assigned to analog functions may be assigned to digital functions or used as GPIO. Most digital functions rely on the Crossbar for pin assignment; however, some digital functions bypass the Crossbar in a manner similar to the analog functions listed above. **Port pins used by these digital func-tions and any Port pins selected for use as GPIO should have their corresponding bit in PnSKIP set to '1'**. Table 27.2 shows all available digital functions and the potential mapping of Port I/O to each digital function.

Digital Function	Potentially Assignable Port Pins	SFR(s) Used for Assignment
UART0, SPI0, SMBus0, SMBus1, CP0, CP0A, SYSCLK, PCA0 (CEX0-2 and ECI), T0 or T1.	Any Port pin available for assignment by the Crossbar. This includes P0.0 - P2.3 pins which have their PnSKIP bit set to '0'. Note: The Crossbar will always assign UART0 pins to P0.4 and P0.5.	XBR0, XBR1
Any pin used for GPIO	P0.0 - P2.4	P0SKIP, P1SKIP, P2SKIP

SMBnCS1	SMBnCS0	SMBus0 Clock Source	SMBus1 Clock Source
0	0	Timer 0 Overflow	Timer 0 Overflow
0	1	Timer 1 Overflow	Timer 5 Overflow
1	0	Timer 2 High Byte Overflow	Timer 2 High Byte Overflow
1	1	Timer 2 Low Byte Overflow	Timer 2 Low Byte Overflow

The SMBnCS1–0 bits select the SMBus clock source, which is used only when operating as a master or when the Free Timeout detection is enabled. When operating as a master, overflows from the selected source determine the absolute minimum SCL low and high times as defined in Equation 28.1.The selected clock source may be shared by other peripherals so long as the timer is left running at all times. For example, Timer 1 overflows may generate the SMBus0 and SMBus1 clock rates simultaneously. Timer configuration is covered in Section "31. Timers" on page 242.

$$T_{HighMin} = T_{LowMin} = \frac{1}{f_{ClockSourceOverflow}}$$

Equation 28.1. Minimum SCL High and Low Times

The selected clock source should be configured to establish the minimum SCL High and Low times as per Equation 28.1. When the interface is operating as a master (and SCL is not driven or extended by any other devices on the bus), the typical SMBus bit rate is approximated by Equation 28.2.

$$BitRate = \frac{f_{ClockSourceOverflow}}{3}$$

Equation 28.2. Typical SMBus Bit Rate

Figure 28.4 shows the typical SCL generation described by Equation 28.2. Notice that T_{HIGH} is typically twice as large as T_{LOW} . The actual SCL output may vary due to other devices on the bus (SCL may be extended low by slower slave devices, or driven low by contending master devices). The bit rate when operating as a master will never exceed the limits defined by equation Equation 28.1.

Figure 28.4. Typical SMBus SCL Generation

Setting the EXTHOLD bit extends the minimum setup and hold times for the SDA line. The minimum SDA setup time defines the absolute minimum time that SDA is stable before SCL transitions from low-to-high. The minimum SDA hold time defines the absolute minimum time that the current SDA value remains stable after SCL transitions from high-to-low. EXTHOLD should be set so that the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively. Table 28.2 shows the minimum setup and hold times meet the SMBus Specification requirements of 250 ns and 300 ns, respectively.

SFR Definition 28.1. SMB0CF: SMBus Clock/Configuration

Bit	7	6	5	4	3	2	1	0
Name	ENSMB0	INH0	BUSY0	EXTHOLD0	SMB0TOE	SMB0FTE	SMB00	CS[1:0]
Туре	R/W	R/W	R	R/W	R/W	R/W	R/	W
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xC1; SFR Page = 0

Bit	Name	Function
7	ENSMBO	SMBus0 Enable. This bit enables the SMBus0 interface when set to 1. When enabled, the interface constantly monitors the SDA0 and SCL0 pins.
6	INHO	SMBus0 Slave Inhibit. When this bit is set to logic 1, the SMBus0 does not generate an interrupt when slave events occur. This effectively removes the SMBus0 slave from the bus. Master Mode interrupts are not affected.
5	BUSY0	SMBus0 Busy Indicator. This bit is set to logic 1 by hardware when a transfer is in progress. It is cleared to logic 0 when a STOP or free-timeout is sensed.
4	EXTHOLD0	 SMBus0 Setup and Hold Time Extension Enable. This bit controls the SDA0 setup and hold times according to Table 28.2. 0: SDA0 Extended Setup and Hold Times disabled. 1: SDA0 Extended Setup and Hold Times enabled.
3	SMB0TOE	SMBus0 SCL Timeout Detection Enable. This bit enables SCL low timeout detection. If set to logic 1, the SMBus0 forces Timer 3 to reload while SCL0 is high and allows Timer 3 to count when SCL0 goes low. If Timer 3 is configured to Split Mode, only the High Byte of the timer is held in reload while SCL0 is high. Timer 3 should be programmed to generate interrupts at 25 ms, and the Timer 3 interrupt service routine should reset SMBus0 communication.
2	SMB0FTE	SMBus0 Free Timeout Detection Enable. When this bit is set to logic 1, the bus will be considered free if SCL0 and SDA0 remain high for more than 10 SMBus clock source periods.
1:0	SMB0CS[1:0]	SMBus0 Clock Source Selection.These two bits select the SMBus0 clock source, which is used to generate the SMBus0 bit rate. The selected device should be config- ured according to Equation 28.1.00: Timer 0 Overflow01: Timer 1 Overflow10: Timer 2 High Byte Overflow11: Timer 2 Low Byte Overflow

30.2. SPI0 Master Mode Operation

A SPI master device initiates all data transfers on a SPI bus. SPI0 is placed in master mode by setting the Master Enable flag (MSTEN, SPI0CN.6). Writing a byte of data to the SPI0 data register (SPI0DAT) when in master mode writes to the transmit buffer. If the SPI shift register is empty, the byte in the transmit buffer is moved to the shift register, and a data transfer begins. The SPI0 master immediately shifts out the data serially on the MOSI line while providing the serial clock on SCK. The SPIF (SPI0CN.7) flag is set to logic 1 at the end of the transfer. If interrupts are enabled, an interrupt request is generated when the SPIF flag is set. While the SPI0 master transfers data to a slave on the MOSI line, the addressed SPI slave device simultaneously transfers the contents of its shift register to the SPI master on the MISO line in a full-duplex operation. Therefore, the SPIF flag serves as both a transmit-complete and receive-data-ready flag. The data byte received from the slave is transferred MSB-first into the master's shift register. When a byte is fully shifted into the register, it is moved to the receive buffer where it can be read by the processor by reading SPI0DAT.

When configured as a master, SPI0 can operate in one of three different modes: multi-master mode, 3-wire single-master mode, and 4-wire single-master mode. The default, multi-master mode is active when NSS-MD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 1. In this mode, NSS is an input to the device, and is used to disable the master SPI0 when another master is accessing the bus. When NSS is pulled low in this mode, MSTEN (SPI0CN.6) and SPIEN (SPI0CN.0) are set to 0 to disable the SPI master device, and a Mode Fault is generated (MODF, SPI0CN.5 = 1). Mode Fault will generate an interrupt if enabled. SPI0 must be manually re-enabled in software under these circumstances. In multi-master systems, devices will typically default to being slave devices while they are not acting as the system master device. In multi-master mode, slave devices can be addressed individually (if needed) using general-purpose I/O pins. Figure 30.2 shows a connection diagram between two master devices in multiple-master mode.

3-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 0 and NSSMD0 (SPI0CN.2) = 0. In this mode, NSS is not used, and is not mapped to an external port pin through the crossbar. Any slave devices that must be addressed in this mode should be selected using general-purpose I/O pins. Figure 30.3 shows a connection diagram between a master device in 3-wire master mode and a slave device.

4-wire single-master mode is active when NSSMD1 (SPI0CN.3) = 1. In this mode, NSS is configured as an output pin, and can be used as a slave-select signal for a single SPI device. In this mode, the output value of NSS is controlled (in software) with the bit NSSMD0 (SPI0CN.2). Additional slave devices can be addressed using general-purpose I/O pins. Figure 30.4 shows a connection diagram for a master device in 4-wire master mode and two slave devices.

Figure 30.2. Multiple-Master Mode Connection Diagram

uniquely addressing the device in 3-wire slave mode, SPI0 must be the only slave device present on the bus. It is important to note that in 3-wire slave mode there is no external means of resetting the bit counter that determines when a full byte has been received. The bit counter can only be reset by disabling and reenabling SPI0 with the SPIEN bit. Figure 30.3 shows a connection diagram between a slave device in 3-wire slave mode and a master device.

30.4. SPI0 Interrupt Sources

When SPI0 interrupts are enabled, the following four flags will generate an interrupt when they are set to logic 1:

All of the following bits must be cleared by software.

- The SPI Interrupt Flag, SPIF (SPI0CN.7) is set to logic 1 at the end of each byte transfer. This flag can occur in all SPI0 modes.
- The Write Collision Flag, WCOL (SPI0CN.6) is set to logic 1 if a write to SPI0DAT is attempted when the transmit buffer has not been emptied to the SPI shift register. When this occurs, the write to SPI0DAT will be ignored, and the transmit buffer will not be written. This flag can occur in all SPI0 modes.
- The Mode Fault Flag MODF (SPI0CN.5) is set to logic 1 when SPI0 is configured as a master, and for multi-master mode and the NSS pin is pulled low. When a Mode Fault occurs, the MSTEN and SPIEN bits in SPI0CN are set to logic 0 to disable SPI0 and allow another master device to access the bus.
- The Receive Overrun Flag RXOVRN (SPI0CN.4) is set to logic 1 when configured as a slave, and a transfer is completed and the receive buffer still holds an unread byte from a previous transfer. The new byte is not transferred to the receive buffer, allowing the previously received data byte to be read. The data byte which caused the overrun is lost.

30.5. Serial Clock Phase and Polarity

Four combinations of serial clock phase and polarity can be selected using the clock control bits in the SPI0 Configuration Register (SPI0CFG). The CKPHA bit (SPI0CFG.5) selects one of two clock phases (edge used to latch the data). The CKPOL bit (SPI0CFG.4) selects between an active-high or active-low clock. Both master and slave devices must be configured to use the same clock phase and polarity. SPI0 should be disabled (by clearing the SPIEN bit, SPI0CN.0) when changing the clock phase or polarity. The clock and data line relationships for master mode are shown in Figure 30.5. For slave mode, the clock and data relationships are shown in Figure 30.6 and Figure 30.7. Note that CKPHA should be set to 0 on both the master and slave SPI when communicating between two Silicon Labs C8051 devices.

The SPI0 Clock Rate Register (SPI0CKR) as shown in SFR Definition 30.3 controls the master mode serial clock frequency. This register is ignored when operating in slave mode. When the SPI is configured as a master, the maximum data transfer rate (bits/sec) is one-half the system clock frequency or 12.5 MHz, whichever is slower. When the SPI is configured as a slave, the maximum data transfer rate (bits/sec) for full-duplex operation is 1/10 the system clock frequency, provided that the master issues SCK, NSS (in 4-wire slave mode), and the serial input data synchronously with the slave's system clock. If the master issues SCK, NSS, and the serial input data asynchronously, the maximum data transfer rate (bits/sec) must be less than 1/10 the system clock frequency. In the special case where the master only wants to transmit data to the slave and does not need to receive data from the slave (i.e. half-duplex operation), the SPI slave can receive data at a maximum data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data transfer rate (bits/sec) of 1/4 the system clock frequency. This is provided that the master issues SCK, NSS, and the serial input data synchronously with the slave's system clock frequency.

31.1. Timer 0 and Timer 1

Each timer is implemented as a 16-bit register accessed as two separate bytes: a low byte (TL0 or TL1) and a high byte (TH0 or TH1). The Counter/Timer Control register (TCON) is used to enable Timer 0 and Timer 1 as well as indicate status. Timer 0 interrupts can be enabled by setting the ET0 bit in the IE register (Section "20.2. Interrupt Register Descriptions" on page 120); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section "20.2. Interrupt Register (Section "20.2. Interrupt Register (Section "20.2. Interrupt Register Descriptions" on page 120); Timer 1 interrupts can be enabled by setting the ET1 bit in the IE register (Section "20.2. Interrupt Register Descriptions" on page 120). Both counter/timers operate in one of four primary modes selected by setting the Mode Select bits T1M1–T0M0 in the Counter/Timer Mode register (TMOD). Each timer can be configured independently. Each operating mode is described below.

31.1.1. Mode 0: 13-bit Counter/Timer

Timer 0 and Timer 1 operate as 13-bit counter/timers in Mode 0. The following describes the configuration and operation of Timer 0. However, both timers operate identically, and Timer 1 is configured in the same manner as described for Timer 0.

The TH0 register holds the eight MSBs of the 13-bit counter/timer. TL0 holds the five LSBs in bit positions TL0.4–TL0.0. The three upper bits of TL0 (TL0.7–TL0.5) are indeterminate and should be masked out or ignored when reading. As the 13-bit timer register increments and overflows from 0x1FFF (all ones) to 0x0000, the timer overflow flag TF0 in TCON is set and an interrupt will occur if Timer 0 interrupts are enabled.

The C/T0 bit in the TMOD register selects the counter/timer's clock source. When C/T0 is set to logic 1, high-to-low transitions at the selected Timer 0 input pin (T0) increment the timer register (Refer to Section "27.3. Priority Crossbar Decoder" on page 178 for information on selecting and configuring external I/O pins). Clearing C/T selects the clock defined by the T0M bit in register CKCON. When T0M is set, Timer 0 is clocked by the system clock. When T0M is cleared, Timer 0 is clocked by the source selected by the Clock Scale bits in CKCON (see SFR Definition 31.1).

Setting the TR0 bit (TCON.4) enables the timer when either GATE0 in the TMOD register is logic 0 or the input signal INT0 is active as defined by bit IN0PL in register IT01CF (see SFR Definition 20.10). Setting GATE0 to 1 allows the timer to be controlled by the external input signal INT0 (see Section "20.2. Interrupt Register Descriptions" on page 120), facilitating pulse width measurements

TR0	GATE0	GATE0 INTO Counter/				
0	Х	Х	Disabled			
1	0	Х	Enabled			
1	1	0	Disabled			
1	1	1	Enabled			
Note: X = Don't Care						

Setting TR0 does not force the timer to reset. The timer registers should be loaded with the desired initial value before the timer is enabled.

TL1 and TH1 form the 13-bit register for Timer 1 in the same manner as described above for TL0 and TH0. Timer 1 is configured and controlled using the relevant TCON and TMOD bits just as with Timer 0. The input signal INT0 is used with Timer 1; the /INT1 polarity is defined by bit IN1PL in register IT01CF (see SFR Definition 20.10).

SFR Definition 31.7. TH0: Timer 0 High Byte

			1	1	1		1	1
Bit	7	6	5	4	3	2	1	0
Name	TH0[7:0]							
Туре	R/W							
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x8C; SFR Page = All Pages

Bit	Name	Function
7:0	TH0[7:0]	Timer 0 High Byte.
		The TH0 register is the high byte of the 16-bit Timer 0.

SFR Definition 31.8. TH1: Timer 1 High Byte

Bit	7	6	5	4	3	2	1	0
Name		TH1[7:0]						
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0x8D; SFR Page = All Pages

Bit	Name	Function
7:0	TH1[7:0]	Timer 1 High Byte.
		The TH1 register is the high byte of the 16-bit Timer 1.

SFR Definition 31.13. TMR2H Timer 2 High Byte

Bit	7	6	5	4	3	2	1	0
Name		TMR2H[7:0]						
Туре		R/W						
Reset	0	0	0	0	0	0	0	0

SFR Address = 0xCD; SFR Page = 0

Bit	Name	Function
7:0	TMR2H[7:0]	Timer 2 Low Byte.
		In 16-bit mode, the TMR2H register contains the high byte of the 16-bit Timer 2. In 8-bit mode, TMR2H contains the 8-bit high byte timer value.

31.3. Timer 3

Timer 3 is a 16-bit timer formed by two 8-bit SFRs: TMR3L (low byte) and TMR3H (high byte). Timer 3 may operate in 16-bit auto-reload mode or (split) 8-bit auto-reload mode. The T3SPLIT bit (TMR3CN.3) defines the Timer 3 operation mode.

Timer 3 may be clocked by the system clock, the system clock divided by 12, the external oscillator source divided by 8, or the internal low-frequency oscillator divided by 8. The external clock mode is ideal for realtime clock (RTC) functionality, where the internal high-frequency oscillator drives the system clock while Timer 3 is clocked by an external oscillator source. Note that the external oscillator source divided by 8 and the LFO source divided by 8 are synchronized with the system clock when in all operating modes except suspend. When the internal oscillator is placed in suspend mode, The external clock/8 signal or the LFO/8 output can directly drive the timer. This allows the use of an external clock or the LFO to wake up the device from suspend mode. The timer will continue to run in suspend mode and count up. When the timer overflow occurs, the device will wake from suspend mode, and begin executing code again. The timer value may be set prior to entering suspend, to overflow in the desired amount of time (number of clocks) to wake the device. If a wake-up source other than the timer wakes the device from suspend mode, it may take up to three timer clocks before the timer registers can be read or written. During this time, the STSYNC bit in register OSCICN will be set to 1, to indicate that it is not safe to read or write the timer registers.

Important Note: In internal LFO/8 mode, the divider for the internal LFO must be set to 1 for proper functionality. The timer will not operate if the LFO divider is not set to 1.

31.3.1. 16-bit Timer with Auto-Reload

When T3SPLIT (TMR3CN.3) is zero, Timer 3 operates as a 16-bit timer with auto-reload. Timer 3 can be clocked by SYSCLK, SYSCLK divided by 12, or the external oscillator clock source divided by 8. As the 16-bit timer register increments and overflows from 0xFFFF to 0x0000, the 16-bit value in the Timer 3 reload registers (TMR3RLH and TMR3RLL) is loaded into the Timer 3 register as shown in Figure 31.7, and the Timer 3 High Byte Overflow Flag (TMR3CN.7) is set. If Timer 3 interrupts are enabled (if EIE1.7 is set), an interrupt will be generated on each Timer 3 overflow. Additionally, if Timer 3 interrupts are enabled and the TF3LEN bit is set (TMR3CN.5), an interrupt will be generated each time the lower 8 bits (TMR3L) overflow from 0xFF to 0x00.

Figure 31.7. Timer 3 16-Bit Mode Block Diagram

32.3. Capture/Compare Modules

Each module can be configured to operate independently in one of six operation modes: edge-triggered capture, software timer, high-speed output, frequency output, 8 to 11-bit pulse width modulator, or 16-bit pulse width modulator. Each module has Special Function Registers (SFRs) associated with it in the CIP-51 system controller. These registers are used to exchange data with a module and configure the module's mode of operation. Table 32.2 summarizes the bit settings in the PCA0CPMn and PCA0PWM registers used to select the PCA capture/compare module's operating mode. Note that all modules set to use 8, 9, 10, or 11-bit PWM mode must use the same cycle length (8–11 bits). Setting the ECCFn bit in a PCA0CPMn register enables the module's CCFn interrupt.

Operational Mode	PCA0CPMn							PCA0PWM					
Bit Number	7	6	5	4	3	2	1	0	7	6	5	4–2	1–0
Capture triggered by positive edge on CEXn	Х	Х	1	0	0	0	0	А	0	Х	В	XXX	XX
Capture triggered by negative edge on CEXn	Х	Х	0	1	0	0	0	А	0	Х	В	XXX	XX
Capture triggered by any transition on CEXn	Х	Х	1	1	0	0	0	А	0	Х	В	XXX	XX
Software Timer	Х	С	0	0	1	0	0	А	0	Х	В	XXX	XX
High Speed Output	Х	С	0	0	1	1	0	А	0	Х	В	XXX	XX
Frequency Output	Х	С	0	0	0	1	1	А	0	Х	В	XXX	XX
8-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	0	Х	В	XXX	00
9-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	01
10-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	10
11-Bit Pulse Width Modulator (Note 7)	0	С	0	0	Е	0	1	А	D	Х	В	XXX	11
16-Bit Pulse Width Modulator	1	С	0	0	Е	0	1	А	0	Х	В	XXX	XX
 Notes: 1. X = Don't Care (no functional difference for individual module if 1 or 0). 2. A = Enable interrupts for this module (PCA interrupt triggered on CCFn set to 1). 3. B = Enable 3th 0th 10th or 11th bit overflow interrupt (Depends on setting of CL SEL [1:0]) 													

Table 32.2. PCA0CPM and PCA0PWM Bit Settings for PCA Capture/Compare Modules

4. C = When set to 0, the digital comparator is off. For high speed and frequency output modes, the associated pin will not toggle. In any of the PWM modes, this generates a 0% duty cycle (output = 0).
5. D = Selects whether the Capture/Compare register (0) or the Auto-Reload register (1) for the associated

channel is accessed via addresses PCA0CPHn and PCA0CPLn.

6. E = When set, a match event will cause the CCFn flag for the associated channel to be set.

7. All modules set to 8, 9, 10 or 11-bit PWM mode use the same cycle length setting.

32.3.1. Edge-triggered Capture Mode

In this mode, a valid transition on the CEXn pin causes the PCA to capture the value of the PCA counter/ timer and load it into the corresponding module's 16-bit capture/compare register (PCA0CPLn and PCA0CPHn). The CAPPn and CAPNn bits in the PCA0CPMn register are used to select the type of transition that triggers the capture: low-to-high transition (positive edge), high-to-low transition (negative edge), or either transition (positive or negative edge). When a capture occurs, the Capture/Compare Flag (CCFn) in PCA0CN is set to logic 1. An interrupt request is generated if the CCFn interrupt for that module is enabled. The CCFn bit is not automatically cleared by hardware when the CPU vectors to the interrupt service routine, and must be cleared by software. If both CAPPn and CAPNn bits are set to logic 1, then the state of the Port pin associated with CEXn can be read directly to determine whether a rising-edge or falling-edge caused the capture.

Figure 32.4. PCA Capture Mode Diagram

Note: The CEXn input signal must remain high or low for at least 2 system clock cycles to be recognized by the hardware.

