
Silicon Labs - C8051F399-A-GM Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor 8051

Core Size 8-Bit

Speed 50MHz

Connectivity SMBus (2-Wire/I²C), SPI, UART/USART

Peripherals POR, PWM, WDT

Number of I/O 17

Program Memory Size 4KB (4K x 8)

Program Memory Type FLASH

EEPROM Size -

RAM Size 1K x 8

Voltage - Supply (Vcc/Vdd) 1.8V ~ 3.6V

Data Converters -

Oscillator Type Internal

Operating Temperature -40°C ~ 105°C (TA)

Mounting Type Surface Mount

Package / Case 20-VFQFN Exposed Pad

Supplier Device Package 20-QFN (4x4)

Purchase URL https://www.e-xfl.com/product-detail/silicon-labs/c8051f399-a-gm

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/c8051f399-a-gm-4383823
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

C8051F39x/37x
28.3.4. SCL Low Timeout.. 194
28.3.5. SCL High (SMBus Free) Timeout ... 195

28.4. Using the SMBus... 195
28.4.1. SMBus Configuration Register.. 195
28.4.2. SMBus Pin Swap .. 197
28.4.3. SMBus Timing Control .. 197
28.4.4. SMBnCN Control Register .. 201

28.4.4.1. Software ACK Generation .. 201
28.4.4.2. Hardware ACK Generation ... 201

28.4.5. Hardware Slave Address Recognition .. 204
28.4.6. Data Register .. 209

28.5. SMBus Transfer Modes... 211
28.5.1. Write Sequence (Master) .. 211
28.5.2. Read Sequence (Master) .. 212
28.5.3. Write Sequence (Slave) .. 213
28.5.4. Read Sequence (Slave) .. 214

28.6. SMBus Status Decoding.. 214
29. UART0... 220

29.1. Enhanced Baud Rate Generation.. 221
29.2. Operational Modes .. 222

29.2.1. 8-Bit UART.. 222
29.2.2. 9-Bit UART.. 223

29.3. Multiprocessor Communications ... 224
30. Enhanced Serial Peripheral Interface (SPI0) ... 228

30.1. Signal Descriptions.. 229
30.1.1. Master Out, Slave In (MOSI)... 229
30.1.2. Master In, Slave Out (MISO)... 229
30.1.3. Serial Clock (SCK) .. 229
30.1.4. Slave Select (NSS) ... 229

30.2. SPI0 Master Mode Operation .. 230
30.3. SPI0 Slave Mode Operation.. 231
30.4. SPI0 Interrupt Sources .. 232
30.5. Serial Clock Phase and Polarity .. 232
30.6. SPI Special Function Registers ... 234

31. Timers ... 242
31.1. Timer 0 and Timer 1 .. 245

31.1.1. Mode 0: 13-bit Counter/Timer ... 245
31.1.2. Mode 1: 16-bit Counter/Timer ... 246
31.1.3. Mode 2: 8-bit Counter/Timer with Auto-Reload..................................... 247
31.1.4. Mode 3: Two 8-bit Counter/Timers (Timer 0 Only)................................ 248

31.2. Timer 2 .. 253
31.2.1. 16-bit Timer with Auto-Reload... 253
31.2.2. 8-bit Timers with Auto-Reload... 254
31.2.3. Low-Frequency Oscillator (LFO) Capture Mode 255

31.3. Timer 3 .. 259
6 Rev. 1.0

C8051F39x/37x
P2.2 — 8 — D I/O or
A In

Port 2.2.

P2.2 - — 8 D I/O or
A In

Port 2.2.

EESCL D I/O EEPROM SCL Connection.

P2.3 — 7 — D I/O or
A In

Port 2.3.

P2.3 - — 7 D I/O or
A In

Port 2.3.

EESDA D I/O EEPROM SDA Connection.

P2.4 — 6 6 D I/O Port 2.4. (Also C2D on 24-pin Packaging)

Table 4.1. Pin Definitions for the C8051F39x/37x (Continued)

Name Pin

‘F392/3/6/
7/8/9

Pin
’F390/1/

4/5

Pin
’F370/1/

4/5

Type Description
Rev. 1.0 24

C8051F39x/37x
SFR Address = 0xD2; SFR Page = F

SFR Definition 8.1. TS0CN: Temperature Sensor Control

Bit 7 6 5 4 3 2 1 0

Name TS0STRT TS0DN TS0CNVL

Type R/W R R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 TS0STRT Temperature Sensor Start.

Firmware must set this bit to 1, then clear this bit to 0 to start a temperature sensor
measurement.

6 TS0DN Temperature Sensor Finished Flag.

Hardware will set TS0DN to 1 when a temperature sensor measurement is com-
plete. If enabled, a temperature sensor interrupt will be generated. This bit must
be cleared to 0 by firmware.

5:3 Reserved Must Write 000b.

2:0 TS0CNVL Temperature Sensor Conversion Length.

This field sets the conversion length of time over which the temperature is calcu-
lated. A longer conversion length results in a more accurate measurement. The
conversion length in microseconds is derived from the following equation, where
TS0CNVL is the 3-bit value held in TS0CNVL[2:0] and FTS0 is the precision tem-
perature sensor clock frequency given in Table 7.12.

Conversion Length in μs
256
FTS0
----------- 10

6×
 2

TS0CNVL 1+
1+()× 32+=
48 Rev. 1.0

C8051F39x/37x
SFR Address = 0xB9; SFR Page = F

SFR Definition 11.4. IDA1CN: IDA1 Control

Bit 7 6 5 4 3 2 1 0

Name IDA1EN IDA1CM[2:0] IDA1RP IDA1OMD[1:0]

Type R/W R/W R R/W R/W

Reset 0 1 1 1 0 Varies 1 0

Bit Name Function

7 IDA1EN IDA1 Enable.

0: IDA1 Disabled.
1: IDA1 Enabled.

6:4 IDA1CM[2:0] IDA0 Update Source Select bits.

000: DAC output updates on Timer 0 overflow.
001: DAC output updates on Timer 5 overflow.
010: DAC output updates on Timer 2 overflow.
011: DAC output updates on Timer 3 overflow.
100: DAC output updates on rising edge of CNVSTR.
101: DAC output updates on falling edge of CNVSTR.
110: DAC output updates on any edge of CNVSTR.
111: DAC output updates on write to IDA1H.

3 Reserved Write = 0b.

2 IDA1RP IDA1 Reset Persistence.

0: IDA1 is disabled by any reset source.
1: IDA1 will remain enabled through any reset source
except a power-on-reset.
This bit is reset to 0 by a power on reset, but is sticky
through all other reset sources. When setting IDA1RP to 1,
IDA1EN must be set to 1 also in the same move instruction.

1:0 IDA1OMD[1:0] IDA1 Output Mode Select bits.

00: 0.5 mA full-scale output current.
01: 1.0 mA full-scale output current.
1x: 2.0 mA full-scale output current.
71 Rev. 1.0

C8051F39x/37x
With the CIP-51's maximum system clock at 48 MHz, it has a peak throughput of 48 MIPS. The CIP-51 has
a total of 109 instructions. The table below shows the total number of instructions that require each execu-
tion time.

Programming and Debugging Support
In-system programming of the EPROM program memory and communication with on-chip debug support
logic is accomplished via the Silicon Labs 2-Wire Development Interface (C2).

The on-chip debug support logic facilitates full speed in-circuit debugging, allowing the setting of hardware
breakpoints, starting, stopping and single stepping through program execution (including interrupt service
routines), examination of the program's call stack, and reading/writing the contents of registers and mem-
ory. This method of on-chip debugging is completely non-intrusive, requiring no RAM, Stack, timers, or
other on-chip resources. C2 details can be found in Section “33. C2 Interface” on page 297.

The CIP-51 is supported by development tools from Silicon Labs and third party vendors. Silicon Labs pro-
vides an integrated development environment (IDE) including editor, debugger and programmer. The IDE's
debugger and programmer interface to the CIP-51 via the C2 interface to provide fast and efficient in-sys-
tem device programming and debugging. Third party macro assemblers and C compilers are also avail-
able.

15.1. Instruction Set
The instruction set of the CIP-51 System Controller is fully compatible with the standard MCS-51™ instruc-
tion set. Standard 8051 development tools can be used to develop software for the CIP-51. All CIP-51
instructions are the binary and functional equivalent of their MCS-51™ counterparts, including opcodes,
addressing modes and effect on PSW flags. However, instruction timing is different than that of the stan-
dard 8051.

15.1.1. Instruction and CPU Timing

In many 8051 implementations, a distinction is made between machine cycles and clock cycles, with
machine cycles varying from 2 to 12 clock cycles in length. However, the CIP-51 implementation is based
solely on clock cycle timing. All instruction timings are specified in terms of clock cycles.

Due to the pipelined architecture of the CIP-51, most instructions execute in the same number of clock
cycles as there are program bytes in the instruction. Conditional branch instructions take one less clock
cycle to complete when the branch is not taken as opposed to when the branch is taken. Table 15.1 is the
CIP-51 Instruction Set Summary, which includes the mnemonic, number of bytes, and number of clock
cycles for each instruction.

Clocks to Execute 1 2 2/4 3 3/5 4 5 4/6 6 8

Number of Instructions 26 50 5 10 7 5 2 1 2 1
83 Rev. 1.0

C8051F39x/37x
SFR Address = 0xAA; SFR Page = All Pages

SFR Definition 17.1. EMI0CN: External Memory Interface Control

Bit 7 6 5 4 3 2 1 0

Name PGSEL

Type R R R R R R R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:2 Unused Read = 000000b; Write = Don’t Care

1:0 PGSEL XRAM Page Select.

The PGSEL field provides the high byte of the 16-bit external
data memory address when using an 8-bit MOVX command,
effectively selecting a 256-byte page of RAM. Since the upper
(unused) bits of the register are always zero, the PGSEL deter-
mines which page of XRAM is accessed.
For Example: If PGSEL = 0x01, addresses 0x0100 through
0x01FF will be accessed.
96 Rev. 1.0

C8051F39x/37x
SFR Address = 0x84; SFR Page = All Pages; Bit-Addressable

SFR Definition 20.3. IPH: Interrupt Priority High

Bit 7 6 5 4 3 2 1 0

Name PHSPI0 PHT2 PHS0 PHT1 PHX1 PHT0 PHX0

Type R R/W R/W R/W R/W R/W R/W R/W

Reset 1 0 0 0 0 0 0 0

Bit Name Function

7 Unused Read = 1, Write = Don't Care.

6 PHSPI0 Serial Peripheral Interface (SPI0) Interrupt Priority Control MSB.

This bit sets the MSB of the priority field for the SPI0 interrupt.

5 PHT2 Timer 2 Interrupt Priority Control MSB.

This bit sets the MSB of the priority field for the Timer 2 interrupt.

4 PHS0 UART0 Interrupt Priority Control MSB.

This bit sets the MSB of the priority field for the UART0 interrupt.

3 PHT1 Timer 1 Interrupt Priority Control MSB.

This bit sets the MSB of the priority field for the Timer 1 interrupt.

2 PHX1 External Interrupt 1 Priority Control MSB.

This bit sets the MSB of the priority field for the External Interrupt 1 inter-
rupt.

1 PHT0 Timer 0 Interrupt Priority Control MSB.

This bit sets the MSB of the priority field for the Timer 0 interrupt.

0 PHX0 External Interrupt 0 Priority Control MSB.

This bit sets the MSB of the priority field for the External Interrupt 0 inter-
rupt.
122 Rev. 1.0

C8051F39x/37x
22.3.2. Selective Address Read

In a selective address read operation, the master selects the target memory location for the read
operation.

To perform a selective address read:

1. The master sends the START condition and the slave address byte with the R/W bit set to 1.

2. The EEPROM generates an ACK.

3. The master sends the read memory address (A[7:0]) to the EEPROM.

4. The EEPROM stores the address in the address counter and generates an ACK.

5. The master again sends the slave address byte with the R/W bit set to 1.

6. The EEPROM generates an ACK.

7. The EEPROM sends the byte of data (D[7:0]) specified by the address counter.

8. The EEPROM increments the internal address counter by one.

9. (Optional) To read additional bytes:

a. The master generates an ACK.

b. The EEPROM sends the byte of data (D[7:0]) specified by the address counter.

c. The EEPROM increments the internal address counter by one.

d. Repeat Steps9a through 9c until the master reads all of the desired bytes.

10.The master generates a NACK.

11.The master generates a STOP condition.

12.The EEPROM terminates the transmission.

Note: If the selective read operation overflows the top of memory, the EEPROM address counter will wrap, and the
EEPROM transmit the data from address location 0x00.

Figure 22.6. Selective Address Read (Single Byte)

Slave
Address

Byte
(SAB[7:0])

EESCL

EESDA

Master Slave

ACKSTART
Address

Byte
(A[7:0])

ACK

Slave
Address

Byte
(SAB[7:0])

ACK
Data Byte
(D[7:0])

NACK STOP

Master Slave Master MasterSlave
145 Rev. 1.0

C8051F39x/37x
23. Cyclic Redundancy Check Unit (CRC0)

C8051F39x/37x devices include a cyclic redundancy check unit (CRC0) that can perform a CRC using a
16-bit polynomial. CRC0 accepts a stream of 8-bit data written to the CRC0IN register. CRC0 posts the 16-
bit result to an internal register. The internal result register may be accessed indirectly using the CRC0PNT
bits and CRC0DAT register, as shown in Figure 23.1. CRC0 also has a bit reverse register for quick data
manipulation.

Figure 23.1. CRC0 Block Diagram

23.1. CRC Algorithm
The C8051F39x/37x CRC unit generates a CRC result equivalent to the following algorithm:

1. XOR the input with the most-significant bits of the current CRC result. If this is the first iteration of the
CRC unit, the current CRC result will be the set initial value
(0x00000000 or 0xFFFFFFFF).

2a. If the MSB of the CRC result is set, shift the CRC result and XOR the result with the selected
polynomial.

2b. If the MSB of the CRC result is not set, shift the CRC result.

Repeat Steps 2a/2b for the number of input bits (8). The algorithm is also described in the following exam-
ple.

CRC0IN

AUTOEN

CRC0DAT

CRC Engine

CRC0FLIP
Write

C
R

C
0A

U
T

O

Flash
Memory

Automatic CRC
Controller

CRC0ST[0]
CRC0ST[1]
CRC0ST[2]
CRC0ST[3]
CRC0ST[4]
CRC0ST[5]

CRC0DONE

C
R

C
0

C
N

T

CRC0CNT[0]
CRC0CNT[1]
CRC0CNT[2]
CRC0CNT[3]
CRC0CNT[4]

C
R

C
0C

N

CRC0VAL
CRC0INIT

CRC0PNT

CRC0FLIP
Read

2 to 1 MUX

RESULT

16

8

8 8

88
Rev. 1.0 147

C8051F39x/37x
SFR Address = 0x9A; SFR Page = All Pages

SFR Definition 23.6. CRC0FLIP: CRC0 Bit Flip

Bit 7 6 5 4 3 2 1 0

Name CRC0FLIP[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 CRC0FLIP[7:0] CRC0 Bit Flip.

Any byte written to CRC0FLIP is read back in a bit-
reversed order, i.e., the written LSB becomes the MSB.
For example:
If 0xC0 is written to CRC0FLIP, the data read back will
be 0x03.
If 0x05 is written to CRC0FLIP, the data read back will be
0xA0.
154 Rev. 1.0

C8051F39x/37x
25.2. Stop Mode
Setting the Stop Mode Select bit (PCON.1) causes the controller core to enter Stop mode as soon as the
instruction that sets the bit completes execution. Before entering stop mode, the system clock must be
sourced by the internal high-frequency oscillator. In stop mode the internal oscillator, CPU, and all digital
peripherals are stopped; the state of the external oscillator circuit is not affected. Each analog peripheral
(including the external oscillator circuit) may be shut down individually prior to entering stop mode. Stop
mode can only be terminated by an internal or external reset. On reset, the device performs the normal
reset sequence and begins program execution at address 0x0000.

If enabled, the Missing Clock Detector will cause an internal reset and thereby terminate the stop mode.
The Missing Clock Detector should be disabled if the CPU is to be put to in STOP mode for longer than the
MCD timeout.

By default, when in stop mode the internal regulator is still active. However, the regulator can be config-
ured to shut down while in stop mode to save power. To shut down the regulator in stop mode, the
STOPCF bit in register REG01CN should be set to 1 prior to setting the STOP bit (see SFR Definition
25.1). If the regulator is shut down using the STOPCF bit, only the RST pin or a full power cycle are capa-
ble of resetting the device.

25.3. Suspend Mode
Setting the SUSPEND bit (OSCICN.5) causes the hardware to halt the CPU and the high-frequency inter-
nal oscillator, and go into suspend mode as soon as the instruction that sets the bit completes execution.
All internal registers and memory maintain their original data. Most digital peripherals are not active in sus-
pend mode. The exception to this is the Port Match feature and Timer 3, when it is run from an external
oscillator source or the internal low-frequency oscillator.

Suspend mode can be terminated by four types of events, a port match (described in Section “27.5. Port
Match” on page 183), a Timer 3 overflow (described in Section “31.3. Timer 3” on page 259), a Comparator
low output (if enabled), or a device reset event. Note that in order to run Timer 3 in suspend mode, the
timer must be configured to clock from either the external clock source or the internal low-frequency oscil-
lator source. When suspend mode is terminated, the device will continue execution on the instruction fol-
lowing the one that set the SUSPEND bit. If the wake event (port match or Timer 3 overflow) was
configured to generate an interrupt, the interrupt will be serviced upon waking the device. If suspend mode
is terminated by an internal or external reset, the CIP-51 performs a normal reset sequence and begins
program execution at address 0x0000.
162 Rev. 1.0

C8051F39x/37x
28.4.6. Data Register

The SMBus Data register SMBnDAT holds a byte of serial data to be transmitted or one that has just been
received. Software may safely read or write to the data register when the SIn flag is set. Software should
not attempt to access the SMBnDAT register when the SMBus is enabled and the SIn flag is cleared to
logic 0, as the interface may be in the process of shifting a byte of data into or out of the register.

Data in SMBnDAT is always shifted out MSB first. After a byte has been received, the first bit of received
data is located at the MSB of SMBnDAT. While data is being shifted out, data on the bus is simultaneously
being shifted in. SMBnDAT always contains the last data byte present on the bus. In the event of lost arbi-
tration, the transition from master transmitter to slave receiver is made with the correct data or address in
SMBnDAT.

SFR Address = 0xC2; SFR Page = 0

SFR Definition 28.10. SMB0DAT: SMBus Data

Bit 7 6 5 4 3 2 1 0

Name SMB0DAT[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 SMB0DAT[7:0] SMBus0 Data.

The SMB0DAT register contains a byte of data to be trans-
mitted on the SMBus0 serial interface or a byte that has just
been received on the SMBus0 serial interface. The CPU
can read from or write to this register whenever the SI0
serial interrupt flag (SMB0CN.0) is set to logic 1. The serial
data in the register remains stable as long as the SI0 flag is
set. When the SI0 flag is not set, the system may be in the
process of shifting data in/out and the CPU should not
attempt to access this register.
209 Rev. 1.0

C8051F39x/37x
28.5.3. Write Sequence (Slave)

During a write sequence, an SMBus master writes data to a slave device. The slave in this transfer will be
a receiver during the address byte, and a receiver during all data bytes. When slave events are enabled
(INH = 0), the interface enters Slave Receiver Mode when a START followed by a slave address and direc-
tion bit (WRITE in this case) is received. If hardware ACK generation is disabled, upon entering Slave
Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The software must respond to the
received slave address with an ACK, or ignore the received slave address with a NACK. If hardware ACK
generation is enabled, the hardware will apply the ACK for a slave address which matches the criteria set
up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are
received.

If hardware ACK generation is disabled, the ACKRQ is set to 1 and an interrupt is generated after each
received byte. Software must write the ACK bit at that time to ACK or NACK the received byte.

With hardware ACK generation enabled, the SMBus hardware will automatically generate the ACK/NACK,
and then post the interrupt. It is important to note that the appropriate ACK or NACK value should be
set up by the software prior to receiving the byte when hardware ACK generation is enabled.

The interface exits Slave Receiver Mode after receiving a STOP. The interface will switch to Slave Trans-
mitter Mode if SMB0DAT is written while an active Slave Receiver. Figure 28.7 shows a typical slave write
sequence. Two received data bytes are shown, though any number of bytes may be received. Notice that
the ‘data byte transferred’ interrupts occur at different places in the sequence, depending on whether hard-
ware ACK generation is enabled. The interrupt occurs before the ACK with hardware ACK generation dis-
abled, and after the ACK when hardware ACK generation is enabled.

Figure 28.7. Typical Slave Write Sequence

PWSLAS Data ByteData Byte A AA

S = START
P = STOP
A = ACK
W = WRITE
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
213 Rev. 1.0

C8051F39x/37x
28.5.4. Read Sequence (Slave)

During a read sequence, an SMBus master reads data from a slave device. The slave in this transfer will
be a receiver during the address byte, and a transmitter during all data bytes. When slave events are
enabled (INH = 0), the interface enters Slave Receiver Mode (to receive the slave address) when a START
followed by a slave address and direction bit (READ in this case) is received. If hardware ACK generation
is disabled, upon entering Slave Receiver Mode, an interrupt is generated and the ACKRQ bit is set. The
software must respond to the received slave address with an ACK, or ignore the received slave address
with a NACK. If hardware ACK generation is enabled, the hardware will apply the ACK for a slave address
which matches the criteria set up by SMB0ADR and SMB0ADM. The interrupt will occur after the ACK
cycle.

If the received slave address is ignored (by software or hardware), slave interrupts will be inhibited until the
next START is detected. If the received slave address is acknowledged, zero or more data bytes are trans-
mitted. If the received slave address is acknowledged, data should be written to SMB0DAT to be transmit-
ted. The interface enters slave transmitter mode, and transmits one or more bytes of data. After each byte
is transmitted, the master sends an acknowledge bit; if the acknowledge bit is an ACK, SMB0DAT should
be written with the next data byte. If the acknowledge bit is a NACK, SMB0DAT should not be written to
before SI is cleared (an error condition may be generated if SMB0DAT is written following a received
NACK while in slave transmitter mode). The interface exits slave transmitter mode after receiving a STOP.
The interface will switch to slave receiver mode if SMB0DAT is not written following a Slave Transmitter
interrupt. Figure 28.8 shows a typical slave read sequence. Two transmitted data bytes are shown, though
any number of bytes may be transmitted. Notice that all of the “data byte transferred” interrupts occur after
the ACK cycle in this mode, regardless of whether hardware ACK generation is enabled.

Figure 28.8. Typical Slave Read Sequence

28.6. SMBus Status Decoding
The current SMBus status can be easily decoded using the SMB0CN register. The appropriate actions to
take in response to an SMBus event depend on whether hardware slave address recognition and ACK
generation is enabled or disabled. Table 28.5 describes the typical actions when hardware slave address
recognition and ACK generation is disabled. Table 28.6 describes the typical actions when hardware slave
address recognition and ACK generation is enabled. In the tables, STATUS VECTOR refers to the four
upper bits of SMB0CN: MASTER, TXMODE, STA, and STO. The shown response options are only the typ-
ical responses; application-specific procedures are allowed as long as they conform to the SMBus specifi-
cation. Highlighted responses are allowed by hardware but do not conform to the SMBus specification.

PRSLAS Data ByteData Byte A NA

S = START
P = STOP
N = NACK
R = READ
SLA = Slave Address

Received by SMBus
Interface

Transmitted by
SMBus Interface

Interrupts with Hardware ACK Disabled (EHACK = 0)

Interrupts with Hardware ACK Enabled (EHACK = 1)
Rev. 1.0 214

C8051F39x/37x
B
u

s
E

rr
o

r
C

o
n

d
it

io
n

0010 0 1 X
Lost arbitration while attempt-
ing a repeated START.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0001 0 1 X
Lost arbitration due to a
detected STOP.

Abort failed transfer. 0 0 X —

Reschedule failed transfer. 1 0 X 1110

0000 1 1 X
Lost arbitration while transmit-
ting a data byte as master.

Abort failed transfer. 0 0 0 —

Reschedule failed transfer. 1 0 0 1110

Table 28.6. SMBus Status Decoding: Hardware ACK Enabled (EHACK = 1)

M
o

d
e

Values Read

Current SMbus State Typical Response Options

Values to
Write

N
ex

t
S

ta
tu

s

V
ec

to
r

E
xp

e
ct

ed

S
ta

tu
s

V
ec

to
r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

M
as

te
r

T
ra

n
s

m
it

te
r

1110 0 0 X
A master START was gener-
ated.

Load slave address + R/W into
SMB0DAT.

0 0 X 1100

1100

0 0 0
A master data or address byte
was transmitted; NACK
received.

Set STA to restart transfer. 1 0 X 1110

Abort transfer. 0 1 X —

0 0 1
A master data or address byte
was transmitted; ACK
received.

Load next data byte into
SMB0DAT.

0 0 X 1100

End transfer with STOP. 0 1 X —

End transfer with STOP and start
another transfer.

1 1 X —

Send repeated START. 1 0 X 1110

Switch to Master Receiver Mode
(clear SI without writing new data
to SMB0DAT). Set ACK for initial
data byte.

0 0 1 1000

Table 28.5. SMBus Status Decoding: Hardware ACK Disabled (EHACK = 0) (Continued)
M

o
d

e

Values Read

Current SMbus State Typical Response Options

Values to
Write

N
ex

t
S

ta
tu

s

V
e

ct
o

r
E

xp
e

ct
ed

S
ta

tu
s

V
e

c
to

r

A
C

K
R

Q

A
R

B
L

O
S

T

A
C

K

S
TA

S
T

O

A
C

K

217 Rev. 1.0

C8051F39x/37x
29. UART0

UART0 is an asynchronous, full duplex serial port offering modes 1 and 3 of the standard 8051 UART.
Enhanced baud rate support allows a wide range of clock sources to generate standard baud rates (details
in Section “29.1. Enhanced Baud Rate Generation” on page 221). Received data buffering allows UART0
to start reception of a second incoming data byte before software has finished reading the previous data
byte.

UART0 has two associated SFRs: Serial Control Register 0 (SCON0) and Serial Data Buffer 0 (SBUF0).
The single SBUF0 location provides access to both transmit and receive registers. Writes to SBUF0
always access the Transmit register. Reads of SBUF0 always access the buffered Receive register;
it is not possible to read data from the Transmit register.

With UART0 interrupts enabled, an interrupt is generated each time a transmit is completed (TI0 is set in
SCON0), or a data byte has been received (RI0 is set in SCON0). The UART0 interrupt flags are not
cleared by hardware when the CPU vectors to the interrupt service routine. They must be cleared manually
by software, allowing software to determine the cause of the UART0 interrupt (transmit complete or receive
complete).

Figure 29.1. UART0 Block Diagram

UART Baud
Rate Generator

RI

 SCON

R
I

T
I

R
B

8
T

B
8

R
E

N
M

C
E

S
M

O
D

E

Tx Control
Tx Clock

Send

SBUF
(TX Shift)

Start

Data

Write to
SBUF

Crossbar
TX

Shift

Zero Detector

Tx IRQ

SET

QD

CLR

Stop Bit

TB8

SFR Bus

Serial
Port

Interrupt

TI

Port I/O

Rx Control

Start

Rx Clock

Load
SBUFShift 0x1FF RB8

Rx IRQ

Input Shift Register
(9 bits)

Load SBUF

Read
SBUF

SFR Bus
Crossbar

RX

SBUF
(RX Latch)
Rev. 1.0 220

C8051F39x/37x
29.2. Operational Modes
UART0 provides standard asynchronous, full duplex communication. The UART mode (8-bit or 9-bit) is
selected by the S0MODE bit (SCON0.7). Typical UART connection options are shown in Figure 29.3.

Figure 29.3. UART Interconnect Diagram

29.2.1. 8-Bit UART

8-Bit UART mode uses a total of 10 bits per data byte: one start bit, eight data bits (LSB first), and one stop
bit. Data are transmitted LSB first from the TX0 pin and received at the RX0 pin. On receive, the eight data
bits are stored in SBUF0 and the stop bit goes into RB80 (SCON0.2).

Data transmission begins when software writes a data byte to the SBUF0 register. The TI0 Transmit Inter-
rupt Flag (SCON0.1) is set at the end of the transmission (the beginning of the stop-bit time). Data recep-
tion can begin any time after the REN0 Receive Enable bit (SCON0.4) is set to logic 1. After the stop bit is
received, the data byte will be loaded into the SBUF0 receive register if the following conditions are met:
RI0 must be logic 0, and if MCE0 is logic 1, the stop bit must be logic 1. In the event of a receive data over-
run, the first received 8 bits are latched into the SBUF0 receive register and the following overrun data bits
are lost.

If these conditions are met, the eight bits of data is stored in SBUF0, the stop bit is stored in RB80 and the
RI0 flag is set. If these conditions are not met, SBUF0 and RB80 will not be loaded and the RI0 flag will not
be set. An interrupt will occur if enabled when either TI0 or RI0 is set.

Figure 29.4. 8-Bit UART Timing Diagram

OR

RS-232
C8051xxxx

RS-232
LEVEL
XLTR

TX

RX

C8051xxxx
RX

TX

MCU
RX

TX

D1D0 D2 D3 D4 D5 D6 D7
START

BIT
MARK

STOP
BIT

BIT TIMES

BIT SAMPLING

SPACE
Rev. 1.0 222

C8051F39x/37x
SFR Address = 0x92; SFR Page = 0

SFR Address = 0x93; SFR Page = 0

SFR Address = 0x94; SFR Page = 0

SFR Definition 31.15. TMR3RLL: Timer 3 Reload Register Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3RLL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3RLL[7:0] Timer 3 Reload Register Low Byte.

TMR3RLL holds the low byte of the reload value for Timer 3.

SFR Definition 31.16. TMR3RLH: Timer 3 Reload Register High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3RLH[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3RLH[7:0] Timer 3 Reload Register High Byte.

TMR3RLH holds the high byte of the reload value for Timer 3.

SFR Definition 31.17. TMR3L: Timer 3 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR3L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR3L[7:0] Timer 3 Low Byte.

In 16-bit mode, the TMR3L register contains the low byte of the 16-bit Timer 3. In
8-bit mode, TMR3L contains the 8-bit low byte timer value.
Rev. 1.0 263

C8051F39x/37x
SFR Address = 0x92; SFR Page = F

SFR Address = 0x93; SFR Page = F

SFR Address = 0x94; SFR Page = F

SFR Definition 31.20. TMR4RLL: Timer 4 Reload Register Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR4RLL[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR4RLL[7:0] Timer 4 Reload Register Low Byte.

TMR4RLL holds the low byte of the reload value for Timer 4.

SFR Definition 31.21. TMR4RLH: Timer 4 Reload Register High Byte

Bit 7 6 5 4 3 2 1 0

Name TMR4RLH[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR4RLH[7:0] Timer 4 Reload Register High Byte.

TMR4RLH holds the high byte of the reload value for Timer 4.

SFR Definition 31.22. TMR4L: Timer 4 Low Byte

Bit 7 6 5 4 3 2 1 0

Name TMR4L[7:0]

Type R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7:0 TMR4L[7:0] Timer 4 Low Byte.

In 16-bit mode, the TMR4L register contains the low byte of the 16-bit
Timer 4. In 8-bit mode, TMR4L contains the 8-bit low byte timer value.
268 Rev. 1.0

C8051F39x/37x
SFR Addresses: PCA0CPM0 = 0xDA, PCA0CPM1 = 0xDB, PCA0CPM2 = 0xDC

SFR Pages: PCA0CPM0 = All Pages, PCA0CPM1 = All Pages, PCA0CPM2 = All Pages

SFR Definition 32.5. PCA0CPMn: PCA Capture/Compare Mode

Bit 7 6 5 4 3 2 1 0

Name PWM16n ECOMn CAPPn CAPNn MATn TOGn PWMn ECCFn

Type R/W R/W R/W R/W R/W R/W R/W R/W

Reset 0 0 0 0 0 0 0 0

Bit Name Function

7 PWM16n 16-bit Pulse Width Modulation Enable.

This bit enables 16-bit mode when Pulse Width Modulation mode is enabled.
0: 8 to 11-bit PWM selected.
1: 16-bit PWM selected.

6 ECOMn Comparator Function Enable.

This bit enables the comparator function for PCA module n when set to 1.

5 CAPPn Capture Positive Function Enable.

This bit enables the positive edge capture for PCA module n when set to 1.

4 CAPNn Capture Negative Function Enable.

This bit enables the negative edge capture for PCA module n when set to 1.

3 MATn Match Function Enable.

This bit enables the match function for PCA module n when set to 1. When enabled,
matches of the PCA counter with a module's capture/compare register cause the
CCFn bit in PCA0MD register to be set to logic 1.

2 TOGn Toggle Function Enable.

This bit enables the toggle function for PCA module n when set to 1. When enabled,
matches of the PCA counter with a module's capture/compare register cause the
logic level on the CEXn pin to toggle. If the PWMn bit is also set to logic 1, the mod-
ule operates in Frequency Output Mode.

1 PWMn Pulse Width Modulation Mode Enable.

This bit enables the PWM function for PCA module n when set to 1. When enabled,
a pulse width modulated signal is output on the CEXn pin. 8 to 11-bit PWM is used if
PWM16n is cleared; 16-bit mode is used if PWM16n is set to logic 1. If the TOGn bit
is also set, the module operates in Frequency Output Mode.

0 ECCFn Capture/Compare Flag Interrupt Enable.

This bit sets the masking of the Capture/Compare Flag (CCFn) interrupt.
0: Disable CCFn interrupts.
1: Enable a Capture/Compare Flag interrupt request when CCFn is set.

Note: When the WDTE bit is set to 1, the PCA0CPM2 register cannot be modified, and module 2 acts as the
watchdog timer. To change the contents of the PCA0CPM2 register or the function of module 2, the Watchdog
Timer must be disabled.
294 Rev. 1.0

