

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	nX-U16/100
Core Size	16-Bit
Speed	16.8MHz
Connectivity	I ² C, SSP, UART/USART
Peripherals	Melody Driver, POR, PWM, WDT
Number of I/O	36
Program Memory Size	64KB (32K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 16
RAM Size	3K x 16
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/rohm-semi/ml620q504h-nnntbwbx

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Successive approximation type A/D converter (SA-ADC)
 - Input × 12 channels
 - 12-bit A/D converter
 - Starting by trigger of Timer/FTM function.
 - Capacitive touch sense function
- Analog Comparator (CMP)
 - Input \times 2ch
 - Common mode input voltage: 0.2V to V_{DD} –0.2V
 - Input offset voltage: 30mV(max)
 - Interrupt allow edge selection and sampling selection are selectable
- Voltage Level Supervisor (VLS)
 - Threshold voltages: selectable from 13 levels
 - interrupt or reset generate are selectable
- Low Level Detector(LLD)
 - Judgement Voltage: 1.8V±0.2V
 - Usable as low level detection reset
- Reset
 - Reset by the RESET_N pin
 - Reset by power-on detection
 - Reset by overflow of watchdog timer (WDT)
 - Reset by Voltage Leve Supervisor(VLS)
 - Reset by Low Level Detector(LLD)
- Clock
 - Low-speed clock: (This LSI can not guarantee the operation without low-speed clock)
 - Crystal oscillation (32.768 kHz)
 - External clock input (30kHz to 36kHz)
 - Built-in RC oscillation (32.768kHz)
 - High-speed clock:
 - Crystal/Ceramic oscillation (16 MHz)
 - External clock input (300kHz to 16 MHz)
 - Built-in RC oscillation (16MHz)
- Power management
 - HALT mode: Instruction execution by CPU is suspended. All peripheral circuits can keep in operating states.
 - HALT-H mode: Instruction execution by CPU is suspended. Stop of high-speed oscillation automatically. All peripheral circuits can keep in operating states.
 - DEEP-HALT mode: Instruction execution by CPU is suspended. Some peripheral circuits(Timer, LTB, etc.) can keep in operating states.
 - STOP mode: Stop of low-speed oscillation and high-speed oscillation (Operations of CPU and peripheral circuits are stopped.)
 - Clock gear: The frequency of high-speed system clock can be changed by software (1/1, 1/2, 1/4, 1/8, 1/16, 1/32 of the oscillation clock)
 - Block Control Function: Power down (reset registers and stop clock supply) the circuits of unused peripherals.

ML620Q503H/Q504H

BLOCK DIAGRAM

Block Diagram of ML620Q503H/Q504H

Figure 1. Block Diagram of ML620Q503H/Q504H

FEDL620Q504H-01

ML620Q503H/Q504H

PKG			1st Functio	n	2nd/3rd/4th Function								
Pin No.	Pin name	I/O	Reset State	Function	pin name	I/O	function	pin name	I/O	function	pin name	I/O	function
37	P54/ EXI54	I/O	Hi-Z output	Input-Output port/ External interrupt	SDA1	I/O	I ² C data input/output	SOUTF0	0	SSIOF data output	RXDF0	I	UARTF data input
38	P55/ EXI55	I/O	Hi-Z output	Input-Output port/ External interrupt	SCL1	0	I ² C clock output	SINF0	Ι	SSIOF data input	TXDF0	0	UARTF data output
39	P56/ EXI56/ TMCKI6	I/O	Hi-Z output	Input-Output port/ External interrupt/ Timer clock input	LSCLKO	0	Low-speed clock output	SCKF0	I/O	SSIOF clock input/output	TMOUTE	0	FTM output
40	P57/ EXI57/ TMCKI7	I/O	Hi-Z output	Input-Output port/ External interrupt/ Timer clock input	OUTCLK	0	High-speed clock output	SSF0	I/O	SSIOF select input/output	TMOUTF	0	FTM output

PIN DESCRIPTION

The pin name represents the function pin name of the primary function of each terminal, The pin mode represents the set of mode register of Port Control. (1st:primary function, 2nd:secondary function, 3rd: tertiary function, 4th: quartic function)

Pin name	I/O	Description	LSI pin name	Pin mode	Logic
System			-		
RESET_N	I	Reset input pin. When this pin is set to a "L" level, system reset mode is set and the internal section is initialized. When this pin is set to a "H" level subsequently, program execution starts. A pull-up resistor is internally connected.	RESET_N	_	L
XT0	I	Crystal connection pin for low-speed clock.	PXT0	1st	
XT1	0	Capacitors C_{DL} and C_{GL} are connected across this pin and V_{SS} as required.	PXT1	1st	
LSCLKI	Ι	External clock input for Low-speed clock.	PXT1	1st	_
OSC0	Ι	Crystal/ceramic connection pin for high-speed	P10	1st	_
OSC1	0	clock (16 MHz max.). Capacitors C_{DH} and C_{GH} are connected across this pin and V_{ss} .	P11	1st	
CLKIN	Ι	External clock input for High-speed clock.	P11	1st	
LSCLKO	0	Low-speed clock output pin.	P46,P56	2nd	_
OUTCLK	0	High-speed clock output pin.	P47,P57	2nd	_
General-purpos	se inp				
PXT0-PXT1	I	General-purpose input port(without pull-up/pull-down resister).	PXT0- PXT1	1st	_
P00-P05	I/O	General-purpose input/output port.	P00-P05	1st	_
P10-P11	I/O	General-purpose input/output port.	P10-P11	1st	
P20-P23	I/O	General-purpose input/output port.	P20-P23	1st	_
P30-P37	I/O	General-purpose input/output port.	P30-P37	1st	_
P40-P47	I/O	General-purpose input/output port.	P40-P47	1st	_
P50-P57	I/O	General-purpose input/output port.	P50-P57	1st	_
External interru	ipt				
EXII0-EXII1 EXI00-05 EXI20-23 EXI30-37 EXI40-47 EXI50-57	I	External maskable interrupt input pins. It is possible, for each bit, to specify whether the interrupt is enabled and select the interrupt edge by software.	PXT0-PXT1 P00-P05 P20-P23 P30-P37 P40-P47 P50-P57	1st	H/L
LED					
LED	0	N-channel open drain output pins to drive LED.	P40,P41,P52,P53	1st	
Melody/Buzzer					
MD0	—	Melody/buzzer signal output pin.	P33,P43,P53	2nd	Н
UART					
TXD0	0	UART0 data output pin.	P01,P31,P41,P51	4th	_
RXD0	I	UART0 data input pin.	P00,P30,P40,P50	4th	_
TXDF0	0	UART with FIFO data output pin.	P21,P35,P45,P55	4th	_
RXDF0	I	UART with FIFO data input pin.	P20,P34,P44,P54	4th	_

ML620Q503H/Q504H

Pin name	I/O	Description	LSI pin name	Pin mode	Logic
Successive ap	oroxin	nation type A/D converter			
V _{REF}	I	Reference voltage input pin for successive approximation type A/D converter.			—
AIN0-11	I	Channel 0 analog input for successive approximation type A/D converter.	P34,P35,P36,P37, P20,P21,P22,P23, P00,P01,P02,P03	1st	_
Analog compai	ator				
CMP0P	Ι	Comparator0 Non-inverted input pin.	P30	1st	_
CMP0M	Ι	Comparator0 Inverted input pin.	P31	1st	_
CMP1P	Ι	Comparator1 Non-inverted input pin.	P32	1st	_
CMP1M	Ι	Comparator1 Inverted input pin.	P33	1st	—
For testing					
TEST0	I/O	Input/output pin for testing. A pull-down resistor is internally connected.	TEST0	—	_
TEST1_N	I	Input pin for testing. A pull-up resistor is internally connected.	TEST1_N	_	
Power supply					
V _{SS}		Negative power supply pin.	V _{SS}	—	_
V _{DD}	—	Positive power supply pin.	V _{DD}	—	_
V _{DDL}	_	Positive power supply pin (internally generated) for internal logic. Capacitors C_{L0} and C_{L1} are connected between this pin and V_{SS} .	V _{DDL}	—	_
V _{DDX}		Positive power supply pin (internally generated) for low-speed oscillation. Capacitor C_{X1} is connected between this pin and V_{SS} .	V _{DDX}		—

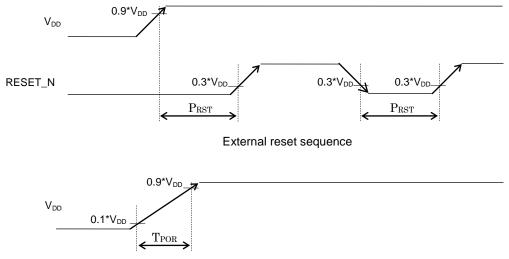
				(V _{SS} =0∖	
Parameter	Symbol	Condition	Range	Unit	
Operating temperature (Ambience)	T _{OP}	_	-40 to +85	°C	
Operating voltage	V _{DD}	_	1.8 to 5.5	V	
Reference voltage	V _{REF}	_	1.8 to V_{DD}	V	
Operating frequency (CPU)	f _{OP}	_	30k to 16.8M	Hz	
Low-speed external clock input	f _{EXTL}	—	30k to 36k	Hz	
High-speed external clock input	f _{EXTH}	_	2M to 16M	Hz	
Low speed crystal oscillation frequency	f _{XTL}	—	32.768k	Hz	
Low speed crystal oscillation external capacitor 1	C _{DL}		6.8 to 12		
	C_{GL}	Using VT-200-FL(from SII)	6.8 to 12	pF	
Low speed crystal	C _{DL}		12 to 16		
oscillation external capacitor 2	C _{GL}	Using DT-26(from Daishinku)	12 to 16	pF	
Low speed crystal *1	C _{DL}		12 to 22		
oscillation external capacitor 3	C _{GL}	Using VT-200-F(from SII)	12 to 22	pF	
High speed Crystal/ Ceramic oscillation frequency	f _{хтн}	_	16M	Hz	
High speed crystal	C _{DH}	Using NX8045GB	12 to 20		
oscillation external capacitor	C_{GH}	(from Nihon Denpa Kogyo)	12 to 20	pF	
Ceramic oscillation	C _{DH}	Using FCSTCE16M0V53	0 to 5		
External capacitor	С _{GH}	(from Murata manufacturing) Build in CL type	0 to 5	pF	
V_{DDL} external capacitor	CL	ESR ≦ 500mΩ	2.2 ± 30%	μF	
V _{DDX} external capacitor	Cx	_	0.33 ± 30%	μF	

Recommended Operating Conditions

*1 : Please use this crystal except DEEPHALT mode because this LSI may not be functioning at DEEPHALT mode with the crystal. Please evaluate the matching when other crystal oscillator/ ceramic oscillator is used.

*2 : Please evaluate on user's conditions, put on $C_{L0}(=0.1 \text{uF})$ if necessary.

ating Conditions of Flas	n wiemory				(V _{SS} = 0V)		
Parameter	Symbol	Cone	dition	Range	Unit		
Operating temperature	т	Data area :	write/erase	-40 to +85	°C		
(Ambience)	Τ _{ΟΡ}	Program area	a : write/erase	0 to +40	°C		
	V _{DD}	Write	/erase	1.8 to 5.5	V		
Operating voltage Write time	C _{EPD}	Data area (1,024B x 2)		Data area (1,024B x 2) 10,000		10,000	times
	CEPP	Program area		100	times		
		Dia ali araa a	Program area	8			
Erase unit	_	Block erase	Data area	2	- KB		
		Sector	erase	1	KB		
Erase time(Maximum)	_	Block erase/Sector erase		Block erase/Sector erase 100		100	ms
Write unit	_	_		1 word (2 byte)	_		


Operating Conditions of Flash Memory

	(V _{DD} =1.	8 to 5.5V, V _{SS}	=0V, Ta=-4		C, unless	otherwi	se specified)
Parameter	Symbol	Condition	Min.	Rating Typ.	Max.	Unit	Measuring circuit
Low speed crystal oscillation start time	T _{XTL}	_			2	S	
High speed crystal oscillation start time	T _{XTH}	_	_	_	20	ms	
Low speed built-in RC	fee	Ta=25°C	typ -1.5%	32.768	typ +1.5%	• kHz	
oscillation frequency ^{*1*2}	f _{LCR}	Ta=-40 ∼ 85°C	typ -5%	32.768	typ +5%	KI	
High speed build-in RC	build-in RC	Ta=25°C	typ -1%	16	typ +1%	MHz	1
oscillation frequency ¹¹²	HCR	Ta=-40 to 85°C	typ -5%	16	typ +5%		
Reset pulse width	P _{RST}	_	200	_	_	us	
Reset noise elimination pulse width	P _{NRST}	_		_	0.3	us	
Power-on reset activation power rise time	T _{POR}	-	-	-	10	ms	

AC characteristics (Oscillation, reset)

*1 : Mean value of 1024 cycle.

*2 : Guarantee value at the time of the shipment.

Power on reset sequence

ML620Q503H/Q504H

DC Characteristics (VLS)

		$(V_{DD}=1.8 \text{ to } 5.5 \text{V}, \text{V}_{SS}=0)$	V, Ta=-40	to +85°C	, unless d	otherwis	se specified)	
Deremeter	Ourseland.	Condition		Rating ^{*1}	ال است	Measuring		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit	
		vlscon = 3H	1.798	1.898	1.998			
		vlscon = 4H	1.900	2.000	2.100			
		vlscon = 5H	1.993	2.093	2.193			
		vlscon = 6H	2.096	2.196	2.296			
	V _{VLS}	vlscon = 7H	2.209	2.309	2.409	V		
VLS judge		vlscon = 8H	2.309	2.409	2.509			
voltage		vlscon = 9H	2.505	2.605	2.705			
(V _{DD} =fall)		vlscon = AH	2.700	2.800	2.900		1	
		vlscon = BH	2.968	3.068	3.168			
		vlscon = CH	3.294	3.394	3.494			
		vlscon = DH	3.697	3.797	3.897			
		vlscon = EH	4.126	4.226	4.326			
		vlscon = FH	4.567	4.667	4.767			
V _{VLS} Hysteresis			V _{VLS}	V _{VLS}	V _{VLS}			
width (V _{DD} =rise)	H _{VLS}	-	× 1.8%	× 3.8%	× 6.3%	V		

DC characteristics (LLD)

$(1)_{1}$ 9 to 5 5 1	$V_{aa}=0V_{ab}=40$ to	195°C unloce	otherwise specified)	
$(v_{DD}=1.0 \ 0.0 \ 0.0 \ v_{0})$	$v_{SS}=0v, 1a=-40 10$	± 00 C, unless	Unierwise specifieu)	

Deremeter	Symbol	Condition		Rating		Unit	Measuring
Parameter	Symbol Condition	Min.	Тур.	Max.	Unit	circuit	
LLD judge Voltage	VLLR	_	1.60	1.80	2.00	V	1

DC characteristics (Analog comparator)

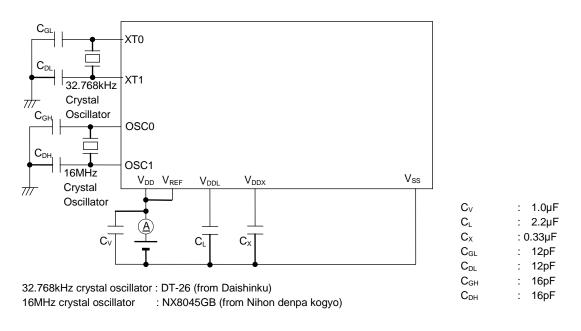
	$(V_{DD}=1.8 \text{ to } 5.5V)$	V _{SS} =0V, Ta=-4	40 to +85°C,	unless other	wise specified)
--	---------------------------------	----------------------------	--------------	--------------	-----------------

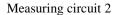
Demonster	Ourseland	Osastitism		Rating	Linit	Measuring		
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit	circuit	
Common input voltage range	V _{CMPIN}	_	0.2	_	V _{DD} -0.2	V		
Input offset voltage	V _{CMPOF}	_	-30	_	30	mV	1	
Comparator judge time	T _{CMP}	CMPP- CMPM =40mV		_	2	μS		

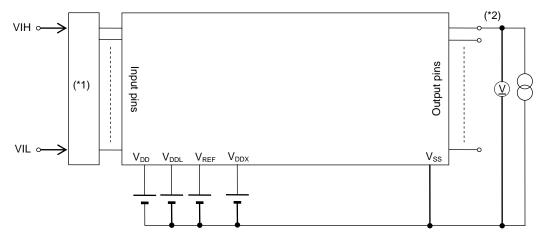
$(V_{DD}=1.8 \text{ to } 5.5V, V_{SS}=0V, Ta=-40 \text{ to } +85^{\circ}C, \text{ unless otherwise specified})$							
	(Rating ¹					Measuring
Parameter	Symbol	Symbol Condition	Min.	Тур.	Max.	Unit	circuit
Input current 1 (RESET N,	IIH1	VIH1=V _{DD}	_	_	1		
TEST1_N)	IIL1	VIL1=V _{SS}	-900	-300	-20		
Input current 2 (TEST0)	IIH2	VIH2=V _{DD}	20	300	900		
	IIL2	VIL2=V _{SS}	-1	_	_		
Input current 3 (PXT0-PXT1, P00-P05, P20-P23, P30-P37, P40-P47, P50-P57)	IIH3	VIH3=V _{DD} (at pull down)	1	15	200		
	IIL3	VIL3=V _{SS} (at pull up)	-200	-15	-1		
	IIH3Z	VIH3=V _{DD} (at high impedance)	_	_	1	μA	4
	IIL3Z	VIL3=V _{SS} (at high impedance)	-1	_	_		
Input current 4 (P10-P11)	IIH4	VIH4=V _{DD} (at pull down)	1	15	200		
	IIL4	VIL4=V _{SS} (at pull up)	-200	-15	-1		
	IIH4Z	VIH4=V _{DD} (at high impedance)	_		2		
	IIL4Z	VIL4=V _{SS} (at high impedance)	-2	_	_		

DC characteristics (IIHL)

*¹ : typ.rating is Ta=25°C , V_{DD}=3.0V

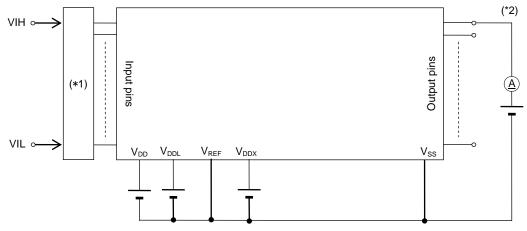

DC characteristics (VIHL)

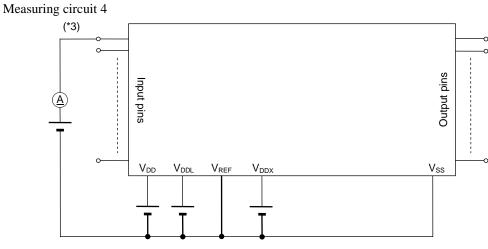

(V_{DD}=1.8 to 5.5V, V_{SS}=0V, Ta=-40 to +85°C, unless otherwise specified)


			Rating				Measuring	
Parameter	Symbol	Condition	Min.	Тур.	Max.	unit	circuit	
Input voltage 1 (RESET_N, TEST0, TEST1_N, PXT0-PXT1, P00-P05, P10-P11, P20-P23, P30-P37, P40-P47, P50-P57)	VIH1	_	0.7 ×V _{DD}	_	V _{DD}	V	5	
	VIL1	_	0	_	0.3 ×V _{DD}	v		
Input terminal capacitance (RESET_N, TEST0, TEST1_N, PXT0-PXT1,, P00-P05, P10-P11, P20-P23, P30-P37, P40-P47, P50-P57)	CIN	f=10kHz V _{rms} =50mV Ta=25°C		_	10	pF		

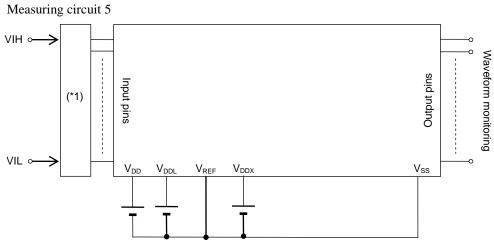
Measuring circuit

Measuring circuit 1





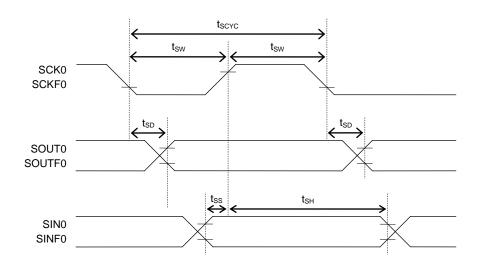
(*1) Input logic circuit to determine the specified measuring conditions. (*2) Measured at the specified output pins.


Measuring circuit 3

 $(^{*}1)$ Input logic circuit to determine the specified measuring conditions. $(^{*}2)$ Measured at the specified output pins.

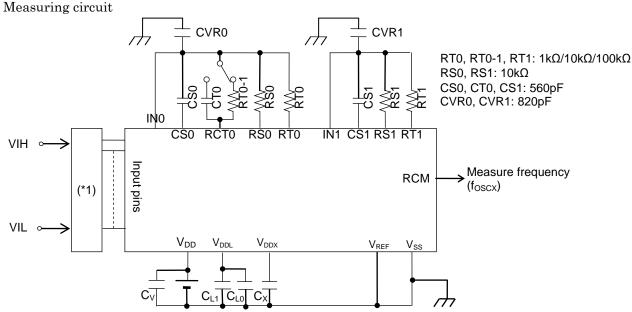
(*3) Measured at the specified output pins.

(*1) Input logic circuit to determine the specified measuring conditions.


		=1.8 to 5.5V, V _{SS} =0V, Ta=-	40 to +85°	°C, unless	otherwise	specified)
Parameter	Symbol	Condition		unit		
		Condition	Min.	Тур.	Max.	unit
SCK input cycle	tscyc	High-speed oscillation is not active	10	—	_	μs
(slave mode)		High speed oscillation is active	500		_	ns
SCK output cycle (master mode)	t _{scyc}	—	—	SCK*1	—	s
SCK input pulse width	tow	High-speed oscillation is not active	4	—	—	μs
(slave mode)	t _{SW}	High speed oscillation is active	200	—	—	ns
SCK output pulse width (master mode)	t _{sw}	—	t _{scyc} ×0.4	t _{scvc} ×0.5	t _{scvc} ×0.6	S
SOUT output delay time (slave mode)	t _{SD}	_	_	_	180	ns
SOUT output delay time (master mode)	t _{SD}	—	_	_	80	ns
SIN input Setup time (slave mode)	t _{SS}	_	50	_	_	ns
SINinput Hold time	t _{SH}	_	50	_	_	ns

AC characteristics (synchronous serial port)

*1 : The clock period which is selected by the below registers(min:250ns@reguraly, min:500ns@P02, P22 is used)


In case of SSIO : S0CK2-0 of serial port 0 mode register(SIO0MOD).

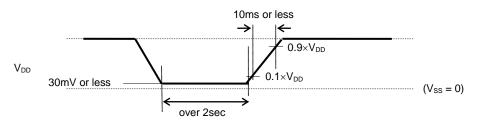
In case of SSIOF : SF0BR9-0 of SIOF0 port register(SF0BRR)

FEDL620Q504H-01

ML620Q503H/Q504H

(*1) Input logic circuit to determine the specified measuring conditions.

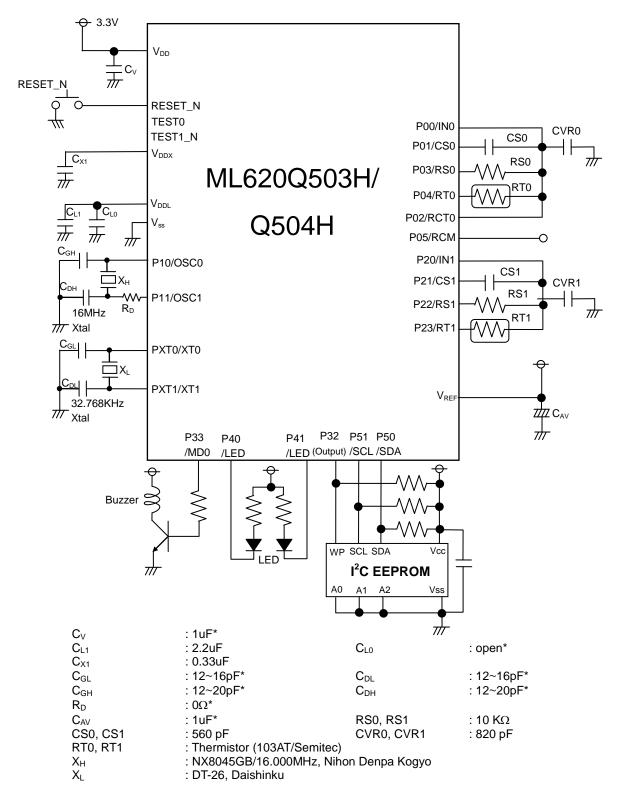
[Note]


•Please have the shortest layout for the common node (wiring patterns which are connected to the external capacitors, resistors and IN0/IN1 pin), including CVR0/CVR1. Especially, do not have long wire between IN0/IN1 and RS0/RS1. The coupling capacitance on the wires may occur incorrect A/D conversion. Also, please do not have signals which may be a source of noise around the node.

•When RT0/RT1 (Thermistor and etc.) requires long wiring due to the restricted placement, please shield the signal by $V_{SS}(GND)$.

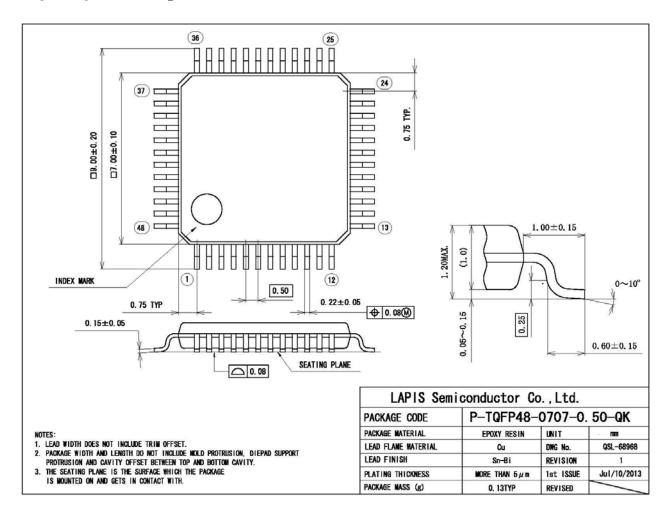
•Please make wiring to components (capacitor, resistor and etc.) necessary for objective measurement. Wiring to reserved components may affect to the A/D conversion operation by noise the components itself may have.

Power-on and shutdown Procedures


In case of power-on or shutdown of V_{DD} , the procedures and constraints are shown as following.

FEDL620Q504H-01

ML620Q503H/Q504H


APPLICATION CIRCUIT EXAMPLE

*: Make a decision the parameters after evaluating on an user's conditions when designing circuits for mass production.

PACKAGE DIMENSIONS

ML620Q503H/Q504H Package Dimensions

Notes for Mounting the Surface Mount Type Package

The surface mount type packages are very susceptible to heat in reflow and humidity absorbed in storage. Therefore, before you perform reflow mounting, contact a ROHM sales office for the product name, package name, pin number, package code and desired mounting conditions(reflow method, temperature and times).

REVISION HISTORY

Document No.	Date	Page		Description
		Previous Edition	Current Edition	
FEDL620Q504H-01	Aug.31.2015	_	_	Final Edition issued

Notes

- 1) The information contained herein is subject to change without notice.
- 2) Although LAPIS Semiconductor is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. LAPIS Semiconductor shall have no responsibility for any damages arising out of the use of our Products beyond the rating specified by LAPIS Semiconductor.
- 3) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 4) The technical information specified herein is intended only to show the typical functions of the Products and examples of application circuits for the Products. No license, expressly or implied, is granted hereby under any intellectual property rights or other rights of LAPIS Semiconductor or any third party with respect to the information contained in this document; therefore LAPIS Semiconductor shall have no responsibility whatsoever for any dispute, concerning such rights owned by third parties, arising out of the use of such technical information.
- 5) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 6) The Products specified in this document are not designed to be radiation tolerant.
- 7) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a LAPIS Semiconductor representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 8) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 9) LAPIS Semiconductor shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 10) LAPIS Semiconductor has used reasonable care to ensure the accuracy of the information contained in this document. However, LAPIS Semiconductor does not warrant that such information is error-free and LAPIS Semiconductor shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 11) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. LAPIS Semiconductor shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 12) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 13) This document, in part or in whole, may not be reprinted or reproduced without prior consent of LAPIS Semiconductor.

Copyright 2015 LAPIS Semiconductor Co., Ltd.

LAPIS Semiconductor Co., Ltd.

2-4-8 Shinyokohama, Kouhoku-ku, Yokohama 222-8575, Japan http://www.lapis-semi.com/en/