

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx154f128bt-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

Pin Diagrams

TABLE 3: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES WITH VBAT

-P	IN SOIC (TOP VIEW) ^(1,2,3)		1 28 SOIC
	PIC32MX155F128B PIC32MX175F256B		
	Full Die Norre	Din #	Full Dia Nama
	Full Pin Name	Pin #	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6
	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0	Pin #	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7
	MCLR	15	PGEC3/RPB6/ASCL2/PMD6/RB6
	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0	15 16	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7
E	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1	15 16 17	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8
#	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0	15 16 17 18	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9
	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1	15 16 17 18 19	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss
	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	15 16 17 18 19 20	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP
#	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3	15 16 17 18 19 20 21	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10
	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss	15 16 17 18 19 20 21 22	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11
)	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2	15 16 17 18 19 20 21 22 23	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT
)	MCLR WREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	15 16 17 18 19 20 21 22 23 24	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 VSS VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12
1 # 2 3 4 5 5 7 3 3 0 1 2 3	MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 ⁽⁴⁾	15 16 17 18 19 20 21 22 23 24 25	PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 VSS VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: This is an input-only pin.

	P	Pin Number ⁽¹⁾						
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description		
-			4	nalog-t	o-Digital C	Converter		
AN0	27	2	19	I	Analog	Analog input channels.		
AN1	28	3	20	I	Analog			
AN2	1	4	21	I	Analog			
AN3	2	5	22	I	Analog			
AN4	3	6	23	I	Analog			
AN5	4	7	24	I	Analog			
AN6	—	—	25	I	Analog			
AN7	—	—	26	Ι	Analog			
AN8	—	—	27	I	Analog			
AN9	23	26	15	I	Analog			
AN10	22	25	14	I	Analog			
AN11 ⁽³⁾	21	24	11	I	Analog			
AN12	20 ⁽²⁾	23 ⁽²⁾	10	I	Analog			
Legend:	CMOS = CM ST = Schmi TTL = TTL i	tt Trigger in				Analog = Analog input O = Output PPS = Peripheral Pin Select	P = Power I = Input — = N/A	

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for General Purpose devices only.

3: This pin is not available on VBAT devices.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	—	—	—	—
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0
15:8				BMXDK	PBA<15:8>			
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
7:0				BMXDK	PBA<7:0>			

REGISTER 4-2: BMXDKPBA: DATA RAM KERNEL PROGRAM BASE ADDRESS REGISTER

Legend:

Logona.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-10 **BMXDKPBA<15:10>:** DRM Kernel Program Base Address bits When non-zero, this value selects the relative base address for kernel program space in RAM

bit 9-0 BMXDKPBA<9:0>: Read-Only bits This value is always '0', which forces 1 KB increments

Note 1: At Reset, the value in this register is forced to zero, which causes all of the RAM to be allocated to Kernal mode data usage.

2: The value in this register must be less than or equal to BMXDRMSZ.

NOTES:

5.0 FLASH PROGRAM MEMORY

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Program Memory" (DS60001121), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/44-pin XLP Family devices contain an internal Flash program memory for executing user code. There are three methods by which the user can program the Flash memory:

- Run-Time Self-Programming (RTSP)
- EJTAG Programming
- In-Circuit Serial Programming[™] (ICSP[™])

RTSP is performed by software executing from either Flash or RAM memory. Information about RTSP techniques is available in **Section 5. "Flash Program Memory"** (DS60001121) in the *"PIC32 Family Reference Manual"*.

EJTAG is performed using the EJTAG port of the device and an EJTAG capable programmer.

ICSP is performed using a serial data connection to the device and allows much faster programming times than RTSP.

The EJTAG and ICSP methods are described in the "*PIC32 Flash Programming Specification*" (DS60001145), which can be downloaded from the Microchip web site (www.microchip.com).

Note: The Flash page size on PIC32MX-1XX/2XX 28/44-pin XLP Family devices is 1 KB and the row size is 128 bytes (256 IW and 32 IW, respectively).

LOIOI		JILFI ADI.						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
31:24				CHEPFAB	Г<31:24>			
00:40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16				CHEPFAB	Г<23:16>			
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8				CHEPFAB	T<15:8>			
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
7:0		•	•	CHEPFA	3T<7:0>			
1								
Legend:								
R = Rea	dable bit		W = Writable	e bit	U = Unimple	mented bit, re	ad as '0'	

REGISTER 10-12: CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER

'1' = Bit is set

bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits

-n = Value at POR

Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load or store.

'0' = Bit is cleared

x = Bit is unknown

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

KE0131	EGISTER II-1. UTOTGIR. USB OTG INTERROFT STATUS REGISTER							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	_	—	_	_	_	_	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	_	—	_	_	_	_	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	-	_	_	-	—
7.0	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	U-0	R/WC-0, HS
7:0	IDIF	T1MSECIF	LSTATEIF	ACTVIF	SESVDIF	SESENDIF	_	VBUSVDIF

REGISTER 11-1: U1OTGIR: USB OTG INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	WC = Write '1' to clear HS = Hardware Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-8 Unimplemented: Read as '0'

- bit 7 **IDIF:** ID State Change Indicator bit
 - 1 = A change in the ID state was detected
 - 0 = No change in the ID state was detected
- bit 6 T1MSECIF: 1 Millisecond Timer bit
 - 1 = 1 millisecond timer has expired
 - 0 = 1 millisecond timer has not expired

bit 5 LSTATEIF: Line State Stable Indicator bit

- 1 = USB line state has been stable for 1 ms, but different from last time
- 0 = USB line state has not been stable for 1 ms
- bit 4 ACTVIF: Bus Activity Indicator bit
 - 1 = Activity on the D+, D-, ID or VBUS pins has caused the device to wake-up
 - 0 = Activity has not been detected
- bit 3 SESVDIF: Session Valid Change Indicator bit
 - 1 = VBUS voltage has dropped below the session end level
 - 0 = VBUS voltage has not dropped below the session end level
- bit 2 SESENDIF: B-Device VBUS Change Indicator bit
 - 1 = A change on the session end input was detected
 - 0 = No change on the session end input was detected
- bit 1 Unimplemented: Read as '0'
- bit 0 VBUSVDIF: A-Device VBUS Change Indicator bit
 - 1 = A change on the session valid input was detected
 - 0 = No change on the session valid input was detected

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		_	_		_			
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		-	_		_			
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0		-	_		_			
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0
7.0	_			_	_		FRMH<2:0>	

REGISTER 11-14: U1FRMH: USB FRAME NUMBER HIGH REGISTER

Legend:

•				
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-3 Unimplemented: Read as '0'

bit 2-0 **FRMH<2:0>:** The Upper 3 bits of the Frame Numbers bits The register bits are updated with the current frame number whenever a SOF TOKEN is received.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—		-	—		_		—	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23.10	—	-	-	—	_	_	-	—	
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
15.6	—	-	-	—	_	_	-	—	
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0		PID<3	3:0>(1)			EP<	3:0>		

REGISTER 11-15: U1TOK: USB TOKEN REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-4 **PID<3:0>:** Token Type Indicator bits⁽¹⁾

- 1101 = SETUP (TX) token type transaction
- 1001 = IN (RX) token type transaction
- 0001 = OUT (TX) token type transaction
- Note: All other values are reserved and must not be used.
- bit 3-0 **EP<3:0>:** Token Command Endpoint Address bits The four bit value must specify a valid endpoint.

Note 1: All other values are reserved and must not be used.

12.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

12.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

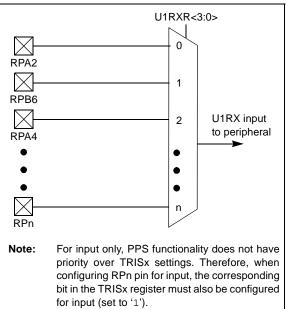
A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin.

Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

12.3.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.


The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

12.3.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table , are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table .

For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 12-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

NOTES:

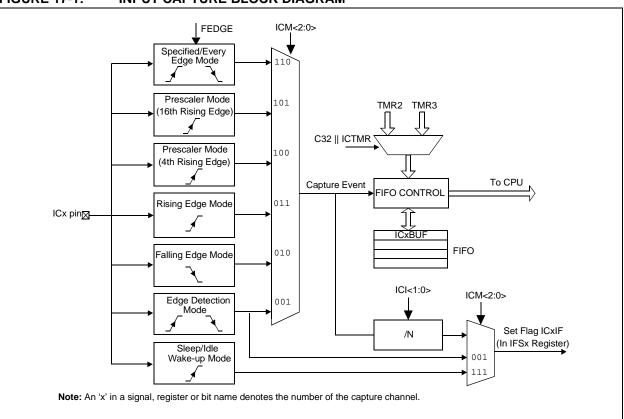
17.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:

- Simple capture event modes:
 - Capture timer value on every rising and falling edge of input at ICx pin
 - Capture timer value on every edge (rising and falling)
 - Capture timer value on every edge (rising and falling), specified edge first.


- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values (interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled)
- Input capture can also be used to provide additional sources of external interrupts

Figure 17-1 illustrates a general block diagram of the Input Capture module.

FIGURE 17-1: INPUT CAPTURE BLOCK DIAGRAM

REGISTER 20-2: I2CxSTAT: I²C STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last 0 = Stop bit was not detected last Herefyings out or clear when Start, Represend Start or Stop detected
bit 3	Hardware set or clear when Start, Repeated Start or Stop detected. S: Start bit
DIL D	1 = Indicates that a Start (or Repeated Start) bit has been detected last
	0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

0 = Transmit complete, I2CxTRN is empty

© 2016 Microchip Technology Inc.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24		—	_	—	—	—	—	—
00.40	R/W-0	R-0, HS, HC	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
23:16	SLPEN	ACTIVE	_	—	—	CLKSEL<1:0> R		RUNOVF
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
15:8	ON	—	SIDL	IREN	RTSMD	—	UEN<	1:0> ⁽¹⁾
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL	<1:0>	STSEL

REGISTER 21-1: UXMODE: UARTX MODE REGISTER

Legend:	HS = Hardware set	HC = Hardware cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-24 Unimplemented: Read as '0'

- bit 23 SLPEN: Run During Sleep Enable bit
 - 1 = UARTx BRG clock runs during Sleep mode
 - 0 = UARTx BRG clock is turned off during Sleep mode
 - **Note:** SLPEN = 1 only applies if CLKSEL = FRC. All clocks, as well as the UART, are disabled in Deep Sleep mode.
- bit 22 ACTIVE: UARTx Module Running Status bit
 - 1 = UARTx module is active (UxMODE register should not be updated)
 - 0 = UARTx module is not active (UxMODE register can be updated)
- bit 21-19 Unimplemented: Read as '0'
- bit 18-17 CLKSEL<1:0>: UARTx Module Clock Selection bits
 - 11 = BRG clock is PBCLK2
 - 10 = BRG clock is FRC
 - 01 = BRG clock is SYSCLK (turned off in Sleep mode)
 - 00 = BRG clock is PBCLK2 (turned off in Sleep mode)

bit 16 **RUNOVF:** Run During Overflow Condition Mode bit

- 1 = When an Overflow Error (OERR) condition is detected, the shift register continues to run to remain synchronized
- 0 = When an Overflow Error (OERR) condition is detected, the shift register stops accepting new data (Legacy mode)

bit 15 ON: UARTx Enable bit

- 1 = UARTx module is enabled. UARTx pins are controlled by UARTx as defined by UEN<1:0> and UTXEN control bits
- 0 = UARTx module is disabled. All UARTx pins are controlled by corresponding bits in the PORTx, TRISx, and LATx registers; UARTx power consumption is minimal
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue operation when device enters Idle mode
 - 0 = Continue operation in Idle mode
- Note 1: These bits are present for legacy compatibility, and are superseded by PPS functionality on these devices (see 12.3 "Peripheral Pin Select" for more information).

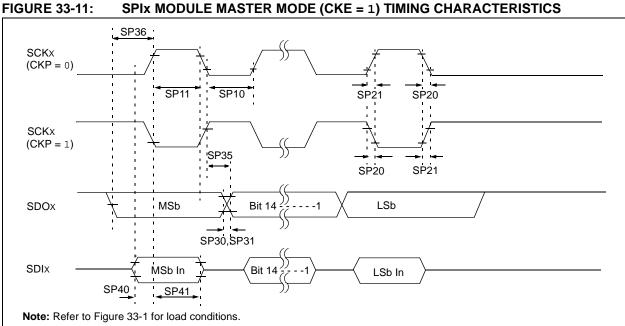

NOTES:

TABLE 33-6: LOW-VOLTAGE DETECT CHARACTERISTICS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.5V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ -40^\circ C \leq TA \leq +105^\circ C \ for \ V-temp \end{array}$					
Param No.	Symbol	Chara	Characteristic Min. Typ. Max. Units Condition					
HLV10	Vhlvd	HLVD Voltage on VDD	LVDL<3:0> = 0100 ⁽¹⁾	—	3.59		V	_
		Transition	LVDL<3:0> = 0101	_	3.44		V	
			LVDL<3:0> = 0110	—	3.13		V	
			LVDL<3:0> = 0111	_	2.92		V	_
			LVDL<3:0> = 1000	—	2.81	_	V	
			LVDL<3:0> = 1001		2.60	_	V	
			LVDL<3:0> = 1010	_	2.50		V	_
HLV11	VHTHL	HLVD Voltage on HLVDIN Pin Transition	LVDL<3:0> = 1111	—	1.20	—	V	_

Note 1: Trip points for values of HLVD<3:0>, from '0000' to '0011' and '1001' to '1110' are not implemented.

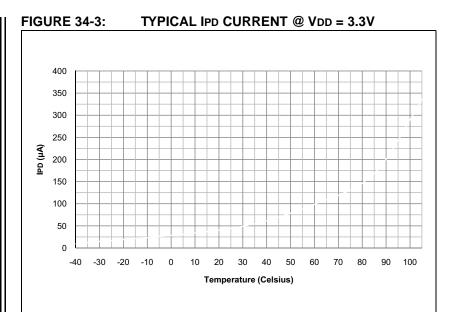
PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

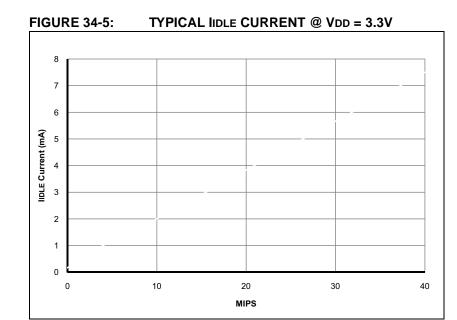
TABLE 33-30: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS								
AC CHARACTERISTICS			Standard Operating Conditions: 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур. ⁽²⁾	Max.	Units	Conditions	
SP10	TscL	SCKx Output Low Time (Note 3)	Тѕск/2	—	_	ns	_	
SP11	TscH	SCKx Output High Time (Note 3)	Tsck/2	_	_	ns	—	
SP15	TscK	SPI Clock Speed	_	—	25	MHz	—	
SP20	TscF	SCKx Output Fall Time (Note 4)		—		ns	See parameter DO32	
SP21	TscR	SCKx Output Rise Time (Note 4)	—	—	_	ns	See parameter DO31	
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32	
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—		ns	See parameter DO31	
SP35	TscH2doV,	SDOx Data Output Valid after	—	—	15	ns	VDD > 2.7V	
	TscL2doV	SCKx Edge	—	—	20	ns	Vdd < 2.7V	
SP36	TDOV2SC, TDOV2SCL	SDOx Data Output Setup to First SCKx Edge	15	_		ns	—	
SP40	TDIV2scH,	H, Setup Time of SDIx Data Input to	15	—	_	ns	VDD > 2.7V	
	TDIV2scL	SCKx Edge	20	_		ns	Vdd < 2.7V	
SP41	TscH2DIL,	Hold Time of SDIx Data Input	15		_	ns	VDD > 2.7V	
	TSCL2DIL	to SCKx Edge	20	—	_	ns	VDD < 2.7V	
Note 1: These parameters are characterized, but not tested in manufacturing.								

Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only 2: and are not tested.

3: The minimum clock period for SCKx is 50 ns. Therefore, the clock generated in Master mode must not violate this specification.

Assumes 50 pF load on all SPIx pins. 4:


AC CHARA	S ⁽²⁾	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			
ADC Speed	TAD Min.	Sampling Time Min.	Rs Max.	Vdd	ADC Channels Configuration
1 Msps to 400 ksps ⁽¹⁾	65 ns	132 ns	500Ω	3.0V to 3.6V	ANX CHX ANX ADC
Up to 400 ksps	200 ns	200 ns	5.0 kΩ	2.0V to 3.6V	ANX ADC ANX or VREF-


TABLE 33-36: 10-BIT CONVERSION RATE PARAMETERS

Note 1: External VREF- and VREF+ pins must be used for correct operation.

2: These parameters are characterized, but not tested in manufacturing.

3: The ADC module is functional at VBORMIN < VDD < 2.0V, but with degraded performance. Unless otherwise stated, module functionality is tested, but not characterized.

FIGURE 34-4: TYPICAL IDD CURRENT @ VDD = 3.3V

RTCDATE (RTC Date Value)230
RTCTIME (RTC Time Value) 229
SPIxCON (SPI Control) 189
SPIxCON2 (SPI Control 2)192
SPIxSTAT (SPI Status)193
SPLLCON (System PLL Control)
T1CON (Type A Timer Control) 165
TxCON (Type B Timer Control) 170
U1ADDR (USB Address) 141
U1BDTP1 (USB BDT Page 1)143
U1BDTP2 (USB BDT Page 2)144
U1BDTP3 (USB BDT Page 3) 144
U1CNFG1 (USB Configuration 1) 145
U1CON (USB Control) 139
U1EIE (USB Error Interrupt Enable)
U1EIR (USB Error Interrupt Status) 135
U1EP0-U1EP15 (USB Endpoint Control) 146
U1FRMH (USB Frame Number High)142
U1FRML (USB Frame Number Low) 141
U1IE (USB Interrupt Enable)134
U1IR (USB Interrupt)133
U1OTGCON (USB OTG Control) 131
U1OTGIE (USB OTG Interrupt Enable) 129
U1OTGIR (USB OTG Interrupt Status)128
U1OTGSTAT (USB OTG Status) 130
U1PWRC (USB Power Control)132
U1SOF (USB SOF Threshold)
U1STAT (USB Status)
U1TOK (USB Token)
UPLLCON (USB PLL Control)
WDTCON (Watchdog Timer Control) 175, 270
Resets
Revision History
RTCALRM (RTC ALARM Control)
· · · · · ·

S

Serial Peripheral Interface (SPI)	187
Software Simulator (MPLAB SIM)	295
Special Features	
SPI1 and SPI2 Pinout I/O Descriptions	

т

Timer1 Module	63
Timer1-Timer5 and RTCC Pinout I/O Descriptions	25
Timer2/3, Timer4/5 Modules 1	67
Timing Diagrams	
10-Bit Analog-to-Digital Conversion	
(ASAM = 0, SSRC<2:0> = 000)	334
10-Bit Analog-to-Digital Conversion	

(ASAM = 1,
SSRC<2:0> = 111, SAMC<4:0> = 00001) 335
EJTAG
External Clock 310
I/O Characteristics
I2Cx Bus Data (Master Mode) 324
I2Cx Bus Data (Slave Mode)
I2Cx Bus Start/Stop Bits (Master Mode) 324
I2Cx Bus Start/Stop Bits (Slave Mode)
Input Capture (CAPx)
OCx/PWM
Output Compare (OCx)
Parallel Master Port Read 336
Parallel Master Port Write 337
Parallel Slave Port
SPIx Master Mode (CKE = 0) 319
SPIx Master Mode (CKE = 1) 320
SPIx Slave Mode (CKE = 0)
SPIx Slave Mode (CKE = 1) 322
Timer1 - Timer5 External Clock 316
UART Reception 209
UART Transmission (8-bit or 9-bit Data) 209
Timing Requirements
CLKO and I/O 313
Timing Specifications
I2Cx Bus Data Requirements (Master Mode)
I2Cx Bus Data Requirements (Slave Mode)
Input Capture Requirements 317
Output Compare Requirements
Simple OCx/PWM Mode Requirements
SPIx Master Mode (CKE = 0) Requirements
SPIx Master Mode (CKE = 1) Requirements
SPIx Slave Mode (CKE = 1) Requirements
SPIx Slave Mode Requirements (CKE = 0)

U

UART	203
UART1 and UART2 Pinout I/O Descriptions	25
USB On-The-Go (OTG)	123
USB Pinout I/O Descriptions	29

V

VCAP pin	289
Voltage Regulator (On-Chip)	289

W

Watchdog Timer and Power-up Timer SFR Summary	267
WWW Address	361
WWW, On-Line Support	16

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

NOTES: