

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx154f128bt-v-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

TABLE 9: PIN NAMES FOR 28-PIN USB DEVICES WITH VBAT

28-PIN QFN (TOP VIEW)^(1,2,3,4)

PIC32MX255F128B PIC32MX275F256B

	FIC32WIAZ73F230B		
		28	1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	PGED2/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12/PMD1/RB1	16	Vss
3	PGED1/AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	17	VCAP
4	PGEC1/AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/PMWR/RB3	18	D+
5	Vss	19	D-
6	OSC1/CLKI/RPA2/RA2	20	VUSB3V3
7	OSC2/CLKO/RPA3/PMA0/RA3	21	VBAT
8	SOSCI [/] RPB4/CTED11/RB4 ⁽⁵⁾	22	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMA1/RB14
9	SOSCO/RPA4/T1CK/CTED9/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	VDD	24	AVss
11	TMS/RPB5/USBID/PMRD/RB5	25	AVdd
12	VBUS	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	PGED3/VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMD7/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	PGEC3/VREF-/AN1/RPA1/ASCL1/CTED2/PMD6/RA1
Nata	1. The PPn pine can be used by remanable peripherals. See Ta	bla 1 for th	a susible suiskand and 40.2 "Parinkand Pin Calast" (se

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSs externally.

4: Shaded pins are 5V tolerant.

5: This is an input-only pin.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

TABLE 10: PIN NAMES FOR 28-PIN USB DEVICES WITHOUT VBAT

28-PIN QFN (TOP VIEW)^(1,2,3,4)

PIC32MX254F128B PIC32MX274F256B

		28	1
Pin #	Full Pin Name	Pin #	Full Pin Name
1	PGED2/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12/PMD1/RB1	16	Vss
3	PGED1/AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	17	VCAP
4	PGEC1/AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3	18	D+
5	Vss	19	D-
6	OSC1/CLKI/RPA2/RA2	20	VUSB3V3
7	OSC2/CLKO/RPA3/PMA0/RA3	21	AN11/RPB13/CTPLS/PMRD/RB13
8	SOSCI/RPB4/CTED11/RB4 ⁽⁵⁾	22	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMA1/RB14
9	SOSCO/RPA4/T1CK/CTED9/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	Vdd	24	AVss
11	TMS/RPB5/USBID/RB5	25	AVdd
12	VBUS	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	PGED3/VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMD7/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	PGEC3/VREF-/AN1/RPA1/ASCL1/CTED2/PMD6/RA1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: Shaded pins are 5V tolerant.

5: This is an input-only pin.

TABLE 1-13 :	USB PINOUT I/O DESCRIPTIONS
---------------------	------------------------------------

	Pi	n Number ⁽¹	1,2)	Pin Buffer Type Type		Description				
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP							
				Unive	ersal Seria	l Bus				
VBUS	12	15	42	I	Analog	USB Bus Power Monitor				
VUSB3V3	20	23	10	Р	—	USB Internal Transceiver Supply. This pin must be connected to VDD.				
VBUSON	PPS	PPS	PPS	0	—	USB Host and OTG Bus Power C	Control Output			
D+	18	21	8	I/O	Analog	USB D+				
D-	19	22	9	I/O	Analog	USB D-				
USBID	11	14	41	I	ST	USB OTG ID Detect				
USBON	14	17	44	0		ON Signal for External VBUS Source				
5	ST = Schmi	MOS compa tt Trigger in nput buffer				Analog = Analog input O = Output PPS = Peripheral Pin Select	P = Power I = Input — = N/A			

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: All pins are only available on USB devices.

3: Pin number for devices without VBAT.

4: Pin number for devices with USB only.

5: Pin number for devices without USB.

REGISTER 6-1: RCON: RESET CONTROL REGISTER

- bit 4 WDTO: Watchdog Timer Time-out Flag bit 1 = WDT Time-out has occurred 0 = WDT Time-out has not occurred bit 3 **SLEEP:** Wake From Sleep Flag bit 1 = Device was in Sleep mode 0 = Device was not in Sleep mode bit 2 **IDLE:** Wake From Idle Flag bit 1 =Device was in Idle mode 0 = Device was not in Idle mode bit 1 BOR: Brown-out Reset Flag bit⁽¹⁾ 1 = Brown-out Reset has occurred 0 = Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit⁽¹⁾
 - 1 = Power-on Reset has occurred
 - 0 = Power-on Reset has not occurred
- Note 1: User software must clear this bit to view the next detection.
 - 2: This bit is only available on devices with VBAT.

TABLE 7-2: INTERRUPT REGISTER MAP (CONTINUED)

ess		e								Bits									
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1100	IPC7	31:16	—	—	—		SPI1IP<2:0>		SPI1IS	S<1:0>	—	—	—	US	6BIP<2:0>(2	2)	USBIS	<1:0> (2)	0000
1100	IPC7	15:0	_	_	—	(CMP3IP<2:0>		CMP3I	S<1:0>	_	_	_	CMP2IP<2:0>		CMP2I	S<1:0>	0000	
1110	IPC8	31:16	_	_	—		PMPIP<2:0>		PMPIS<1:0>		_	_	_	(CNIP<2:0>		CNIS	<1:0>	0000
1110	IPC8	15:0	-	—	—		I2C1IP<2:0>		I2C1IS<1:0>		—	_	—	U1IP<2:0>			U1IS-	<1:0>	0000
1120	IPC9	31:16		_	_	(CTMUIP<2:0:	>	CTMUIS<1:0>		_	_	_	I2C2IP<2:0>		12C215	6<1:0>	0000	
1120	IFC9	15:0		_	_		U2IP<2:0>		U2IS<1:0>		_	_	_	SPI2IP<2:0>		SPI2IS	S<1:0>	0000	
1120	IPC10	31:16	—	—	—	[DMA3IP<2:0>	>	DMA3IS	S<1:0>	—	—	—	DI	MA2IP<2:0;	>	DMA2I	S<1:0>	0000
1130	IFC10	15:0	_		-	[DMA1IP<2:0>	>	DMA1IS	S<1:0>		_		DI	VA0IP<2:0;	>	DMA0I	S<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX1XX devices.

3: This register does not have associated CLR, SET, INV registers.

REGISTE	R 9-9: DCHxINT: DMA CHANNEL 'x' INTERRUPT CONTROL REGISTER (CONTINUED)
bit 4	CHDHIF: Channel Destination Half Full Interrupt Flag bit
	 1 = Channel Destination Pointer has reached midpoint of destination (CHDPTR = CHDSIZ/2) 0 = No interrupt is pending
bit 3	CHBCIF: Channel Block Transfer Complete Interrupt Flag bit
	 1 = A block transfer has been completed (the larger of CHSSIZ/CHDSIZ bytes has been transferred), or a pattern match event occurs 0 = No interrupt is pending
bit 2	CHCCIF: Channel Cell Transfer Complete Interrupt Flag bit
	1 = A cell transfer has been completed (CHCSIZ bytes have been transferred)0 = No interrupt is pending
bit 1	CHTAIF: Channel Transfer Abort Interrupt Flag bit
	 1 = An interrupt matching CHAIRQ has been detected and the DMA transfer has been aborted 0 = No interrupt is pending
bit 0	CHERIF: Channel Address Error Interrupt Flag bit
	 1 = A channel address error has been detected (either the source or the destination address is invalid) 0 = No interrupt is pending

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

ILCIOIC L											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31:24	—	—	—			—		—			
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23:16	_	—	_	—	_	_	_	—			
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15:8		CHCSIZ<15:8>									
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
7:0				CHCSIZ	<7:0>						

REGISTER 9-16: DCHxCSIZ: DMA CHANNEL 'x' CELL-SIZE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

bit 15-0 CHCSIZ<15:0>: Channel Cell Size bits

111111111111111 = 65,535 bytes transferred on an event

REGISTER 9-17: DCHxCPTR: DMA CHANNEL 'x' CELL POINTER REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	—	—	_	_	—	—	_	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	_	—		
45.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	CHCPTR<15:8>									
7.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
7:0				CHCPTF	R<7:0>					

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

Note: When in Pattern Detect mode, this register is reset on a pattern detect.

12.1 Parallel I/O (PIO) Ports

All port pins have 10 registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

12.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORTx, LATx, and TRISx registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V-tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See the **"Pin Diagrams"** section for the available pins and their functionality.

12.1.2 CONFIGURING ANALOG AND DIGITAL PORT PINS

The ANSELx register controls the operation of the analog port pins. The port pins that are to function as analog inputs must have their corresponding ANSEL and TRIS bits set. In order to use port pins for I/O functionality with digital modules, such as Timers, UARTs, etc., the corresponding ANSELx bit must be cleared.

The ANSELx register has a default value of 0xFFFF; therefore, all pins that share analog functions are analog (not digital) by default.

If the TRIS bit is cleared (output) while the ANSELx bit is set, the digital output level (VOH or VOL) is converted by an analog peripheral, such as the ADC module or Comparator module.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

12.1.3 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be a NOP.

12.1.4 INPUT CHANGE NOTIFICATION

The input change notification function of the I/O ports allows the PIC32MX1XX/2XX 28/44-pin XLP Family devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Every I/O port pin can be selected (enabled) for generating an interrupt request on a change-of-state.

Five control registers are associated with the CN functionality of each I/O port. The CNENx registers contain the CN interrupt enable control bits for each of the input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

The CNSTATx register indicates whether a change occurred on the corresponding pin since the last read of the PORTx bit.

Each I/O pin also has a weak pull-up and a weak pull-down connected to it. The pull-ups act as a current source or sink source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups and pull-downs are enabled separately using the CNPUx and the CNPDx registers, which contain the control bits for each of the pins. Setting any of the control bits enables the weak pull-ups and/or pull-downs for the corresponding pins.

```
Note: Pull-ups and pull-downs on change notification pins should always be disabled when the port pin is configured as a digital output.
```

An additional control register (CNCONx) is shown in Register 12-3.

12.2 CLR, SET and INV Registers

Every I/O module register has a corresponding CLR (clear), SET (set) and INV (invert) register designed to provide fast atomic bit manipulations. As the name of the register implies, a value written to a SET, CLR or INV register effectively performs the implied operation, but only on the corresponding base register and only bits specified as '1' are modified. Bits specified as '0' are not modified.

Reading SET, CLR and INV registers returns undefined values. To see the affects of a write operation to a SET, CLR, or INV register, the base register must be read.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
31:24		_	_		RXBUFELM<4:0>					
23:16	U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
23:16	—	_	—	TXBUFELM<4:0>						
45.0	U-0	U-0	U-0	R/C-0, HS	R-0	U-0	U-0	R-0		
15:8		_	_	FRMERR	SPIBUSY	_	_	SPITUR		
7.0	R-0	R/W-0	R-0	U-0	R-1	U-0	R-0	R-0		
7:0	SRMT	SPIROV	SPIRBE		SPITBE		SPITBF	SPIRBF		

REGISTER 19-3: SPIxSTAT: SPI STATUS REGISTER

Legend:	C = Clearable bit	HS = Set in hardware				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

- bit 31-29 Unimplemented: Read as '0'
- bit 28-24 **RXBUFELM<4:0>:** Receive Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 23-21 Unimplemented: Read as '0'
- bit 20-16 **TXBUFELM<4:0>:** Transmit Buffer Element Count bits (valid only when ENHBUF = 1)
- bit 15-13 Unimplemented: Read as '0'
- bit 12 **FRMERR:** SPI Frame Error status bit
 - 1 = Frame error detected
 - 0 = No Frame error detected
 - This bit is only valid when FRMEN = 1.
- bit 11 SPIBUSY: SPI Activity Status bit
 - 1 = SPI peripheral is currently busy with some transactions
 - 0 = SPI peripheral is currently idle
- bit 10-9 Unimplemented: Read as '0'
- bit 8 SPITUR: Transmit Under Run bit
 - 1 = Transmit buffer has encountered an underrun condition
 - 0 = Transmit buffer has no underrun condition

This bit is only valid in Framed Sync mode; the underrun condition must be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or writing a '0' to SPITUR.

- bit 7 **SRMT:** Shift Register Empty bit (valid only when ENHBUF = 1)
 - 1 = When SPI module shift register is empty
 - 0 = When SPI module shift register is not empty
- bit 6 SPIROV: Receive Overflow Flag bit
 - 1 = A new data is completely received and discarded. The user software has not read the previous data in the SPIxBUF register.
 - 0 = No overflow has occurred

This bit is set in hardware; can bit only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module, or by writing a '0' to SPIROV.

- bit 5 **SPIRBE:** RX FIFO Empty bit (valid only when ENHBUF = 1) 1 = RX FIFO is empty (CRPTR = SWPTR) 0 = RX FIFO is not empty (CRPTR + SWPTR)
 - 0 = RX FIFO is not empty (CRPTR \neq SWPTR)
- bit 4 Unimplemented: Read as '0'

20.0 INTER-INTEGRATED CIRCUIT (I²C)

Note:	This data sheet summarizes the
	features of the PIC32MX1XX/2XX
	28/44-pin XLP Family of devices. It is
	not intended to be a comprehensive
	reference source. To complement the
	information in this data sheet, refer to
	Section 24. "Inter-Integrated Circuit
	(I ² C)" (DS60001116), which is available
	from the Documentation > Reference
	Manual section of the Microchip PIC32
	web site (www.microchip.com/pic32).

The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard. Figure 20-1 illustrates the I²C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

REGISTER 20-2: I2CxSTAT: I²C STATUS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31:24		_			—			-	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	_	_	—	—	—	_	—	
45.0	R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC	
15:8	ACKSTAT	TRSTAT		—	—	BCL	GCSTAT	ADD10	
7.0	R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC	
7:0	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	

Legend:	HS = Set in hardware	HSC = Hardware set/cleared			
R = Readable bit	W = Writable bit	ble bit U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	C = Clearable bit		

bit 31-16 Unimplemented: Read as '0'

bit 15 ACKSTAT: Acknowledge Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Acknowledge was not received from slave 0 = Acknowledge was received from slave Hardware set or clear at end of slave Acknowledge. bit 14 **TRSTAT:** Transmit Status bit (when operating as I²C master, applicable to master transmit operation) 1 = Master transmit is in progress (8 bits + ACK) 0 = Master transmit is not in progress Hardware set at beginning of master transmission. Hardware clear at end of slave Acknowledge. bit 13-11 Unimplemented: Read as '0' bit 10 BCL: Master Bus Collision Detect bit 1 = A bus collision has been detected during a master operation $0 = No \ collision$ Hardware set at detection of bus collision. This condition can only be cleared by disabling (ON bit = 0) and re-enabling (ON bit = 1) the module. bit 9 GCSTAT: General Call Status bit 1 = General call address was received 0 = General call address was not received Hardware set when address matches general call address. Hardware clear at Stop detection. bit 8 ADD10: 10-bit Address Status bit 1 = 10-bit address was matched 0 = 10-bit address was not matched Hardware set at match of 2nd byte of matched 10-bit address. Hardware clear at Stop detection. bit 7 IWCOL: Write Collision Detect bit 1 = An attempt to write the I2CxTRN register failed because the I²C module is busy $0 = No \ collision$ Hardware set at occurrence of write to I2CxTRN while busy (cleared by software). bit 6 I2COV: Receive Overflow Flag bit 1 = A byte was received while the I2CxRCV register is still holding the previous byte 0 = No overflowHardware set at attempt to transfer I2CxRSR to I2CxRCV (cleared by software). bit 5 **D_A:** Data/Address bit (when operating as I²C slave) 1 = Indicates that the last byte received was data

0 = Indicates that the last byte received was device address

Hardware clear at device address match. Hardware set by reception of slave byte.

21.1 UART Control Registers

TABLE 21-1: UART1 AND UART2 REGISTER MAP

ess										Bi	ts								s
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6000	U1MODE ⁽¹⁾	31:16	_	_	-	—		_	_	—	SLPEN	ACTIVE	—	_	—	CLKSE	L<1:0>	RUNOVF	0000
0000	OTWODE	15:0	ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>	WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSE	_<1:0>	STSEL	0000
6010	U1STA ⁽¹⁾	31:16			1	MASK								ADDR					0000
		15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6020	U1TXREG	31:16	—	—	—	—	—	—	—	-	—	—			_	—	—	—	0000
		15:0	_	_	_	—	_	_	_	TX8				Transmit	Register			r	0000
6030	U1RXREG	31:16	_			_		_		-	—	—	—	-		—	—	—	0000
		15:0	_	_	_	_	_	_	_	RX8					Register			r	0000
6040	U1BRG ⁽¹⁾	31:16	_	_	_	—	_	_	- ,	-		. —		—	—	—	_	—	0000
		15:0							Baud	d Rate Gen						1		1	0000
6200	U2MODE ⁽¹⁾	31:16	_	_	—	_	_	_	_	_	SLPEN	ACTIVE			—	CLKSE	-	RUNOVF	
			ON	—	SIDL	IREN	RTSMD	—	UEN	<1:0>						STSEL	0000		
6210	U2STA ⁽¹⁾	31:16				MASK	-							ADDR					0000
0210	02017	15:0	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT	URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
6220	U2TXREG	31:16	—	—	—	—	—	—	_	—	_	—	—	—	—	—	—	—	0000
0220	OLIVINEO	15:0	—	_	—	—	—	—	_	TX8				Transmit	Register				0000
6230	U2RXREG	31:16	—	_	—	—	—	_	-	—	—	—	—	—	—	—	_	—	0000
5200		15:0	—	—	—	—	—	—	_	RX8				Receive	Register				0000
6240	U2BRG ⁽¹⁾	31:16	—	—	—	—	—		—	—	—	—	—	—	—	—	—	—	0000
52.10	CLDI(C	15:0							Bau	d Rate Gen	erator Pres	caler							0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

NOTES:

REGISTER 22-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

CSF<1:0>: Chip Select Function bits⁽²⁾ bit 7-6 11 = Reserved 10 = PMCS1 functions as Chip Select 01 = PMCS1 functions as PMA<14> 00 = PMCS1 functions as PMA<14> ALP: Address Latch Polarity bit(2) bit 5 1 = Active-high (PMALL and PMALH) $0 = \text{Active-low} (\overline{\text{PMALL}} \text{ and } \overline{\text{PMALH}})$ Unimplemented: Read as '0' bit 4 bit 3 **CS1P:** Chip Select 0 Polarity bit⁽²⁾ 1 = Active-high (PMCS1) $0 = \text{Active-low}(\overline{PMCS1})$ bit 2 Unimplemented: Read as '0' WRSP: Write Strobe Polarity bit bit 1 For Slave Modes and Master mode 2 (MODE<1:0> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 =Write strobe active-low (\overline{PMWR}) For Master mode 1 (MODE<1:0> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)bit 0 RDSP: Read Strobe Polarity bit For Slave modes and Master mode 2 (MODE<1:0> = 00,01,10): 1 = Read Strobe active-high (PMRD) $0 = \text{Read Strobe active-low}(\overline{PMRD})$

For Master mode 1 (MODE<1:0> = 11):

- 1 = Read/write strobe active-high (PMRD/PMWR)
- $0 = \text{Read/write strobe active-low (}\overline{\text{PMRD}/\text{PMWR})}$
- Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	—	_	_	_	_	_	—
22:46	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—				-		—
45.0	R-0	R/W-0, HSC	U-0	U-0	R-0	R-0	R-0	R-0
15:8	IBF	IBOV	_	_	IB3F	IB2F	IB1F	IB0F
7.0	R-1	R/W-0, HSC	U-0	U-0	R-1	R-1	R-1	R-1
7:0	OBE	OBUF		_	OB3E	OB2E	OB1E	OB0E

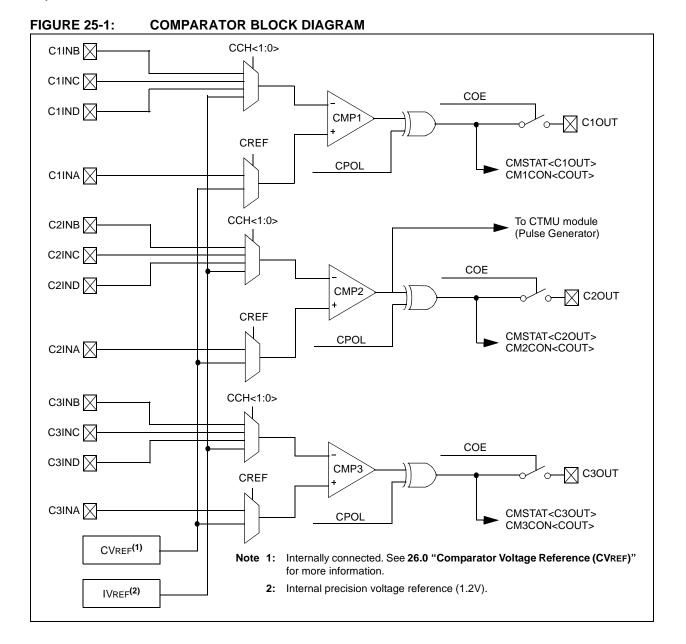
REGISTER 22-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

Legend:	HSC = Set by Hardware; Cleared by Software					
R = Readable bit	W = Writable bit U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
 - 1 = All writable input buffer registers are full
 - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
 - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
 - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
 - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
 - 1 = All readable output buffer registers are empty
 - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
 - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
 0 = No underflow occurred
- bit 5-4 **Unimplemented:** Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
 - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
 - 0 = Output buffer contains data that has not been transmitted

25.0 COMPARATOR


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section 19. to "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module contains three comparators that can be configured in a variety of ways.

The following are key features of the Comparator module:

- Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- Outputs can be Inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 25-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31:24	_	—		-	—	_	-	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23.10	-	-		_	_			_		
15:8	U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
15.0	-	-	SIDL	_	_			_		
7:0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0		
7:0		_			_	C3OUT	C2OUT	C1OUT		

REGISTER 25-2: CMSTAT: COMPARATOR STATUS REGISTER

Legend:

R = Readable bit	= Readable bit W = Writable bit		ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Control bit

1 = All Comparator modules are disabled when the device enters Idle mode

0 = All Comparator modules continue to operate when the device enters Idle mode

bit 12-3 Unimplemented: Read as '0'

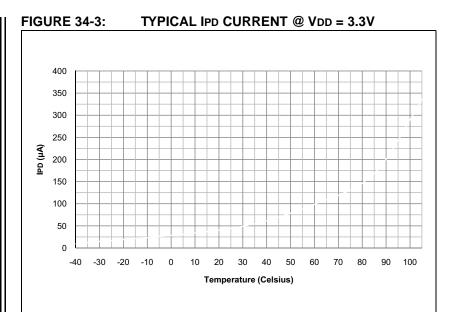
bit 2 C3OUT: Comparator Output bit

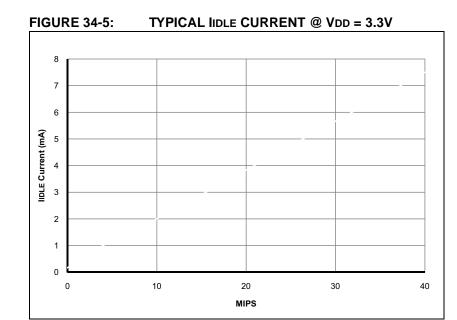
- 1 = Output of Comparator 3 is a '1'
 - 0 = Output of Comparator 3 is a '0'

bit 1 C2OUT: Comparator Output bit

- 1 = Output of Comparator 2 is a '1'
- 0 = Output of Comparator 2 is a '0'

bit 0 **C1OUT:** Comparator Output bit


- 1 =Output of Comparator 1 is a '1'
- 0 = Output of Comparator 1 is a '0'


NOTES:

AC CHA	RACTERIS		$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Charact	eristics	Min.	Max.	Units	Conditions	
IS34	THD:STO	Stop Condition	100 kHz mode	4000	_	ns	_	
		Hold Time	400 kHz mode	600	—	ns		
			1 MHz mode (Note 1)	250		ns		
IS40	TAA:SCL	Output Valid from Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode (Note 1)	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	The amount of time the bus	
			400 kHz mode	1.3	—	μs	must be free before a new	
			1 MHz mode (Note 1)	0.5	—	μS	transmission can start	
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	—	

TABLE 33-34: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE) (CONTINUED)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

FIGURE 34-4: TYPICAL IDD CURRENT @ VDD = 3.3V