

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx154f128b-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER

Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit	Bit
Range	31/23/15/7	30/22/14/6	29/21/13/5	28/20/12/4	27/19/11/3	26/18/10/2	25/17/9/1	24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
								WDTO
23:16	R/W-0	0-0	U-0	U-0	R/W-U	R/W-0	R/W-0	
	SVVINIMI				GNMI	HLVD	CF	WD15
15:8	R/W-0	R/W-0	R/W-0			R/W-0	R/W-0	R/W-0
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	10000	10,000	1000 0	NMIC	NT<7:0>	10/0/0	1000 0	10000
Legend:								
R = Read	able bit		W = Writable	e bit	U = Unimple	emented bit. rea	ad as '0'	
-n = Value	e at POR		'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unk	nown
				-				
bit 31-25	Unimpleme	nted: Read a	s '0'					
bit 24	WDTO: Wat	chdoa Timer	Time-Out Flag	a bit				
	1 = WDT tim	ne-out has oc	curred and ca	used a NMI				
	0 = WDT tim	ne-out has no	t occurred					
	Setting this b	oit will cause	a WDT NMI e	vent, and MN	VICNT will be	gin counting.		
bit 23	SWNMI: Sof	tware NMI Tr	igger.					
	$\perp = An NMI = 0$	will be generative de	nerated					
bit 22-20		nted: Read a						
bit 19	GNMI: Gene	ral NMI hit	3 0					
DIT 13	1 = A genera	al NMI event l	has been dete	ected or a use	er-initiated NI	MI event has o	ccurred	
	0 = A genera	al NMI event	has not been	detected				
	Setting GNN	All to a '1' c	auses a user	r-initiated NN	/II event. Thi	s bit is also s	et by writing	0x4E to the
	NMIKEY<7:0)> (INTCON<	:31:24>) bits.					
bit 18	HLVD: High/	Low-Voltage	Detect bit					
	1 = HLVD has	as detected a	low-voltage c	ondition and	caused an N	MI		
	0 = HLVD ha	as not detecte	ed a low-voltag	ge condition				
bit 17		ail Detect bit	lock failure ar	nd caused an				
	1 = FSCM h	as not detect	ed clock failur	iu causeu ali e				
	Setting this k	nit will cause		vent				
hit 16	WDTS: Wat	chdog Timer		vent. Ieen Mode Fl	aa hit			
bit TO	1 = WDT tim	ne-out has oc	curred during	Sleep mode	and caused a	a wake-up from	sleep	
	0 = WDT tim	ne-out has no	t occurred du	ring Sleep mo	ode	·		
	Setting this b	oit will cause	a WDT NMI.					
bit 15-0	NMICNT<15	: :0>: NMI Res	set Counter V	alue bits				
	These bits s	pecify the rele	oad value use	d by the NM	l reset counte	er.		
	111111111	1111111-00	0000000000	00001 = Num	ber of SYSC	LK cycles befo	re a device Re	eset occurs ⁽¹⁾
	000000000	0000000 = N	lo delay betw	een NMI ass	ertion and de	vice Reset eve	nt	
Note 1-	If a Match	a Timer NM	avent (when	not in Class	mode) is also	and boford this	oounter recel	non (n) no
NOTE 1:		by LIMET NIVII	This NMI rec	nut in Sleep	only applicat	area perore this	specific NIMI	events
								0 v 01110.
		<u> </u>						

Note: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

REGISTER 6-3:

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/44-pin XLP Family devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU. The PIC32MX1XX/2XX 28/44-pin XLP Family interrupt module includes the following features:

- Up to 64 interrupt sources
- · Up to 44 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Software can generate any interrupt
- User-configurable Interrupt Vector Table (IVT) location
- · User-configurable interrupt vector spacing
- Note: The dedicated shadow register set is not present on PIC32MX1XX/2XX 28/44-pin XLP Family devices.

A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1.

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IFS31	IFS30	IFS29	IFS28	IFS27	IFS26	IFS25	IFS24
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IFS23	IFS22	IFS21	IFS20	IFS19	IFS18	IFS17	IFS16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
10.6	IFS15	IFS14	IFS13	IFS12	IFS11	IFS10	IFS09	IFS08
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	IFS07	IFS06	IFS05	IFS04	IFS03	IFS02	IFS01	IFS00

REGISTER 7-4: IFSx: INTERRUPT FLAG STATUS REGISTER

Legend:

P - Poodoblo bit	M = Mritable bit	II - Unimplemented bit re	
R = Reduable bit	vv = vviitable bit	O = Onimplemented bit, re	au as u
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IFS31-IFS00: Interrupt Flag Status bits

- 1 = Interrupt request has occurred
- 0 = No interrupt request has occurred

Note: This register represents a generic definition of the IFSx register. Refer to Table 7-1 for the exact bit definitions.

REGISTER 7-5: IECx: INTERRUPT ENABLE CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31.24	IEC31	IEC30	IEC29	IEC28	IEC27	IEC26	IEC25	IEC24
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
23.10	IEC23	IEC22	IEC21	IEC20	IEC19	IEC18	IEC17	IEC16
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	IEC15	IEC14	IEC13	IEC12	IEC11	IEC10	IEC09	IEC08
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	IEC07	IEC06	IEC05	IEC04	IEC03	IEC02	IEC01	IEC00

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 IEC31-IEC00: Interrupt Enable bits

1 = Interrupt is enabled

0 = Interrupt is disabled

Note: This register represents a generic definition of the IECx register. Refer to Table 7-1 for the exact bit definitions.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
31.24	—	—	—	—	—	F	RCDIV<2:0>	
00.40	R/W-0	U-0	R/W-y	U-0	U-0	U-0	U-0	U-0
23:16	DRMEN	—	SLP2SPD	—	—	—	—	—
45.0	U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
15:8	—		COSC<2:0>		—		NOSC<2:0>	
7.0	R/W-0	U-0	U-0	R/W-0	R/W-0, HS	R/W-y	R/W-y	R/W-y
7:0	CLKLOCK	—	—	SLPEN	CF	UFRCEN	SOSCEN	OSWEN ⁽¹⁾

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR		HS = Hardware Set
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-27 Unimplemented: Read as '0'

- bit 26-24 FRCDIV<2:0>: Internal Fast RC (FRC) Oscillator Clock Divider bits
 - 111 = FRC divided by 256 110 = FRC divided by 64
 - 101 = FRC divided by 32
 - 101 = FRC divided by 32100 = FRC divided by 16
 - 011 = FRC divided by 8
 - 010 = FRC divided by 0
 - 001 = FRC divided by 2
 - 000 = FRC divided by 1 (default setting)

bit 23 **DRMEN:** Dream Mode Enable bit

- 1 = Dream mode is enabled
- 0 = Dream mode is disabled
- bit 22 Unimplemented: Read as '0'
- bit 21 SLP2SPD: Sleep Two-speed Start-up Control bit
 - 1 = Use FRC as SYSCLK until the selected clock is ready
 - 0 = Use the selected clock directly
- bit 20-15 Unimplemented: Read as '0'
- bit 14-12 COSC<2:0>: Current Oscillator Selection bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Internal Low-Power RC (LPRC) Oscillator
 - 100 = Secondary Oscillator (Sosc)
 - 011 = Reserved
 - 010 = Primary Oscillator (Posc) (HS or EC)
 - 001 = System PLL (SPLL)
 - 000 = Internal Fast RC (FRC) Oscillator divided by FRCDIV<2:0> bits (FRCDIV)
- bit 11 Unimplemented: Read as '0'
- **Note 1:** The reset value for this bit depends on the setting of the IESO bit (DEVCFG1<7>). When IESO = 1, the reset value is '1'. When IESO = 0, the reset value is '0'.

Note: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	_	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
23:16	—	—	—	—	—	-	—	CHECOH
15.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
15:8	—	—	—	—	—	-	DCSZ	2<1:0>
7.0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-1	R/W-1	R/W-1
7:0	_	_	PREFE	N<1:0>	_	F	PFMWS<2:0>	>

REGISTER 10-1: CHECON: CACHE CONTROL REGISTER

Legend:

R = Readable bit W = Writable bit		U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-17 Unimplemented: Write '0'; ignore read

- bit 16 CHECOH: Cache Coherency Setting on a PFM Program Cycle bit
 - 1 = Invalidate all data and instruction lines
 - 0 = Invalidate all data lnes and instruction lines that are not locked
- bit 15-10 **Unimplemented:** Write '0'; ignore read
- bit 9-8 DCSZ<1:0>: Data Cache Size in Lines bits
 - 11 = Enable data caching with a size of 4 Lines
 - 10 = Enable data caching with a size of 2 Lines
 - 01 = Enable data caching with a size of 1 Line
 - 00 = Disable data caching

Changing these bits induce all lines to be reinitialized to the "invalid" state.

bit 7-6 **Unimplemented:** Write '0'; ignore read

bit 5-4 **PREFEN<1:0>:** Predictive Prefetch Enable bits

- 11 = Enable predictive prefetch for both cacheable and non-cacheable regions
- 10 = Enable predictive prefetch for non-cacheable regions only
- 01 = Enable predictive prefetch for cacheable regions only
- 00 = Disable predictive prefetch
- bit 3 Unimplemented: Write '0'; ignore read

bit 2-0 PFMWS<2:0>: PFM Access Time Defined in Terms of SYSLK Wait States bits

- 111 = Seven Wait states
- 110 = Six Wait states
- 101 = Five Wait states
- 100 = Four Wait states
- 011 = Three Wait states
- 010 = Two Wait states
- 001 = One Wait state
- 000 = Zero Wait state

REGISTER 10-3: CHETAG: CACHE TAG REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	LTAGBOOT	-	—	_	—	_	—	_	
22.16	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23.10	LTAG<19:12>								
15.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
10.0				LTAG<	11:4>				
7:0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-0	R/W-0	R/W-1	U-0	
7.0		LTAG<	<3:0>		LVALID	LLOCK	LTYPE	—	

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31 LTAGBOOT: Line TAG Address Boot bit

- 1 = The line is in the 0x1D000000 (physical) area of memory
- 0 = The line is in the 0x1FC00000 (physical) area of memory

bit 30-24 Unimplemented: Write '0'; ignore read

bit 23-4 LTAG<19:0>: Line TAG Address bits

LTAG<19:0> bits are compared against physical address to determine a hit. Because its address range and position of PFM in kernel space and user space, the LTAG PFM address is identical for virtual addresses, (system) physical addresses, and PFM physical addresses.

bit 3 LVALID: Line Valid bit

- 1 = The line is valid and is compared to the physical address for hit detection
- 0 = The line is not valid and is not compared to the physical address for hit detection

bit 2 LLOCK: Line Lock bit

- 1 = The line is locked and will not be replaced
- 0 = The line is not locked and can be replaced

bit 1 LTYPE: Line Type bit

- 1 = The line caches instruction words
- 0 = The line caches data words
- bit 0 Unimplemented: Write '0'; ignore read

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	_	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	—		—	—	_	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		—	—		—	—	_	—
	R/WC-0, HS	R-0	R/WC-0, HS					
7:0	STALLIE	ATTACHIE(1)	RESUMEIE(2)		TRNIF(3)	SOFIE	LIERRIE(4)	URSTIF ⁽⁵⁾
	STALLIF					JULI	UERRIEY	DETACHIF ⁽⁶⁾

REGISTER 11-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable	bit
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7		STALLIF: STALL Handshake Interrupt bit
	-	1 = In Host mode a STALL handshake was received during the handshake phase of the transaction
	I	In Device mode a STALL handshake was transmitted during the handshake phase of the transaction
	(0 = STALL handshake has not been sent
bit 6		ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾
	-	1 = Peripheral attachment was detected by the USB module
	(0 = Peripheral attachment was not detected
bit 5	I	RESUMEIF: Resume Interrupt bit ⁽²⁾
	-	1 = K-State is observed on the D+ or D- pin for 2.5 μs
	(0 = K-State is not observed
bit 4		IDLEIF: Idle Detect Interrupt bit
	-	1 = Idle condition detected (constant Idle state of 3 ms or more)
	(0 = No Idle condition detected
bit 3	1	TRNIF: Token Processing Complete Interrupt bit ⁽³⁾
	-	1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information
	(0 = Processing of current token not complete
bit 2		SOFIF: SOF Token Interrupt bit
	-	1 = SOF token received by the peripheral or the SOF threshold reached by the host
	(0 = SOF token was not received nor threshold reached
bit 1	l	UERRIF: USB Error Condition Interrupt bit ⁽⁴⁾
	-	1 = Unmasked error condition has occurred
	(0 = Unmasked error condition has not occurred
bit 0	l	URSTIF: USB Reset Interrupt bit (Device mode) ⁽⁵⁾
	-	1 = Valid USB Reset has occurred
	(0 = No USB Reset has occurred
	I	DETACHIF: USB Detach Interrupt bit (Host mode) ⁽⁹⁾
	-	1 = Peripheral detachment was detected by the USB module
	(0 = Peripheral detachment was not detected
Note	1.	This hit is valid only if the HOSTEN hit is set (see Register 11-11), there is no activity on the USB for
Note	••	2.5 us and the current bus state is not SE0
	2 .	When not in Suspend mode, this interrupt should be disabled
	2.	Clearing this hit will course the STAT FIEO to advance
	J.	Cleaning uns bit will cause the STAT FIFO to advance.
	4:	
	5:	Device mode.
	6:	Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—	—	—		—
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
		_	_	_	_	—		_
	R-x	R-x	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	ISTATE	SEO	PKTDIS ⁽⁴⁾	LICODOT		DESIME(3)		USBEN ⁽⁴⁾
	JSIALE	SE0	TOKBUSY ^(1,5)	000001	TIOSTEN()	INCOUNEY /	TIDNOT	SOFEN ⁽⁵⁾

REGISTER 11-11: U1CON: USB CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	JSTATE: Live Differential Receiver JSTATE flag bit
	1 = JSTATE was detected on the USB

- 0 = No JSTATE was detected
- bit 6 SE0: Live Single-Ended Zero flag bit
 1 = Single-Ended Zero was detected on the USB
 0 = No Single-Ended Zero was detected
- bit 5 **PKTDIS:** Packet Transfer Disable bit⁽⁴⁾
 - 1 = Token and packet processing is disabled (set upon SETUP token received)
 - 0 = Token and packet processing is enabled
 - TOKBUSY: Token Busy Indicator bit^(1,5)
 - 1 = Token is being executed by the USB module
 - 0 = No token is being executed

bit 4 USBRST: Module Reset bit⁽⁵⁾

- 1 = USB reset generated
- 0 = USB reset terminated
- bit 3 HOSTEN: Host Mode Enable bit⁽²⁾
 - 1 = USB host capability is enabled
 - 0 = USB host capability is disabled
- bit 2 **RESUME:** RESUME Signaling Enable bit⁽³⁾
 - 1 = RESUME signaling is activated
 - 0 = RESUME signaling is disabled
- **Note 1:** Software is required to check this bit before issuing another token command to the U1TOK register (see Register 11-15).
 - 2: All host control logic is reset any time that the value of this bit is toggled.
 - 3: Software must set RESUME for 10 ms if the part is a function, or for 25 ms if the part is a host, and then clear it to enable remote wake-up. In Host mode, the USB module will append a Low-Speed EOP to the RESUME signaling when this bit is cleared.
 - 4: Device mode.
 - 5: Host mode.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—					—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—					—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—					—
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
				CNT	<7:0>			

REGISTER 11-16: U1SOF: USB SOF THRESHOLD REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-0 CNT<7:0>: SOF Threshold Value bits
 - Typical values of the threshold are:
 - 01001010 = 64-byte packet
 - 00101010 = 32-byte packet
 - 00011010 = 16-byte packet
 - 00010010 = 8-byte packet

REGISTER 11-17: U1BDTP1: USB BUFFER DESCRIPTOR TABLE PAGE 1 REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—				_
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—	-	-	-	_
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—				-
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	BDTPTRL<15:9>							

R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown	Legend:			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown	R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
	-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-1 **BDTPTRL<15:9>:** Buffer Descriptor Table Base Address bits This 7-bit value provides address bits 15 through 9 of the Buffer Descriptor Table base address, which defines the starting location of the Buffer Descriptor Table in system memory. The 32-bit Buffer Descriptor Table base address is 512-byte aligned.

bit 0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
	WDTCLRKEY<15:8>								
00.40	W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0	
23.10	WDTCLRKEY<7:0>								
45.0	R/W-0	U-0	U-0	R-y	R-y	R-y	R-y	R-y	
15:8	ON ⁽¹⁾	-	—	RUNDIV<4:0>					
7:0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	
					_	_		WDTWINEN	

REGISTER 15-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

Legend:	end: y = Values set from Configuration bits on POR					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 WDTCLRKEY<15:0>: Watchdog Timer Clear Key bits To clear the Watchdog Timer to prevent a time-out, software must write the value 0x5743 to these bits using a single 16-bit write.

- bit 15 **ON:** Watchdog Timer Enable bit⁽¹⁾
 - 1 = The Watchdog Timer module is enabled
 - 0 = The Watchdog Timer module is disabled
- bit 14-13 Unimplemented: Read as '0'
- bit 12-8 **RUNDIV<4:0>:** Watchdog Timer Postscaler Value in Run Mode bits
- In Run mode, these bits are set to the values of the WDTPS<4:0> Configuration bits in DEVCFG1.
- bit 7-1 Unimplemented: Read as '0'
- bit 0 WDTWINEN: Watchdog Timer Window Enable bit
 - 1 = Enable windowed Watchdog Timer
 - 0 = Disable windowed Watchdog Timer
- **Note 1:** This bit only has control when FWDTEN (DEVCFG1<23>) = 0.

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
31:24	—	—	—	RXBUFELM<4:0>				>		
22.16	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
23.10	—	—	—		T)	KBUFELM<4:0	Bit 25/17/9/1 R-0 0> U-0 U-0 R-0 SPITBF			
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0		
15:8	—	_	—	FRMERR	SPIBUSY	_	_	SPITUR		
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0		
7:0	SRMT	SPIROV	SPIRBE	_	SPITBE	_	SPITBF	SPIRBF		

REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x =	= Bit is unknown		

bit 31-29 Unimplemented: Read as '0'

- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred

This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.

- bit 5 SPIRBE: RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR ≠ SWPTR)
- bit 4 **Unimplemented:** Read as '0'

FIGURE 23-1: RTCC BLOCK DIAGRAM

REGISTER 23-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER (CONTINUED)

- When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC. 11 = Reserved 10 = Reserved 01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC) 00 = RTCC uses the internal 32 kHz oscillator (LPRC) RTCOUTSEL<1:0>: RTCC Output Data Select bits⁽²⁾ bit 8-7 11 = Reserved 10 = RTCC Clock is presented on the RTCC pin 01 = Seconds Clock is presented on the RTCC pin 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as '0' bit 3 **RTCWREN:** Real-Time Clock Value Registers Write Enable bit⁽³⁾ 1 = Real-Time Clock Value registers can be written to by the user 0 = Real-Time Clock Value registers are locked out from being written to by the user RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit bit 2 1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid. 0 = Real-time clock value registers can be read without concern about a rollover ripple
- $0 = \text{Redi-time clock value registers can be redu$

RTCCLKSEL<1:0>: RTCC Clock Select bits

bit 1 HALFSEC: Half-Second Status bit⁽⁴⁾

bit 10-9

- 1 = Second half period of a second
- 0 = First half period of a second
- bit 0 **RTCOE:** RTCC Output Enable bit
 - 1 = RTCC output is enabled
 - 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

24.0 **10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)**

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "10-bit Analog-to-Digital Converter (ADC)" (DS60001104), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The 10-bit Analog-to-Digital Converter (ADC) includes the following features:

- Successive Approximation Register (SAR) conversion
- Up to 1 Msps conversion speed

FIGURE 24-1:

- Up to 13 analog input pins
- External voltage reference input pins
- · One unipolar, differential Sample and Hold Amplifier (SHA)
- Automatic Channel Scan mode
- Selectable conversion trigger source •
- · 16-word conversion result buffer
- Selectable buffer fill modes
- Eight conversion result format options
- · Operation during Sleep and Idle modes

A block diagram of the 10-bit ADC is illustrated in Figure 24-1. Figure 24-2 illustrates a block diagram of the ADC conversion clock period. The 10-bit ADC has up to 13 analog input pins, designated AN0-AN12. In addition, there are two analog input pins for external voltage reference connections. These voltage reference inputs may be shared with other analog input pins and may be common to other analog module references.

- 2: AN8 is only available on 44-pin devices. AN6, AN7, and AN12 are not available on 28-pin devices.
- 3: Connected to the CTMU module. See 28.0 "Charge Time Measurement Unit (CTMU)" for more information.
- 4: Internal precision voltage reference (1.2V).

ADC1 MODULE BLOCK DIAGRAM

NOTES:

TABLE 33-19: PLL CLOCK TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard (unless of Operating	Standard Operating Conditions: 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol	Characteristi	ics ⁽¹⁾ Min. Typical Max. Units Conditions					Conditions	
OS50	FIN	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		4	_	5	MHz	ECPLL, HSPLL, and FRCPLL modes	
OS51	Fsys	On-Chip VCO System Frequency		60		120	MHz	_	
OS52	TLOCK	PLL Start-up Time (Lock Time)		—		2	ms	—	
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Cumulative)		-0.25	_	+0.25	%	Measured over 100 ms period	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$

TABLE 33-20: INTERNAL FRC ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions: 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp						
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions		
Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾								
F20b	FRC	-0.9	—	+0.9	% —			

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.

TABLE 33-21: INTERNAL LPRC ACCURACY

AC CHA	ARACTERISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$							
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions			
LPRC @	LPRC @ 31.25 kHz ⁽¹⁾								
F21	LPRC	-15	—	+15	%	—			

Note 1: Change of LPRC frequency as VDD changes.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Param. No. Symbol Characteristics			Typical ⁽¹⁾	Max.	Units	Conditions	
Clock P	arameter	S						
AD50	TAD	ADC Clock Period ⁽²⁾	65	_	—	ns	See Table 33-36	
Convers	sion Rate							
AD55	TCONV	Conversion Time	—	12 Tad	—	_	—	
AD56 FCNV		Throughput Rate	—		1000	ksps	AVDD = 3.0V to 3.6V	
		(Sampling Speed)	_		400	ksps	AVDD = 2.0V to 3.6V	
AD57	TSAMP	Sample Time	1 Tad		—	—	TSAMP must be \geq 132 ns	
Timing	Paramete	rs						
AD60	TPCS	Conversion Start from Sample Trigger ⁽³⁾	—	1.0 Tad	—	—	Auto-Convert Trigger (SSRC<2:0> = 111) not selected	
AD61	TPSS	Sample Start from Setting Sample (SAMP) bit	0.5 TAD		1.5 TAD	_	—	
AD62	TCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽³⁾	—	0.5 Tad	—	_	—	
AD63	TDPU	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽³⁾			2	μS	—	

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz can affect linearity performance, especially at elevated temperatures.

3: Characterized by design but not tested.

4: The ADC module is functional at VBORMIN < VDD < 2.0V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimension	MIN	NOM	MAX	
Contact Pitch	E			
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A