

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx154f128b-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	_	_	_	_	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	_	—	—	—	—		
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0		
15:8	BMXDUPBA<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				BMXDU	PBA<7:0>					

REGISTER 4-4: BMXDUPBA: DATA RAM USER PROGRAM BASE ADDRESS REGISTER

Legend:

	Logona.				
R = Readable bit W = Writable bit			U = Unimplemented bit, re	ad as '0'	
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-16 Unimplemented: Read as '0'

bit 15-10 BMXDUPBA<15:10>: DRM User Program Base Address bits

When non-zero, the value selects the relative base address for User mode program space in RAM, BMXDUPBA must be greater than BMXDUDBA.

bit 9-0 BMXDUPBA<9:0>: Read-Only bits This value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/44-pin XLP Family devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program the Flash memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the "*PIC32 Flash Programming Specification*" (DS60001145), which can be downloaded from the Microchip web site (www.microchip.com).

Note: The Flash page size on PIC32MX-1XX/2XX 28/44-pin XLP Family devices is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION

	IRQ	Vector		Interru	pt Bit Location		Persistent
Interrupt Source ⁽¹⁾	#	#	Flag	Enable	Priority	Sub-priority	Interrupt
		Highes	st Natural C	rder Priority	,		
CT – Core Timer Interrupt	0	0	IFS0<0>	IEC0<0>	IPC0<4:2>	IPC0<1:0>	No
CS0 – Core Software Interrupt 0	1	1	IFS0<1>	IEC0<1>	IPC0<12:10>	IPC0<9:8>	No
CS1 – Core Software Interrupt 1	2	2	IFS0<2>	IEC0<2>	IPC0<20:18>	IPC0<17:16>	No
INT0 – External Interrupt	3	3	IFS0<3>	IEC0<3>	IPC0<28:26>	IPC0<25:24>	No
T1 – Timer1	4	4	IFS0<4>	IEC0<4>	IPC1<4:2>	IPC1<1:0>	No
IC1E – Input Capture 1 Error	5	5	IFS0<5>	IEC0<5>	IPC1<12:10>	IPC1<9:8>	Yes
IC1 – Input Capture 1	6	5	IFS0<6>	IEC0<6>	IPC1<12:10>	IPC1<9:8>	Yes
OC1 – Output Compare 1	7	6	IFS0<7>	IEC0<7>	IPC1<20:18>	IPC1<17:16>	No
INT1 – External Interrupt 1	8	7	IFS0<8>	IEC0<8>	IPC1<28:26>	IPC1<25:24>	No
T2 – Timer2	9	8	IFS0<9>	IEC0<9>	IPC2<4:2>	IPC2<1:0>	No
IC2E – Input Capture 2	10	9	IFS0<10>	IEC0<10>	IPC2<12:10>	IPC2<9:8>	Yes
IC2 – Input Capture 2	11	9	IFS0<11>	IEC0<11>	IPC2<12:10>	IPC2<9:8>	Yes
OC2 – Output Compare 2	12	10	IFS0<12>	IEC0<12>	IPC2<20:18>	IPC2<17:16>	No
INT2 – External Interrupt 2	13	11	IFS0<13>	IEC0<13>	IPC2<28:26>	IPC2<25:24>	No
T3 – Timer3	14	12	IFS0<14>	IEC0<14>	IPC3<4:2>	IPC3<1:0>	No
IC3E – Input Capture 3	15	13	IFS0<15>	IEC0<15>	IPC3<12:10>	IPC3<9:8>	Yes
IC3 – Input Capture 3	16	13	IFS0<16>	IEC0<16>	IPC3<12:10>	IPC3<9:8>	Yes
OC3 – Output Compare 3	17	14	IFS0<17>	IEC0<17>	IPC3<20:18>	IPC3<17:16>	No
INT3 – External Interrupt 3	18	15	IFS0<18>	IEC0<18>	IPC3<28:26>	IPC3<25:24>	No
T4 – Timer4	19	16	IFS0<19>	IEC0<19>	IPC4<4:2>	IPC4<1:0>	No
IC4E – Input Capture 4 Error	20	17	IFS0<20>	IEC0<20>	IPC4<12:10>	IPC4<9:8>	Yes
IC4 – Input Capture 4	21	17	IFS0<21>	IEC0<21>	IPC4<12:10>	IPC4<9:8>	Yes
OC4 – Output Compare 4	22	18	IFS0<22>	IEC0<22>	IPC4<20:18>	IPC4<17:16>	No
INT4 – External Interrupt 4	23	19	IFS0<23>	IEC0<23>	IPC4<28:26>	IPC4<25:24>	No
T5 – Timer5	24	20	IFS0<24>	IEC0<24>	IPC5<4:2>	IPC5<1:0>	No
IC5E – Input Capture 5 Error	25	21	IFS0<25>	IEC0<25>	IPC5<12:10>	IPC5<9:8>	Yes
IC5 – Input Capture 5	26	21	IFS0<26>	IEC0<26>	IPC5<12:10>	IPC5<9:8>	Yes
OC5 – Output Compare 5	27	22	IFS0<27>	IEC0<27>	IPC5<20:18>	IPC5<17:16>	No
AD1 – ADC1 Convert done	28	23	IFS0<28>	IEC0<28>	IPC5<28:26>	IPC5<25:24>	Yes
FSCM – Fail-Safe Clock Monitor	29	24	IFS0<29>	IEC0<29>	IPC6<4:2>	IPC6<1:0>	No
RTCC – Real-Time Clock and	30	25	IFS0<30>	IEC0<30>	IPC6<12:10>	IPC6<9:8>	No
Calendar	04						NIa
FCE – Flash Control Event	31	26	IFS0<31>	IEC0<31>	IPC6<20:18>	IPC6<17:16>	No
CMP1 – Comparator Interrupt	32	27	IFS1<0>	IEC1<0>	IPC6<28:26>	IPC6<25:24>	No
CMP2 – Comparator Interrupt	33	28	IFS1<1>	IEC1<1>	IPC7<4:2>	IPC7<1:0>	No
CMP3 – Comparator Interrupt	34	29	IFS1<2>	IEC1<2>	IPC7<12:10>	IPC7<9:8>	No
USB – USB Interrupts	35	30	IFS1<3>	IEC1<3>	IPC7<20:18>	IPC7<17:16>	Yes
SPI1E – SPI1 Fault	36	31	IFS1<4>	IEC1<4>	IPC7<28:26>	IPC7<25:24>	Yes
SPI1RX – SPI1 Receive Done	37	31	IFS1<5>	IEC1<5>	IPC7<28:26>	IPC7<25:24>	Yes
SPI1TX – SPI1 Transfer Done	38	31	IFS1<6>	IEC1<6>	IPC7<28:26>	IPC7<25:24>	Yes

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/44-Pin XLP (General Purpose) Family Features" and TABLE 2: "PIC32MX2XX 28/44-Pin XLP (USB) Family Features" for the lists of available peripherals.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	—	_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
15:8	_	—	_	—	—	S	RIPL<2:0> ⁽¹⁾	
7.0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	—			VEC	<5:0> ⁽¹⁾		

REGISTER 7-2: INTSTAT: INTERRUPT STATUS REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-11 Unimplemented: Read as '0'

- bit 10-8 SRIPL<2:0>: Requested Priority Level bits⁽¹⁾
 - 111-000 = The priority level of the latest interrupt presented to the CPU
- bit 7-6 Unimplemented: Read as '0'
- bit 5-0 VEC<5:0>: Interrupt Vector bits⁽¹⁾ 11111-00000 = The interrupt vector that is presented to the CPU
- Note 1: This value should only be used when the interrupt controller is configured for Single Vector mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24				IPTMF	R<31:24>					
23:16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	IPTMR<23:16>									
15:8	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15.0	IPTMR<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0	IPTMR<7:0>									

REGISTER 7-3: IPTMR: INTERRUPT PROXIMITY TIMER REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bi	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 **IPTMR<31:0>:** Interrupt Proximity Timer Reload bits Used by the Interrupt Proximity Timer as a reload value when the Interrupt Proximity timer is triggered by an interrupt event.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24	—	_	_	_	—	—	_	-	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	-	_	—	—	—	_	—	
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15:8	—	_	_	_	—	—	_	_	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				CHPDAT	۲<7:0>				

REGISTER 9-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER

Legend:

3				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

bit 7-0 CHPDAT<7:0>: Channel Data Register bits

<u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow a "terminate on match".

All other modes: Unused.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	_	_	_	_	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23:16		—	_	—	—	—	_	CHECOH
45.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—		—	—	—	DCSZ	2<1:0>
7.0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
7:0	—	—	PREFE	N<1:0>	—	F	PFMWS<2:0>	•

REGISTER 10-1: CHECON: CACHE CONTROL REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-17 Unimplemented: Write '0'; ignore read

- bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
 - 1 = Invalidate all data and instruction lines
 - 0 = Invalidate all data lnes and instruction lines that are not locked
- bit 15-10 **Unimplemented:** Write '0'; ignore read
- bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
 - 11 = Enable data caching with a size of 4 Lines
 - 10 = Enable data caching with a size of 2 Lines
 - 01 = Enable data caching with a size of 1 Line
 - 00 = Disable data caching

Changing these bits induce all lines to be reinitialized to the "invalid" state.

bit 7-6 **Unimplemented:** Write '0'; ignore read

bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits

- 11 = Enable predictive prefetch for both cacheable and non-cacheable regions
- 10 = Enable predictive prefetch for non-cacheable regions only
- 01 = Enable predictive prefetch for cacheable regions only
- 00 = Disable predictive prefetch
- bit 3 Unimplemented: Write '0'; ignore read

bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits

- 111 = Seven Wait states
- 110 = Six Wait states
- 101 = Five Wait states
- 100 = Four Wait states
- 011 = Three Wait states
- 010 = Two Wait states
- 001 = One Wait state
- 000 = Zero Wait state

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24		—	_	_		_		—		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10		_				-		—		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.0		_				-		—		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0		
7:0	IDIE	T1MSECIE	LSTATEIE	ACTVIE	SESVDIE	SESENDIE	_	VBUSVDIE		

REGISTER 11-2: U10TGIE: USB OTG INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIE:** ID Interrupt Enable bit
 - 1 = ID interrupt is enabled
 - 0 = ID interrupt is disabled

bit 6 **T1MSECIE:** 1 Millisecond Timer Interrupt Enable bit

- 1 = 1 millisecond timer interrupt is enabled
- 0 = 1 millisecond timer interrupt is disabled

bit 5 LSTATEIE: Line State Interrupt Enable bit

- 1 = Line state interrupt is enabled
- 0 = Line state interrupt is disabled
- bit 4 ACTVIE: Bus Activity Interrupt Enable bit
 - 1 = Activity interrupt is enabled
 - 0 = Activity interrupt is disabled
- bit 3 **SESVDIE:** Session Valid Interrupt Enable bit
 - 1 = Session valid interrupt is enabled
 - 0 = Session valid interrupt is disabled
- bit 2 SESENDIE: B-Device Session End Interrupt Enable bit
 - 1 = B-Device session end interrupt is enabled
 - 0 = B-Device session end interrupt is disabled
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIE: A-Device VBUS Valid Interrupt Enable bit
 - 1 = A-Device VBUS valid interrupt is enabled
 - 0 = A-Device VBUS valid interrupt is disabled

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
31:24		_	RXBUFELM<4:0>					
22:16	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
23:16	—	_	—		Tک	(BUFELM<4:()>	
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0
15:8		_	_	FRMERR	SPIBUSY	_	_	SPITUR
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0
7:0	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF

REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred

This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.

- bit 5 **SPIRBE:** RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR + SWPTR)
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

I²C Control Registers 20.1

TABLE 20-1: I2C1 AND I2C2 REGISTER MAP

ess										Bi	ts								
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	I2C1CON	31:16 15:0	— ON		— SIDL	— SCLREL	— STRICT	— A10M	— DISSLW	— SMEN	— GCEN	— STREN	— ACKDT	— ACKEN	— RCEN	— PEN	— RSEN	— SEN	0000
		31:16	_	_												- FLN			0000
5010	I2C1STAT	15:0	ACKSTAT	TRSTAT	_		_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D A	 P	S	R_W	RBF	TBF	0000
		31:16	—	—			_		_	_		-		-	-		_	_	0000
5020	I2C1ADD	15:0	_	_	_	_	_	_					Address	Register					0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_	_	_	—	_	0000
5030	I2C1MSK	15:0	_	_	_	_	—	_					Address Ma	ask Register					0000
5040	I2C1BRG	31:16	_			—	—	_	—	_	_	—	—	—	—	—	—	—	0000
5040	IZCIBRG	15:0	—	_	_	—					Βαι	ud Rate Ger	erator Reg	ister					0000
5050	I2C1TRN	31:16	-			_	_	-	—		—	_	_	-			—		0000
3030		15:0			I	_	-		—	_				Transmit	Register				0000
5060	I2C1RCV	31:16	—	_	_	—	—	_	—	—	—	—	—	—	—	—	—	—	0000
0000		15:0	—	—	—		—	_	—	—		-		Receive	Register				0000
5100	I2C2CON	31:16	—	—	—	—	—	_	—	_	_	—	—	—		—	—		0000
		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C2STAT	31:16	—	—	_	-	_	—	—	_	—	—	—	—	—	—	—	—	0000
		15:0	ACKSTAT	TRSTAT	—	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
5120	I2C2ADD	31:16		_			_					—		-	—	_	—	_	0000
		15:0 31:16		_	_	—	_	_					Address	Register					0000
5130	I2C2MSK	15:0				_		_		_		—		ask Register	—	_		—	0000
		31:16																	0000
5140	I2C2BRG	15:0	_	_	_	_					Bai	I ud Rate Ger	erator Reg	ister					0000
		31:16	_	_	_	_	_	_	_	_				_	_	_	_	_	0000
5150	I2C2TRN	15:0		_	_	_				_				Transmit	Register				0000
		31:16	_	_	_	_	_	_	_	_	_	_	_	_		_	—	_	0000
5160	I2C2RCV	15:0	_	_	_	_	_	_	_	_				Receive	Register				0000
Legen	d: x = u	nknow	n value on	Reset; — =	unimpleme	ented, read a	as '0'. Rese	t values are	shown in h	exadecimal					<u> </u>				

© 2016 Microchip Technology Inc.

All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

22.1 PMP Control Registers

TABLE 22-1: PARALLEL MASTER PORT REGISTER MAP

ess		0								В	its								6
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
7000	PMCON	31:16				_			_	_	RDSTART		—			_	_		0000
1000	TWOON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF<	<1:0>	ALP	_	CS1P	_	WRSP	RDSP	0000
7010	PMMODE	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
1010	TIMIOBE	15:0	BUSY	IRQM	<1:0>	INCM	<1:0>	—	MODE	<1:0>	WAITE	3<1:0>		WAITN	/<3:0>		WAITE	<1:0>	0000
7020	PMADDR	31:16	_	_	_	_	_		—	—	_	—	—	—	—	—	—	_	0000
. 020		15:0	—	CS1	—	—	—					/	ADDR<10:0	>					0000
7030	PMDOUT	31:16		DATAOUT<31:0>															
		15:0																	0000
7040	PMDIN	31:16								DATAIN	l<31:0>								0000
		15:0																	0000
7050	PMAEN	31:16	_			—	_		—	—		—		—	_	—	—	_	0000
		15:0	_	PTEN14		_	_						PTEN<10:0:						0000
7060	PMSTAT	31:16	-	-		—	-	-	-	-	-		—		-	-	-	-	0000
		15:0 31:16	IBF	IBOV			IB3F	IB2F	IB1F	IB0F	OBE	OBUF			OB3E	OB2E	OB1E	OB0E	008F
7070	PMWADDR	15:0		WCS1				_	_	_	_		 /ADDR<10:(_	_	_	_	0000
		31:16																	
7080	PMRADDR			-				_										_	
		15:0	_	RCS1		_	_						ADDR<10:0						0000
7090	PMRDIN	31:16	_		_	_	_	_	_		-	_	_	_	_	_	_	—	0000
Logon		15:0				ntod road a	(-1.5			RDATAI									0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

REGISTER 22-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits⁽¹⁾
 - 11 = Wait of 4 Трв
 - 10 = Wait of 3 TPB
 - 01 = Wait of 2 Трв
 - 00 = Wait of 1 TPB (default)

For Read operations:

- 11 = Wait of 3 TPB
- 10 = Wait of 2 TPB
- 01 = Wait of 1 Трв
- 00 = Wait of 0 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
 - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

25.1 Comparator Control Registers

TABLE 25-1: COMPARATOR REGISTER MAP

Bits																			
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A 000	CM1CON	31:16	_	_	_	_	-	_			—	—	—	_		—	—	_	0000
A000	CIVITCON	15:0	ON	COE	CPOL	—	—	—	—	COUT	EVPO	L<1:0>	—	CREF	—	—	CCH	<1:0>	00C3
A010	CM2CON	31:16	-	_							-	_	_	_		_	-		0000
AUTU	CIVIZCON	15:0	ON	COE	CPOL					COUT	EVPO	L<1:0>	_	CREF		_	CCH	<1:0>	00C3
A020	CM3CON	31:16	-	_							-	_	_	_		_	-		0000
A020	CIVISCON	15:0	ON	COE	CPOL				-	COUT	EVPO	L<1:0>	-	CREF	-	-	CCH	<1:0>	00C3
A060	CMSTAT	31:16	-	_	-						_	_	_	_		_	_		0000
7000	CIVISTAI	15:0	_	_	SIDL	_	_	_		-	_	_	_	_		C3OUT	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	_	—	-	-	—	_	-	—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16		-		_	_			-			
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
10.0	—	—	SIDL		_	—		—			
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0			
7.0		_				C3OUT	C2OUT	C1OUT			

REGISTER 25-2: CMSTAT: COMPARATOR STATUS REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Control bit

1 = All Comparator modules are disabled when the device enters Idle mode

0 = All Comparator modules continue to operate when the device enters Idle mode

bit 12-3 Unimplemented: Read as '0'

bit 2 C3OUT: Comparator Output bit

- 1 = Output of Comparator 3 is a '1'
 - 0 = Output of Comparator 3 is a '0'

bit 1 C2OUT: Comparator Output bit

- 1 = Output of Comparator 2 is a '1'
- 0 = Output of Comparator 2 is a '0'

bit 0 **C1OUT:** Comparator Output bit

- 1 =Output of Comparator 1 is a '1'
- 0 = Output of Comparator 1 is a '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	-	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	_	_	_	_	_	-	—	
45.0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0
15:8	ON	_	_	_	VDIR ⁽¹⁾	BGVST	—	HLVDET
7.0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_	_	_		HLVDL<	3:0> ⁽¹⁾	

REGISTER 27-1: HLVDCON: HIGH/LOW-VOLTAGE DETECT CONTROL REGISTER

Legend:	HS = Hardware Set	HC = Hardware Cleare	d
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** HLVD Module Enable bit 1 = HLVD module is enabled 0 = HLVD module is disabled
- bit 14-12 Unimplemented: Read as '0'
- bit 11 VDIR: Voltage Change Direction Select bit⁽¹⁾
 - 1 = Event occurs when voltage equals or exceeds trip point (HLVDL<3:0>)
 - 0 = Event occurs when voltage equals or falls below trip point (HLVDL<3:0>)
- bit 10 **BGVST:** Band Gap Reference Voltages Stable Status bit
 - 1 = Indicates internal band gap voltage references is stable
 - 0 = Indicates internal band gap voltage reference is not stable

This bit is readable when the HLVD module is disabled (ON = 0).

- bit 9 Unimplemented: Read as '0'
- bit 8 HLVDET: High/Low-Voltage Detection Event Status bit
 - 1 = Indicates HLVD Event interrupt is active
 - 0 = Indicates HLVD Event interrupt is not active
- bit 7-4 Unimplemented: Read as '0'
- Note 1: To avoid false HLVD events, all HLVD module setting changes should occur only when the module is disabled (ON = 0). See Table 33-6 in the "Electrical Characteristics" chapter for the actual trip points.

30.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. Section (DS60001124) and 33. "Programming and **Diagnostics**" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/44-pin XLP Family devices include the following features intended to maximize application flexibility, reliability and minimize cost through elimination of external components.

- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

30.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- CFGCON: Configuration Control Register

In addition, the DEVID register (Register 30-6) provides device and revision information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	R/P	R/P	R/P	R/P	R/P	R/P	R/P	R/P			
31:24	FDSEN	DSWDTEN	DSWDTOSC		DS	WDTPS<4:0:	>				
23:16	R/P	r-1	R/P	R/P	r-1	R/P	R/P	R/P			
23.10	DSBOREN	—	VBATBOREN	BOREN	—	FF	PLLODIV<2:()>			
45.0	R/P	r-1	r-1	r-1	r-1	R/P	R/P	R/P			
15:8	UPLLEN ⁽¹⁾	—	—	—	—	UP	LLIDIV<2:0>	(1)			
7.0	R/P	R/P-1	R/P	R/P-1	r-1	R/P	R/P	R/P			
7:0 FPLLICLK FPLLMUL<2				>		F	PLLIDIV<2:0	>			

REGISTER 30-3: DEVCFG2: DEVICE CONFIGURATION WORD 2

Legend:	r = Reserved bit	P = Programmable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown

bit 31 **FDSEN:** Deep Sleep Enable bit

1 = Deep Sleep mode is entered on a WAIT command

0 = Sleep mode is entered on a WAIT command

- bit 30 **DSWDTEN:** Deep Sleep Watchdog Timer Enable bit
 - 1 = Enable the Deep Sleep Watchdog Timer (DSWDT) during Deep Sleep mode
 - 0 = Disable the DSWDT during Deep Sleep mode
- bit 29 **DSWDTOSC:** Deep Sleep Watchdog Timer Reference Clock Select bit 1 = Select the LPRC Oscillator as the DSWDT reference clock 0 = Select the Secondary Oscillator as the DSWDT reference clock

bit 28-24 **DSWDTPS<4:0>:** Deep Sleep Watchdog Timer Postscale Select bits

11111 11110 11100 11001 11000 11001 10010 10010 10010 10010	$\begin{array}{c} 0 = 1 \\ 1 = 1 \\ 0 = 1 \\ 1 = 1 \\ 0 = 1 \\ 1 = 1 \\ 0 = 1 \\ 1 = 1 \\ 0 = 1 \\ 1 = 1 \\ 0 = 1 \\ 1 = 1 \\ 0 = 1 \end{array}$	2^{35} 2^{34} 2^{32} 2^{32} 2^{31} 2^{29} 2^{28} 2^{27} 2^{26} 2^{25} 2^{24} 2^{23}
	1 = 1 = 1 $0 = 1 = 1$ $1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1$ $1 = 1 = 1 = 1 = 1 = 1$	2^{23}_{222} 2^{21}_{220} 2^{2

Note 1: This bit is only available on PIC32MX2XX devices.

DC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No. Symbol Characteristics		Min.	Typical	Max.	Units	Comments		
D300	VIOFF	Input Offset Voltage	-10	_	+10	mV	AVDD = VDD, AVSS = VSS	
D301	VICM	Input Common Mode Voltage	0	—	Vdd	V	AVDD = VDD, AVss = Vss (Note 2)	
D302	CMRR	Common Mode Rejection Ratio	70	—	_	dB	Max VICM = (VDD - 1)V (Note 2)	
D303A	TRESP	Large Signal Response Time	—	100	80	ns	AVDD = VDD, AVSS = VSS (Note 1,2)	
D303B	TSRESP	Small Signal Response Time	—	50	160	ns	This is defined as an input step of 50 mV with 15 mV of overdrive (Note 2)	
D304	ON20V	Comparator Enabled to Output Valid	—	—	110	μs	Comparator module is configured before setting the comparator ON bit (Note 2)	
D305	IVref	Internal Voltage Reference	1.16	1.2	1.24	V	—	
D312	TSET	Internal Comparator Voltage DRC Reference Setting time	_	—	1	μs	(Note 3)	

TABLE 33-14: COMPARATOR SPECIFICATIONS

Note 1: Response time measured with one comparator input at (VDD – 1.5)/2, while the other input transitions from Vss to VDD.

2: These parameters are characterized but not tested.

3: Settling time measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but not tested in manufacturing.

4: The Comparator module is functional at VBORMIN < VDD < VDDMIN, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

DC CHA		STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No. Symbol Characteristics			Min.	Тур.	Max.	Units	Comments		
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_	_	10	μs	See Note 1		
D313	DACREFH	CVREF Input Voltage Reference Range	AVss	—	AVdd	V	CVRSRC with CVRSS = 0		
			VREF-	—	VREF+	V	CVRSRC with CVRSS = 1		
D314	DVref	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size		
			0.25 x DACREFH	_	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size		
D315	DACRES	Resolution	—		DACREFH/24		CVRCON <cvrr> = 1</cvrr>		
			—	_	DACREFH/32	_	CVRCON <cvrr> = 0</cvrr>		
D316	DACACC	Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>		
			—	—	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>		

TABLE 33-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 33-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

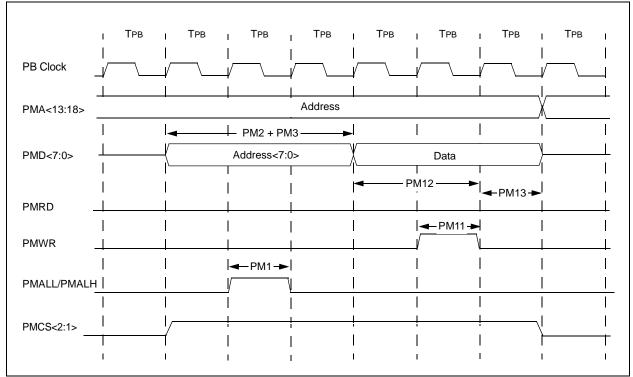

DC CHA	DC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T_A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T_A \leq +105^\circ C \mbox{ for V-temp} \end{array}$				
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (1 ohm). Typical voltage on the VCAP pin is 1.8V.

TABLE 33-39: PARALLEL MASTER PORT READ TIMING REQUIREMENTS
--

AC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No. Symbol Characteristics ⁽¹⁾			Min.	Тур.	Max.	Units	Conditions		
PM1	TLAT	PMALL/PMALH Pulse Width		1 Трв					
PM2	TADSU	Address Out Valid to PMALL/PMALH Invalid (address setup time)	_	2 Трв	_	_	_		
PM3	TADHOLD	PMALL/PMALH Invalid to Address Out Invalid (address hold time)	_	1 Трв	_		—		
PM4	TAHOLD	PMRD Inactive to Address Out Invalid (address hold time)	5	—	_	ns	_		
PM5	Trd	PMRD Pulse Width	—	1 Трв	_	—	—		
PM6	TDSU	PMRD or PMENB Active to Data In Valid (data setup time)	15	—	—	ns	—		
PM7	TDHOLD	PMRD or PMENB Inactive to Data In Invalid (data hold time)	—	80	_	ns	—		

Note 1: These parameters are characterized, but not tested in manufacturing.

NOTES: