
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	40
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	48K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 22x16b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA, WLCSP
Supplier Device Package	64-WLCSP (3.35x3.32)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk22fn256cah12r

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Ordering Information

Part Number	Mer	Number of GPIOs	
	Flash (KB)	SRAM (KB)	
MK22FN256CAH12R	256	48	40
MK22FN128CAH12R	128	48	40

Device Revision Number

Device Mask Set Number	SIM_SDID[REVID]	JTAG ID Register[PRN]
0N51M	0001	0001

Related Resources

Туре	Description	Document
Selector Guide	The NXP Solution Advisor is a web-based tool that features interactive application wizards and a dynamic product selector	KINETISKMCUSELGD
Reference Manual	The Reference Manual contains a comprehensive description of the structure and function (operation) of a device.	K22P121M120SF8RM
Data Sheet	The Data Sheet is this document. It includes electrical characteristics and signal connections.	K22P64M120SF8
Chip Errata	The chip mask set Errata provides additional or corrective information for a particular device mask set.	KINETIS_K_xN51M ¹
Package drawing	Package dimensions are provided by part number: • MK22FN256CAH12R • MK22FN128CAH12R	Package drawing: • 98ASA00650D • 98ASA00650D

1. To find the associated resource, go to nxp.com and perform a search using this term with the *x* replaced by the revision of the device you are using.

Figure 1 shows the functional modules in the chip.

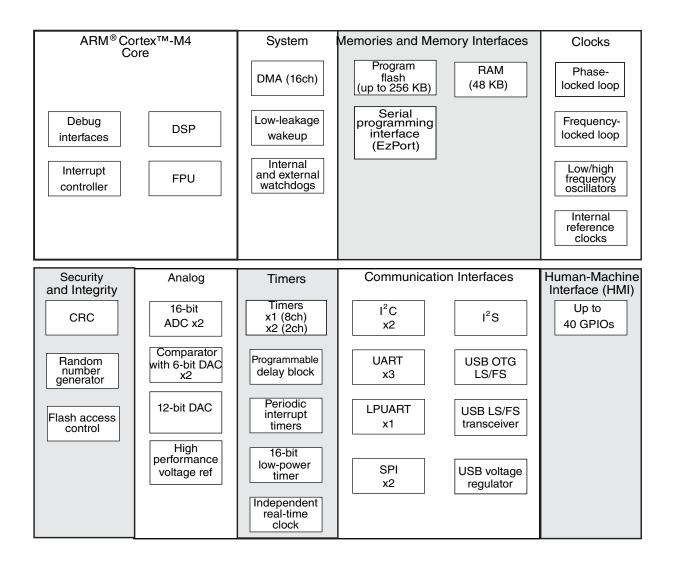


Figure 1. Functional block diagram

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	@ 3.0V		25.75	26.44	mA	
I _{DD_HSRUN}	High Speed Run mode current - all peripheral clocks disabled, code executing from flash					
	@ 1.8V		23.6	24.29	mA	2
	@ 3.0V	—	23.7	24.39	mA	
I _{DD_HSRUN}	High Speed Run mode current — all peripheral clocks enabled, code executing from flash					
	@ 1.8V	—	31.9	32.59	mA	5
	@ 3.0V	—	32.0	32.69	mA	
I _{DD_RUN}	Run mode current in Compute operation — CoreMark benchmark code executing from flash					
	@ 1.8V	—	15.8	16.49	mA	3, 4, 6
	@ 3.0V	—	15.8	16.49	mA	
I _{DD_RUN}	Run mode current in Compute operation — code executing from flash					
	@ 1.8V		14.00	15.50	mA	6
	@ 3.0V		14.00	15.69	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks disabled, code executing from flash					
	@ 1.8V	—	15.3	15.99	mA	7
	@ 3.0V	—	15.4	16.09	mA	
I _{DD_RUN}	Run mode current — all peripheral clocks enabled, code executing from flash					
	@ 1.8V	—	20.4	21.09	mA	8
	@ 3.0V					
	• @ 25°C		20.5	21.19	mA	
	• @ 70°C	—	20.5	21.19	mA	
	• @ 85°C	—	20.5	21.19	mA	
I _{DD_RUN}	Run mode current — Compute operation, code executing from flash					
	@ 1.8V		14.0	14.69	mA	9
	@ 3.0V					
	• @ 25°C	—	14.0	14.69	mA	
	• @ 70°C	—	14.0	14.69	mA	
	• @ 85°C		14.0	14.69	mA	
I _{DD_WAIT}	Wait mode high frequency current at 3.0 V — all peripheral clocks disabled	—	8.1	8.79	mA	7
I _{DD_WAIT}	Wait mode reduced frequency current at 3.0 V — all peripheral clocks disabled		4.4	5.09	mA	10

Table 6. Power consumption operating behaviors (continued)

General

- 80MHz core and system clock, 40MHz bus clock, and 26.67MHz flash clock. MCG configured for FEI mode. Compute
 operation.
- 10. 25MHz core and system clock, 25MHz bus clock, and 25MHz flash clock. MCG configured for FEI mode.
- 11. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. Compute operation. Code executing from flash.
- 12. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled. Code executing from flash.
- 13. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks enabled but peripherals are not in active operation. Code executing from flash.
- 14. 4 MHz core, system, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 15. Includes 32kHz oscillator current and RTC operation.

Table 7. Low power mode peripheral adders—typical value

Symbol	Description		•	Tempera	ature (°C	C)		Unit
		-40	25	50	70	85	105	
I _{IREFSTEN4MHz}	4 MHz internal reference clock (IRC) adder. Measured by entering STOP or VLPS mode with 4 MHz IRC enabled.	56	56	56	56	56	56	μA
IIREFSTEN32KHz	32 kHz internal reference clock (IRC) adder. Measured by entering STOP mode with the 32 kHz IRC enabled.	52	52	52	52	52	52	μA
IEREFSTEN4MHz	External 4 MHz crystal clock adder. Measured by entering STOP or VLPS mode with the crystal enabled.	206	228	237	245	251	258	uA
IEREFSTEN32KHz	External 32 kHz crystal clock adder by means of the OSC0_CR[EREFSTEN and EREFSTEN] bits. Measured by entering all modes with the crystal enabled.							
	VLLS1	440	490	540	560	570	580	nA
	VLLS3	440	490	540	560	570	580	
	LLS	490	490	540	560	570	680	
	VLPS	510	560	560	560	610	680	
	STOP	510	560	560	560	610	680	
I _{48MIRC}	48 Mhz internal reference clock	350	350	350	350	350	350	μA
I _{CMP}	CMP peripheral adder measured by placing the device in VLLS1 mode with CMP enabled using the 6-bit DAC and a single external input for compare. Includes 6-bit DAC power consumption.	22	22	22	22	22	22	μA
I _{RTC}	RTC peripheral adder measured by placing the device in VLLS1 mode with external 32 kHz crystal enabled by means of the RTC_CR[OSCE] bit and the RTC ALARM set for 1 minute. Includes ERCLK32K (32 kHz external crystal) power consumption.	432	357	388	475	532	810	nA
I _{UART}	UART peripheral adder measured by placing the device in STOP or VLPS							

Symbol	Description		•	Tempera	ature (°C	;)		Unit
		-40	25	50	70	85	105	
	mode with selected clock source waiting for RX data at 115200 baud rate. Includes selected clock source power consumption.							
	MCGIRCLK (4 MHz internal reference clock)	66	66	66	66	66	66	μA
	>OSCERCLK (4 MHz external crystal)	214	237	246	254	260	268	
I _{BG}	Bandgap adder when BGEN bit is set and device is placed in VLPx, LLS, or VLLSx mode.	45	45	45	45	45	45	μA
I _{ADC}	ADC peripheral adder combining the measured values at V_{DD} and V_{DDA} by placing the device in STOP or VLPS mode. ADC is configured for low power mode using the internal clock and continuous conversions.	42	42	42	42	42	42	μA

Table 7. Low power mode peripheral adders—typical value (continued)

2.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at frequencies between 50 MHz and 100MHz. MCG in PEE mode at frequencies greater than 100 MHz.
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFA

Figure 4. VLPR mode supply current vs. core frequency

2.2.6 EMC radiated emissions operating behaviors Table 8. EMC radiated emissions operating behaviors for 64 LQFP package

Parame ter	Conditions	Clocks	Frequency range	Level (Typ.)	Unit	Notes
V _{EME}	Device configuration,	FSYS = 120 MHz	150 kHz–50 MHz	14	dBuV	1, 2, 3
test	test conditions and EM testing per standard IEC 61967-2.	FBUS = 60 MHz	50 MHz–150 MHz	23		
		External crystal = 8 MHz	150 MHz–500 MHz	23		
	Supply voltages:		500 MHz-1000 MHz	9		
	 VREGIN (USB) = 5.0 V VDD = 3.3 V 		IEC level	L		4
	Temp = 25°C					

1. Measurements were made per IEC 61967-2 while the device was running typical application code.

2. Measurements were performed on the 64LQFP device, MK22FN512VLH12 .

Symbol	Description	Min.	Max.	Unit
S11	SWD_CLK high to SWD_DIO data valid	—	25	ns
S12	SWD_CLK high to SWD_DIO high-Z	5		ns

Table 13. SWD full voltage range electricals (continued)

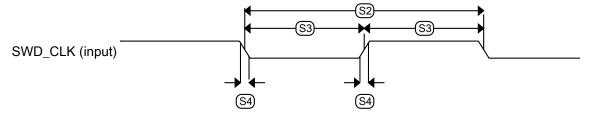
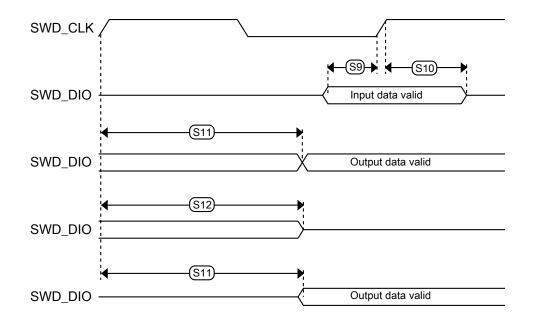



Figure 5. Serial wire clock input timing

3.1.2 JTAG electricals

Table 14. JTAG limited voltage range electricals

Symbol	Operating voltage		Max.	Unit
	Operating voltage	2.7	3.6	V
J1	TCLK frequency of operation			MHz
	Table continues on the next page	`		

3.3.1 MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
f _{ints_ft}		frequency (slow clock) — nominal VDD and 25 °C	_	32.768	_	kHz	
Δf_{ints_t}		internal reference frequency voltage and temperature	_	+0.5/-0.7	± 2	%	
f_{ints_t}	Internal reference frequency (slow clock) — user trimmed		31.25	_	39.0625	kHz	
$\Delta_{fdco_res_t}$	Resolution of trimmed average DCO output frequency at fixed voltage and temperature — using SCTRIM and SCFTRIM		_	± 0.3	± 0.6	%f _{dco}	1
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over voltage and temperature		_	+0.5/-0.7	± 2	%f _{dco}	1, 2
Δf_{dco_t}	Total deviation of trimmed average DCO output frequency over fixed voltage and temperature range of 0–70°C		_	± 0.3	± 1.5	%f _{dco}	1
f _{intf_ft}		frequency (fast clock) — nominal VDD and 25°C	—	4	—	MHz	
$\Delta f_{intf_{ft}}$	(fast clock) over te	on of internal reference clock emperature and voltage — mominal VDD and 25 °C	_	+1/-2	± 5	%f _{intf_ft}	
f _{intf_t}	Internal reference frequency (fast clock) — user trimmed at nominal VDD and 25 °C		3	_	5	MHz	
f _{loc_low}	Loss of external clock minimum frequency — RANGE = 00		(3/5) x f _{ints_t}	_	—	kHz	
f _{loc_high}	Loss of external cl RANGE = 01, 10,	lock minimum frequency — or 11	(16/5) x f _{ints_t}	_	—	kHz	
		FL	L				
f _{fll_ref}	FLL reference free	quency range	31.25	_	39.0625	kHz	
f _{dco}	DCO output frequency range	Low range (DRS=00) 640 × f _{fll_ref}	20	20.97	25	MHz	3, 4
		Mid range (DRS=01) 1280 × f _{flL_ref}	40	41.94	50	MHz	
		Mid-high range (DRS=10) 1920 × f _{fll_ref}	60	62.91	75	MHz	
		High range (DRS=11) 2560 × f _{fll ref}	80	83.89	100	MHz	
dco_t_DMX3 2	DCO output frequency	Low range (DRS=00) 732 × f _{fll_ref}		23.99		MHz	5, 6
		Mid range (DRS=01) 1464 × f _{fll_ref}		47.97		MHz	
		Mid-high range (DRS=10)		71.99		MHz	

Table 16. MCG specifications

Symbol	Description		Min.	Тур.	Max.	Unit	Notes
		$2197 \times f_{fll_ref}$					
		High range (DRS=11)	_	95.98	—	MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter			_	_	ps	
	• f _{VCO} = 48 M		_	180	_		
	• f _{VCO} = 98 M	Hz		150			
t _{fll_acquire}	FLL target frequer	ncy acquisition time		_	1	ms	7
	•	PI	_L	Į	· · ·		1
f _{vco}	VCO operating fre	equency	48.0	_	120	MHz	
I _{pll}	PLL operating cur		_	1060	_	μA	8
		/IHz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} = V multiplier = 48)				ŗ	
I _{pll}	PLL operating cur	• •					8
pii	• PLL @ 48 N	/Hz (f _{osc_hi_1} = 8 MHz, f _{pll_ref} =	—	600		μA	
		V multiplier = 24)					
f _{pll_ref}	PLL reference free		2.0	—	4.0	MHz	
J _{cyc_pll}	PLL period jitter (F	RMS)	—	120		ps	9
	• f _{vco} = 48 MH	łz	_	75		ps	
	• f _{vco} = 100 M	IHz					
J _{acc_pll}	PLL accumulated	jitter over 1µs (RMS)		1350		ne	9
	• f _{vco} = 48 MH	łz	—	600		ps	
	• f _{vco} = 100 M			600		ps	
		any talaranaa	. 1 40			0/	
D _{lock}	Lock entry freque		± 1.49		± 2.98	%	
D _{unl}	Lock exit frequence		± 4.47		± 5.97	%	
t _{pll_lock}	Lock detector dete	ection time		_	150 × 10 ⁻⁶ + 1075(1/	S	10
					f _{pll_ref})		

Table 16.	MCG s	pecifications	(continued))
-----------	-------	---------------	-------------	---

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. 2.0 V <= VDD <= 3.6 V.
- 3. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco_t}) over voltage and temperature should be considered.
- 5. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 6. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 8. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- 9. This specification was obtained using a NXP developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.

3.3.2 IRC48M specifications

Table 17. IRC48M specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
I _{DD48M}	Supply current	_	400	500	μA	
f _{irc48m}	Internal reference frequency	_	48		MHz	
$\Delta f_{irc48m_ol_hv}$	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over 0°C to 70°C	_				
	Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1)	—	± 0.2	± 0.5	%f _{irc48m}	1
$\Delta f_{irc48m_ol_hv}$	Open loop total deviation of IRC48M frequency at high voltage (VDD=1.89V-3.6V) over full temperature					
	Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1)	—	± 0.4	± 1.0	%f _{irc48m}	1
$\Delta f_{irc48m_ol_lv}$	Open loop total deviation of IRC48M frequency at low voltage (VDD=1.71V-1.89V) over full temperature					1
	Regulator disable (USB_CLK_RECOVER_IRC_EN[REG_EN]=0)	—	± 0.4	± 1.0	%f _{irc48m}	
	Regulator enable (USB_CLK_RECOVER_IRC_EN[REG_EN]=1)	—	± 0.5	± 1.5		
Δf_{irc48m_cl}	Closed loop total deviation of IRC48M frequency over voltage and temperature		_	± 0.1	%f _{host}	2
J _{cyc_irc48m}	Period Jitter (RMS)	—	35	150	ps	
t _{irc48mst}	Startup time	—	2	3	μs	3

1. The maximum value represents characterized results equivalent to the mean plus or minus three times the standard deviation (mean ± 3 sigma).

- Closed loop operation of the IRC48M is only feasible for USB device operation; it is not usable for USB host operation. It is enabled by configuring for USB Device, selecting IRC48M as USB clock source, and enabling the clock recover function (USB_CLK_RECOVER_IRC_CTRL[CLOCK_RECOVER_EN]=1, USB_CLK_RECOVER_IRC_EN]=1).
- 3. IRC48M startup time is defined as the time between clock enablement and clock availability for system use. Enable the clock by one of the following settings:
 - USB_CLK_RECOVER_IRC_EN[IRC_EN]=1 or
 - MCG operating in an external clocking mode and MCG_C7[OSCSEL]=10 or MCG_C5[PLLCLKEN0]=1, or
 - SIM_SOPT2[PLLFLLSEL]=11

3.3.3 Oscillator electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)		V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	

 Table 18.
 Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x and C_y can be provided by using either integrated capacitors or external components.
- 4. When low-power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

3.3.3.2 Oscillator frequency specifications Table 19. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	_	_	50	MHz	1, 2
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	—	750		ms	3, 4
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	250		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

- 2. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.
- 3. Proper PC board layout procedures must be followed to achieve specifications.

3.4.1.4 Reliability specifications Table 25. NVM reliability specifications

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes			
	Program Flash								
t _{nvmretp10k}	Data retention after up to 10 K cycles	5	50	_	years				
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	_	years	_			
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2			

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25 °C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40 °C \leq T_i \leq 125 °C.

3.4.2 EzPort switching specifications Table 26. EzPort switching specifications

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
EP1	EZP_CK frequency of operation (all commands except READ)	_	f _{SYS} /2	MHz
EP1a	EZP_CK frequency of operation (READ command)	—	f _{SYS} /8	MHz
EP2	EZP_CS negation to next EZP_CS assertion	2 x t _{EZP_CK}	_	ns
EP3	EZP_CS input valid to EZP_CK high (setup)	5	—	ns
EP4	EZP_CK high to EZP_CS input invalid (hold)	5	_	ns
EP5	EZP_D input valid to EZP_CK high (setup)	2	—	ns
EP6	EZP_CK high to EZP_D input invalid (hold)	5	—	ns
EP7	EZP_CK low to EZP_Q output valid	—	25	ns
EP8	EZP_CK low to EZP_Q output invalid (hold)	0	—	ns
EP9	EZP_CS negation to EZP_Q tri-state	—	12	ns

Symbol	Description	Conditions	Min.	Typ. ¹	Max.	Unit	Notes
ΔV_{SSA}	Ground voltage	Delta to V_{SS} ($V_{SS} - V_{SSA}$)	-100	0	+100	mV	2
V _{REFH}	ADC reference voltage high		1.13	V _{DDA}	V _{DDA}	V	
V _{REFL}	ADC reference voltage low		V _{SSA}	V _{SSA}	V _{SSA}	V	
V _{ADIN}	Input voltage	16-bit differential mode	VREFL		31/32 * VREFH	V	
		All other modes	VREFL	_	VREFH		
C _{ADIN}	Input	16-bit mode	_	8	10	pF	
	capacitance	 8-bit / 10-bit / 12-bit modes 	_	4	5		
R _{ADIN}	Input series resistance		—	2	5	kΩ	
R _{AS}	Analog source resistance (external)	13-bit / 12-bit modes f _{ADCK} < 4 MHz	_	_	5	kΩ	3
f _{ADCK}	ADC conversion clock frequency	≤ 13-bit mode	1.0		24.0	MHz	4
f _{ADCK}	ADC conversion clock frequency	16-bit mode	2.0		12.0	MHz	4
C _{rate}	ADC conversion	≤ 13-bit modes					5
	rate	No ADC hardware averaging	20	_	1200	Ksps	
		Continuous conversions enabled, subsequent conversion time					
C _{rate}	ADC conversion	16-bit mode					5
	rate	No ADC hardware averaging	37	—	461	Ksps	
		Continuous conversions enabled, subsequent conversion time					

Table 27. 16-bit ADC operating conditions (continued)

- 1. Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 1.0 MHz, unless otherwise stated. Typical values are for reference only, and are not tested in production.
- 2. DC potential difference.
- 3. This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low as possible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R_{AS}/C_{AS} time constant should be kept to < 1 ns.
- 4. To use the maximum ADC conversion clock frequency, CFG2[ADHSC] must be set and CFG1[ADLPC] must be clear.
- 5. For guidelines and examples of conversion rate calculation, download the ADC calculator tool.

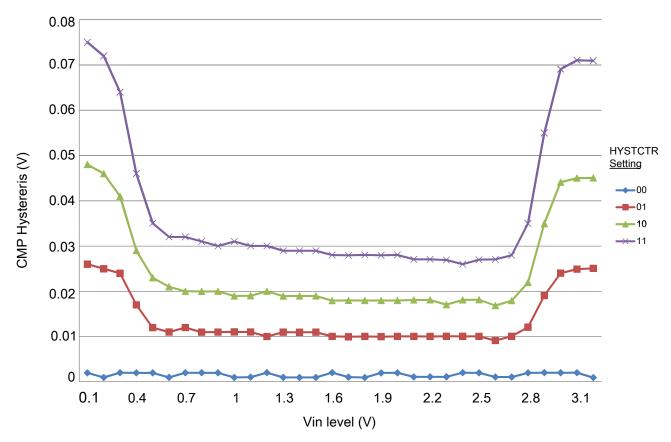


Figure 15. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

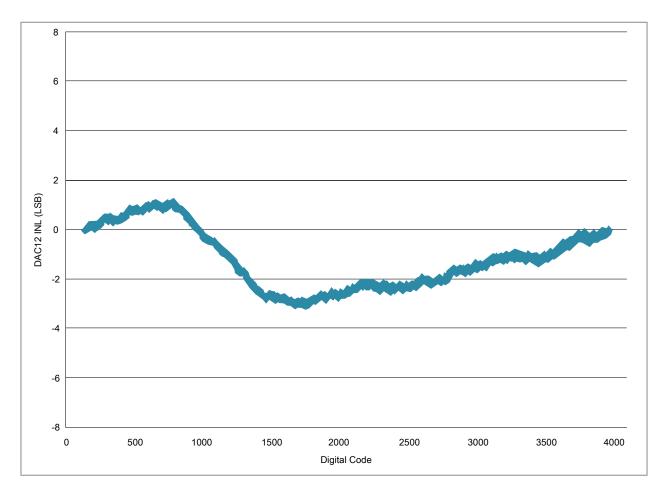


Figure 17. Typical INL error vs. digital code

Table 44.	I2S/SAI slave mode timing in Normal Run, Wait and Stop modes (limited voltage
	range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	2	_	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	20	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	4.5	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹		25	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

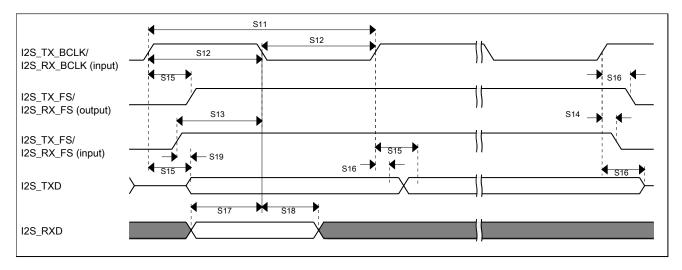


Figure 25. I2S/SAI timing — slave modes

3.8.7.2 Normal Run, Wait and Stop mode performance over the full operating voltage range

This section provides the operating performance over the full operating voltage for the device in Normal Run, Wait and Stop modes.

Table 45. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S1	I2S_MCLK cycle time	40	_	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period

5 Pinout

5.1 K22F Signal Multiplexing and Pin Assignments

The following table shows the signals available on each pin and the locations of these pins on the devices supported by this document. The Port Control Module is responsible for selecting which ALT functionality is available on each pin.

64 WLC SP	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
A8	PTE0/ CLKOUT32K	ADC1_SE4a	ADC1_SE4a	PTE0/ CLKOUT32K	SPI1_PCS1	UART1_TX			I2C1_SDA	RTC_ CLKOUT	
B8	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX			I2C1_SCL	SPI1_SIN	
D5	VDD	VDD	VDD								
D6	VSS	VSS	VSS								
C8	USB0_DP	USB0_DP	USB0_DP								
D8	USB0_DM	USB0_DM	USB0_DM								
C7	VOUT33	VOUT33	VOUT33								
D7	VREGIN	VREGIN	VREGIN								
E8	ADC0_DP1	ADC0_DP1	ADC0_DP1								
F8	ADC0_DM1	ADC0_DM1	ADC0_DM1								
E7	ADC0_DP0/ ADC1_DP3	ADC0_DP0/ ADC1_DP3	ADC0_DP0/ ADC1_DP3								
F7	ADC0_DM0/ ADC1_DM3	ADC0_DM0/ ADC1_DM3	ADC0_DM0/ ADC1_DM3								
G8	VDDA	VDDA	VDDA								
F6	VREFH	VREFH	VREFH								
G7	VREFL	VREFL	VREFL								
H8	VSSA	VSSA	VSSA								
G6	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18	VREF_OUT/ CMP1_IN5/ CMP0_IN5/ ADC1_SE18								
G5	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23	DAC0_OUT/ CMP1_IN3/ ADC0_SE23								
H7	XTAL32	XTAL32	XTAL32								
H6	EXTAL32	EXTAL32	EXTAL32								
H5	VBAT	VBAT	VBAT								

6.2 Format

Part numbers for this device have the following format:

Q K## A M FFF R T PP CC N

6.3 Fields

This table lists the possible values for each field in the part number (not all combinations are valid):

Field	Description	Values
Q	Qualification status	 M = Fully qualified, general market flow, full reel P = Prequalification K = Fully qualified, general market flow, 100 piece reel
K##	Kinetis family	• K22
A	Key attribute	 D = Cortex-M4 w/ DSP F = Cortex-M4 w/ DSP and FPU
М	Flash memory type	 N = Program flash only X = Program flash and FlexMemory
FFF	Program flash memory size	 128 = 128 KB 256 = 256 KB 512 = 512 KB
R	Silicon revision	 Z = Initial (Blank) = Main A = Revision after main
Т	Temperature range (°C)	 V = -40 to 105 C = -40 to 85
PP	Package identifier	• AH = 64 WLCSP (3.36 mm x 3.33 mm)
СС	Maximum CPU frequency (MHz)	 5 = 50 MHz 7 = 72 MHz 10 = 100 MHz 12 = 120 MHz 15 = 150 MHz
N	Packaging type	R = Tape and reel

6.4 Example

This is an example part number:

MK22FN256CAH12R

7.2 Examples

Operating rating:

Symbol	Description	Min.	Max.	Unit	
V _{DD}	1.0 V core supply voltage	-0.3	1.2	V	

Operating requirement:

Operating require	ment:			
Symbol	Description	Min.	Max.	Unit
V _{DD}	1.0 V core supply voltage	0.9	1.1	V

Operating behavior that includes a typical value:

Symbol	Description	Mi	n.		Тур.	Max.	Unit
I _{WP}	Digital I/O weak pullup/pulldown current	10	LANNE	70		130	μA

Typical-value conditions 7.3

Typical values assume you meet the following conditions (or other conditions as specified):

Symbol	Description	Value	Unit
T _A	Ambient temperature	25	C°
V _{DD}	Supply voltage	3.3	V

How to Reach Us:

Home Page: nxp.com

Web Support: nxp.com/support Information in this document is provided solely to enable system and software implementers to use NXP products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits based on the information in this document. NXP reserves the right to make changes without further notice to any products herein.

NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications, and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each customer application by customer's technical experts. NXP does not convey any license under its patent rights nor the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the following address:<u>nxp.com/SalesTermsandConditions</u>.

NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, Freescale, the Freescale logo, and Kinetis are trademarks of NXP B.V. All other product or service names are the property of their respective owners. ARM, the ARM Powered logo, and Cortex are registered trademarks of ARM Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved.

© 2014-2016 NXP B.V.

Document Number K22P64M120SF8 Revision 7, 08/2016

