

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx154f128bt-v-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

		~		Re	mappab	le Per	iphera	als				d)		els)					
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/ Compare/PWM	UART	S ² I/IdS	External Interrupts ⁽³⁾	Analog Comparators	I ² CTM	dWd	DMA Channels (Programmable/Dedicated)	СТМИ	10-bit 1 Msps ADC (Channels)	RTCC	suid O/I	JTAG	TABV	Packages
PIC32MX154F128B	28			20										10		21		Ν	SOIC, QFN
PIC32MX154F128D	44	128+12	32	30	5/5/5/5	2	0	5	3	2	Y	4/2	Y	13	Y	35	Y	Ν	TQFP, QFN
PIC32MX155F128B	28	120+12	32	19	5/5/5/5	2	2	Э	3	2	ř	4/2	ř	9	ř	20	Ť	Y	SOIC, QFN
PIC32MX155F128D	44			29										12		35		Y	TQFP, QFN
PIC32MX174F256B	28			20										10		21		Ν	SOIC, QFN
PIC32MX174F256D	44	050.40		30		0	0	-	~	0	V	4/0	X	13	v	35	v	Ν	TQFP, QFN
PIC32MX175F256B	28	256+12	64	19	5/5/5/5	2	2	5	3	2	Y	4/2	Y	9	Y	20	Y	Y	SOIC, QFN
PIC32MX175F256D	44			29										12		35		Y	TQFP, QFN

TABLE 1. PIC32MX1XX 28/44-PIN XI P (GENERAL PURPOSE) FAMILY FEATURES

2: Four out of five timers are remappable. 3:

Four out of five external interrupts are remappable.

TABLE 2: PIC32MX2XX 28/44-PIN XLP (USB) FAMILY FEATURES

		<u>^</u>		Re	mappabl	e Per	iphera	als					d)		els)					
Device	Pins	Program Memory (KB) ⁽¹⁾	Data Memory (KB)	Remappable Pins	Timers ⁽²⁾ /Capture/ Compare/PWM	UART	SPI/I ² S	External Interrupts ⁽³⁾	Analog Comparators	USB On-The-Go (OTG)	I²C™	РМР	DMA Channels (Programmable/Dedicated)	CTMU	10-bit 1 Msps ADC (Channels)	RTCC	I/O Pins	JTAG	VBAT	Packages
PIC32MX254F128B	28			17											9		17		Ν	SOIC, QFN
PIC32MX254F128D	44			29	_ /_ /_ /_			_							13		35		Ν	TQFP, QFN
PIC32MX255F128B	28	128+12	32	16	5/5/5/5	2	2	5	3	Y	2	Y	4/2	Y	8	Y	16	Υ	Y	SOIC, QFN
PIC32MX255F128D	44			28											12	Ì	35		Y	TQFP, QFN
PIC32MX274F256B	28			17											9		17		Ν	SOIC, QFN
PIC32MX274F256D	44	050.40		29				_		Ň		Ň	4/0	~	13		35	v	Ν	TQFP, QFN
PIC32MX275F256B	28	256+12	64	16	5/5/5	2	2	5	3	Y	2	Y	4/2	Y	8	Y	16	Y	Y	SOIC, QFN
PIC32MX275F256D	44			28											12	Ì	35		Y	TQFP, QFN

1: This device features 12 KB of Boot Flash memory.

2: Four out of five timers are remappable.

3: Four out of five external interrupts are remappable.

Note

TABLE 13: PIN NAMES FOR 44-PIN USB DEVICES WITH VBAT

44-PIN QFN AND TQFP (TOP VIEW)^(1,2,3,5)

PIC32MX255F128D PIC32MX275F256D

	44			1 44
				1
Pin #	Full Pin Name	Pi	n #	Full Pin Name
1	RPB9/SDA1/CTED4/PMA7/RB9	2	23	PGED1/AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMA8/RB2
2	RPC6/PMA1/RC6	2	24	PGEC1/AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/PMA2/R B3
3	RPC7/PMCS1/RC7	2	25	AN6/RPC0/RC0
4	RPC8/PMD5/RC8	2	26	AN7/RPC1/RC1
5	RPC9/CTED7/PMD6/RC9	2	27	AN8/RPC2/PMWR/RC2
6	Vss	2	28	VDD
7	VCAP	2	29	Vss
8	D+	3	80	OSC1/CLKI/RPA2/RA2
9	D-	3	31	OSC2/CLKO/RPA3/RA3
10	VUSB3V3	3	32	TDO/RPA8/PMD2/RA8
11	VBAT	3	33	SOSCI/RPB4/CTED11/RB4
12	PGED4/PMD0/RA10	3	34	SOSCO/RPA4/T1CK/CTED9/RA4
13	PGEC4/TCK/CTED8/PMD3/RA7	3	85	TDI/RPA9/PMD1/RA9
14	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/RB14	3	86	AN12/RPC3/PMRD/RC3
15	AN9/C3INA/RPB15/SCK2/CTED6/PMA0/RB15	3	37	RPC4/PMD4/RC4
16	AVss	3	88	RPC5/PMD7/RC5
17	AVdd	3	39	Vss
18	MCLR	4	10	VDD
19	PGED3/VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA3/RA0	2	1	TMS/RPB5/USBID/RB5
20	PGEC3/VREF-/AN1/RPA1/ASCL1/CTED2/PMA6/RA1	4	12	VBUS
21	PGED2/AN2/C1IND/C2INB/C3IND/RPB0/PMA10/RB0	2	13	RPB7/CTED3/PMA5/INT0/RB7
22	PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12/PMA9/RB 1	2	14	RPB8/SCL1/CTED10/PMA4/RB8

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information. 2:

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: Shaded pins are 5V tolerant.

	P	in Number ⁽	(1)				
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description	
-			4	nalog-t	o-Digital C	Converter	
AN0	27	2	19	I	Analog	Analog input channels.	
AN1	28	3	20	I	Analog		
AN2	1	4	21	I	Analog		
AN3	2	5	22	I	Analog		
AN4	3	6	23	I	Analog		
AN5	4	7	24	I	Analog		
AN6	—	—	25	I	Analog		
AN7	—	—	26	Ι	Analog		
AN8	—	—	27	I	Analog		
AN9	23	26	15	I	Analog		
AN10	22	25	14	I	Analog		
AN11 ⁽³⁾	21	24	11	I	Analog		
AN12	20 ⁽²⁾	23 ⁽²⁾	10	I	Analog		
Legend:	CMOS = CM ST = Schmi TTL = TTL i	tt Trigger in				Analog = Analog input O = Output PPS = Peripheral Pin Select	P = Power I = Input — = N/A

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for General Purpose devices only.

3: This pin is not available on VBAT devices.

	Pi	in Number	(1)			
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description
				Pow	er and Gro	bund
TMS	19 ⁽²⁾	22 ⁽²⁾	9(2)		ST	JTAG Test mode select pin
	11 ⁽³⁾	14 ⁽³⁾	41 ⁽³⁾		-	· · · · · · · · · · · · · · · · · · ·
ТСК	14	17	13	I	ST	JTAG test clock input pin
TDI	13	16	35	0	—	JTAG test data input pin
TDO	15	18	32	0	—	JTAG test data output pin
	bugging					
PGED1	Data I/O pin for Programming/Debugging					
PGEDT	3 (3)	6 ⁽³⁾	23 ⁽³⁾	I/O	ST	Communication Channel 1
DOFOI	19 (2)	22 (2)	9 (2)		OT	Clock input pin for Programming/Debugging
PGEC1	4 ⁽³⁾	7 ⁽³⁾	24 ⁽³⁾		ST	Communication Channel 1
PGED2	1	4	21	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 2
PGEC2	2	5	22	I	ST	Clock input pin for Programming/Debugging Communication Channel 2
DOEDA	11 ⁽²⁾	14 (2)	41 ⁽²⁾	1/0	0 T	Data I/O pin for Programming/Debugging
PGED3	27 ⁽³⁾	2 ⁽³⁾	19 ⁽³⁾	I/O	ST	Communication Channel 3
DOFOR	12 ⁽²⁾	15 ⁽²⁾	42 ⁽²⁾		OT	Clock input pin for Programming/
PGEC3	28 ⁽³⁾	3 (3)	20 ⁽³⁾		ST	Debugging Communication Channel 3
PGED4	_		12	I/O	ST	Data I/O pin for Programming/Debugging Communication Channel 4
PGEC4	_	_	13	I	ST	Clock input pin for Programming/ Debugging Communication Channel 4
MCLR	26	1	18	I/P	ST	Master Clear (Reset) input. This pin is an active-low Reset to the device.
	CMOS = CM ST = Schmi TTL = TTL i	tt Trigger in nput buffer	put with Cl			Analog = Analog input $P = Power$ $O = Output$ $I = Input$ $PPS = Peripheral Pin Select$ $ = N/A$

JTAG, TRACE, AND PROGRAMMING/DEBUGGING PINOUT I/O DESCRIPTIONS TABLE 1-16:

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for General Purpose devices only.

3: Pin number for USB devices only.

2.0 GUIDELINES FOR GETTING STARTED WITH 32-BIT MCUs

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the documents listed in the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

2.1 Basic Connection Requirements

Getting started with the PIC32MX1XX/2XX 28/44-pin XLP Family of 32-bit Microcontrollers (MCUs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and Vss pins (see 2.2 "Decoupling Capacitors")
- All AVDD and AVSS pins, even if the ADC module is not used (see 2.2 "Decoupling Capacitors")
- VCAP pin (see 2.3 "Capacitor on Internal Voltage Regulator (VCAP)")
- MCLR pin (see 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins, used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see 2.5 "ICSP Pins")
- OSC1 and OSC2 pins, when external oscillator source is used (see 2.7 "External Oscillator Pins")

The following pins may be required:

• VREF+/VREF- pins – used when external voltage reference for the ADC module is implemented

Note: The AVDD and AVss pins must be connected, regardless of ADC use and the ADC voltage reference source.

2.2 Decoupling Capacitors

The use of decoupling capacitors on power supply pins, such as VDD, VSS, AVDD and AVSS is required. See Figure 2-1.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A value of 0.1 μ F (100 nF), 10-20V is recommended. The capacitor should be a low Equivalent Series Resistance (low-ESR) capacitor and have resonance frequency in the range of 20 MHz and higher. It is further recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended that the capacitors be placed on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

5.1 Flash Controller Control Registers

TABLE 5-1: FLASH CONTROLLER REGISTER MAP

ess										Bit	S								6
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F400	NVMCON ⁽¹⁾	31:16	—	_	—	—	_	_	—	—	_	—	—	-	—	—	—	—	0000
F400	INVINCOIN**	15:0	WR	WREN	WRERR	LVDERR	LVDSTAT	—	—	—	—	—	—	—		NVMO	P<3:0>		0000
F410	NVMKEY	31:16								NVMKEY	-21:0>								0000
1410		15:0									<31.0>								0000
F420	NVMADDR ⁽¹⁾	31:16								NVMADD	2-21.05								0000
1 420	NVINADDIX /	15:0								NVIVIADDI	102								0000
F430	NVMDATA	31:16								NVMDAT	~21.0>								0000
1430	NVINDATA	15:0								NVIVIDATA	<31.0>								0000
E440	NVMSRCADDR	31:16							N	VMSRCAD	DR-31.05								0000
1 440	NUMBRCADDR	15:0							IN	VIVISICAL	01<31.0>								0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

6.1 Reset Control Registers

TABLE 6-1: RESET CONTROL REGISTER MAP

ess		0									Bits								ß
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
F040	RCON	31:16	—	—	_	—	BCFGERR	BCFGFAIL	—	-	—	-	—	—	_	—	VBPOR ⁽³⁾	VBAT ⁽³⁾	C802
F040	RCON	15:0			—	-	_	DPSLP	CMR	-	EXTR	SWR		WDTO	SLEEP	IDLE	BOR	POR	0003
E050	RSWRST	31:16	-	-	_		_	_						_			_	_	0000
1 030	RowRol	15:0	-	-	_		_	_						_			_	SWRST	0000
E060	RNMICON	31:16	-	-	_		_	_		WDTO	SWNMI			_	GNMI	HLVD	CF	WDTS	0000
1 000		15:0								NMI	CNT<15:0>								0000
E070	PWRCON	31:16	—	_	_		_	_	_					_			_	_	0000
1070		15:0	—	—	_	_	—	—	—	_	—	_	—	—	_	—	—	VREGS	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

3: This bit is only available on devices with VBAT.

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER (CONTINUED)

bit 6 **CRCAPP:** CRC Append Mode bit⁽¹⁾

- 1 = The DMA transfers data from the source into the CRC but NOT to the destination. When a block transfer completes the DMA writes the calculated CRC value to the location given by CHxDSA
- 0 = The DMA transfers data from the source through the CRC obeying WBO as it writes the data to the destination
- bit 5 **CRCTYP:** CRC Type Selection bit
 - 1 = The CRC module will calculate an IP header checksum
 - 0 = The CRC module will calculate a LFSR CRC
- bit 4-3 Unimplemented: Read as '0'
- bit 2-0 CRCCH<2:0>: CRC Channel Select bits
 - 111 = Reserved
 - 110 = Reserved
 - 101 = Reserved
 - 100 = Reserved
 - 011 = CRC is assigned to Channel 3
 - 010 = CRC is assigned to Channel 2
 - 001 = CRC is assigned to Channel 1
 - 000 = CRC is assigned to Channel 0
- **Note 1:** When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	_	_	_	—	—	_	-
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	-	_	—	—	—	_	—
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	_	_	—	—	_	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				CHPDAT	۲<7:0>			

REGISTER 9-18: DCHxDAT: DMA CHANNEL 'x' PATTERN DATA REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 CHPDAT<7:0>: Channel Data Register bits

<u>Pattern Terminate mode:</u> Data to be matched must be stored in this register to allow a "terminate on match".

All other modes: Unused.

TABLE 11-1: USB REGISTER MAP (CONTINUED)

ess							,				Bit	s							
Virtual Address (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5390	U1EP9	31:16	_	_			—	_		_			_	—	_				0000
5590	OILF9	15:0	_	_	_	_	—	—	_	—	-	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53A0	U1EP10	31:16		_	_		_	_	-	—	-		-	—	—	-		-	0000
55A0	UIEFIU	15:0		-			—	—	—	—	-	-	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53B0	U1EP11	31:16		—	—	_	-	—	-	—	—	—	-	—	—	—	—	—	0000
5560	UIEFII	15:0		—	—	_	-	—	-	—	—	—	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53C0	U1EP12	31:16		—	—	_	-	—	-	—	—	_	-	—	—	—	—	—	0000
5300	UIEFIZ	15:0		—	—	_	-	—	-	—	—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
53D0	U1EP13	31:16		—	—	_	-	—	-	—	—	_	-	—	—	—	—	—	0000
5500	UIEF13	15:0		—	—	_	-	—	-	—	—	_	-	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5050		31:16		_	_			-		_	_	_	-	_	_	_	_	_	0000
53E0	U1EP14	15:0	_	_	_		_	_		_	_	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000
5250	U1EP15	31:16	_	_	_		_	_		—	_	_	_	_	_	_	_	_	0000
53F0	UIEP15	15:0	_	_	_		_	_		—	-	_	_	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table (except as noted) have corresponding CLR, SET and INV registers at their virtual address, plus an offset of 0x4, 0x8, and 0xC respectively. See 12.2 "CLR, SET and INV Registers" for more information.

2: This register does not have associated SET and INV registers.

3: This register does not have associated CLR, SET and INV registers.

4: Reset value for this bit is undefined.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—		_		—	-	
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—		_	—	—	_	-
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_		_	—	—	_
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	DPPULUP	DMPULUP	DPPULDWN	DMPULDWN	VBUSON	OTGEN	VBUSCHG	VBUSDIS

REGISTER 11-4: U10TGCON: USB OTG CONTROL REGISTER

Legend:

- J			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- 1 = D+ data line pull-up resistor is enabled
- 0 = D+ data line pull-up resistor is disabled

bit 6 **DMPULUP:** D- Pull-Up Enable bit

- 1 = D- data line pull-up resistor is enabled 0 = D- data line pull-up resistor is disabled
- bit 5 **DPPULDWN:** D+ Pull-Down Enable bit
 - 1 = D + data line pull-down resistor is enabled
 - 0 = D + data line pull-down resistor is disabled

bit 4 DMPULDWN: D- Pull-Down Enable bit

- 1 = D- data line pull-down resistor is enabled
- 0 = D- data line pull-down resistor is disabled
- bit 3 VBUSON: VBUS Power-on bit
 - 1 = VBUS line is powered
 - 0 = VBUS line is not powered

bit 2 **OTGEN:** OTG Functionality Enable bit

- 1 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under software control
- 0 = DPPULUP, DMPULUP, DPPULDWN and DMPULDWN bits are under USB hardware control

bit 1 VBUSCHG: VBUS Charge Enable bit

- 1 = VBUS line is charged through a pull-up resistor
- 0 = VBUS line is not charged through a resistor

bit 0 VBUSDIS: VBUS Discharge Enable bit

- 1 = VBUS line is discharged through a pull-down resistor
- 0 = VBUS line is not discharged through a resistor

REGISTER 11-10: U1STAT: USB STATUS REGISTER

	-							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—				_		—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—				_		—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6		—	_			_		—
7:0	R-x	R-x	R-x	R-x	R-x	R-x	U-0	U-0
7.0		ENDP	T<3:0>		DIR	PPBI		_

Legend:

· J · · ·			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7-4 **ENDPT<3:0>:** Encoded Number of Last Endpoint Activity bits (Represents the number of the Buffer Descriptor Table, updated by the last USB transfer.) 1111 = Endpoint 15
- bit 3 **DIR:** Last Buffer Descriptor Direction Indicator bit
 - 1 = Last transaction was a transmit (TX) transfer
 - 0 = Last transaction was a receive (RX) transfer
- bit 2 **PPBI:** Ping-Pong Buffer Descriptor Pointer Indicator bit
 - 1 = The last transaction was to the ODD Buffer Descriptor bank
 - 0 = The last transaction was to the EVEN Buffer Descriptor bank
- bit 1-0 Unimplemented: Read as '0'

Note: The U1STAT register is a window into a 4-byte FIFO maintained by the USB module. U1STAT value is only valid when the TRNIF (U1IR<3>) bit is active. Clearing the TRNIF bit advances the FIFO. Data in register is invalid when the TRNIF bit = 0.

TABLE 12-1: INPUT PIN SELECTION

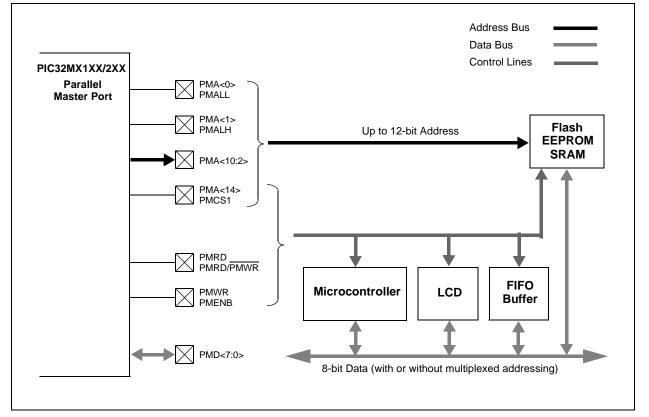
Peripheral Pin	[pin name]R SFR	[pin name]R bits	[<i>pin name</i>]R Value to RPn Pin Selection			
INT4	INT4R	INT4R<3:0>	0000 = RPA0 0001 = RPB3			
T2CK	T2CKR	T2CKR<3:0>	0010 = RPB4 0011 = RPB15 0100 = RPB7			
IC4	IC4R	IC4R<3:0>	0101 = RPC7 ⁽¹⁾ 0110 = RPC0 ⁽¹⁾ 0111 = RPC5 ⁽¹⁾			
SS1	SS1R	SS1R<3:0>	1000 = Reserved			
REFCLKI	REFCLKIR	REFCLKIR<3:0>	• 1111 = Reserved			
INT3	INT3R	INT3R<3:0>	0000 = RPA1 0001 = RPB5			
ТЗСК	T3CKR	T3CKR<3:0>	0010 = RPB1 0011 = RPB11 ⁽²⁾			
IC3	IC3R	IC3R<3:0>	0100 = RPB8 0101 = RPA8 ⁽¹⁾			
U1CTS	U1CTSR	U1CTSR<3:0>	0110 = RPC8 ⁽¹⁾ 0111 = RPA9 ⁽¹⁾			
U2RX	U2RXR	U2RXR<3:0>	1000 = Reserved			
SDI1	SDI1R	SDI1R<3:0>	• 1111 = Reserved 0000 = RPA2 0001 = RPB6 ⁽²⁾			
INT2	INT2R	INT2R<3:0>				
T4CK	T4CKR	T4CKR<3:0>				
IC1	IC1R	IC1R<3:0>	0011 = RPB13 ⁽³⁾ 0100 = RPB2			
IC5	IC5R	IC5R<3:0>	0101 = RPC6 ⁽¹⁾			
U1RX	U1RXR	U1RXR<3:0>	0110 = RPC1 ⁽¹⁾ 0111 = RPC3 ⁽¹⁾			
U2CTS	U2CTSR	U2CTSR<3:0>	1000 = Reserved			
SDI2	SDI2R	SDI2R<3:0>	•			
OCFB	OCFBR	OCFBR<3:0>	• 1111 = Reserved			
INT1	INT1R	INT1R<3:0>	0000 = RPA3 0001 = RPB14			
T5CK	T5CKR	T5CKR<3:0>	0010 = RPB0 0011 = RPB10 ⁽²⁾ 0100 = RPB9			
IC2	IC2R	IC2R<3:0>	0100 = RPC9 ⁽¹⁾ 0110 = RPC2 ⁽¹⁾ 0111 = RPC4 ⁽¹⁾			
SS2	SS2R	SS2R<3:0>	1000 = Reserved			
OCFA	OCFAR	OCFAR<3:0>	• • 1111 = Reserved			

Note 1: This pin is only available on 44-pin devices.

2: This pin is not available on USB devices.

3: This pin is not available on VBAT devices.

22.0 PARALLEL MASTER PORT (PMP)


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Parallel Master Port (PMP)" (DS60001128), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PMP is a parallel 8-bit input/output module specifically designed to communicate with a wide variety of parallel devices, such as communications peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP module is highly configurable. The following are key features of the PMP module:

- Fully multiplexed address/data mode
- Demultiplexed or partially multiplexed address/ data mode
 - Up to 11 address lines with single Chip Select
 - Up to 12 address lines without Chip Select
- One Chip Select line
- Programmable strobe options, any one of these:
 - Individual read and write strobes
 - Read/write strobe with enable strobe
- Address auto-increment/auto-decrement
- Programmable address/data multiplexing
- Programmable polarity on control signals
- · Legacy parallel slave port support
- · Enhanced parallel slave support
- Address support
- 4-byte deep auto-incrementing buffer
- Programmable Wait states
- Selectable input voltage levels

Figure 22-1 illustrates the PMP module block diagram.

FIGURE 22-1: PMP MODULE PINOUT AND CONNECTIONS TO EXTERNAL DEVICES

REGISTE	EGISTER 23-2: RICALRIM: REAL-TIME CLOCK ALARM CONTROL REGISTER											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
31:24	_	—	—	—	—	—	—	_				
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
23.10	_	—	—	—	—	—	—	_				
45.0	R/W-0	R/W-0	R/W-0	R-0 R/W-0		R/W-0	R/W-0	R/W-0				
15:8	ALRMEN ^(1,2)	CHIME ⁽²⁾	PIV ⁽²⁾	ALRMSYNC	AMASK<3:0> ⁽²⁾							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				ARPT<7:0	> ⁽²⁾							
Legend:												
R = Read	able bit		W = Writable	e bit	U = Unimpl	emented bit,	read as '0'					
								known				

REGISTER 23-2: RTCALRM: REAL-TIME CLOCK ALARM CONTROL REGISTER

bit 31-16 Unimplemented: Read as '0'

- bit 15 ALRMEN: Alarm Enable bit^(1,2)
 - 1 = Alarm is enabled
 - 0 = Alarm is disabled

bit 14 CHIME: Chime Enable bit⁽²⁾

- 1 = Chime is enabled ARPT<7:0> is allowed to rollover from 0x00 to 0xFF
- 0 = Chime is disabled ARPT<7:0> stops once it reaches 0x00

bit 13 **PIV:** Alarm Pulse Initial Value bit⁽²⁾

When ALRMEN = 0, PIV is writable and determines the initial value of the Alarm Pulse. When ALRMEN = 1, PIV is read-only and returns the state of the Alarm Pulse.

bit 12 ALRMSYNC: Alarm Sync bit

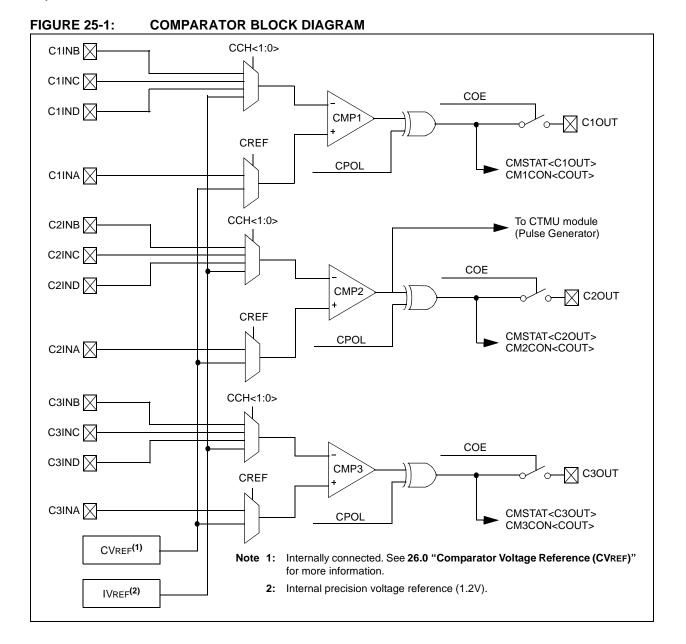
- 1 = ARPT<7:0> and ALRMEN may change as a result of a half second rollover during a read. The ARPT must be read repeatedly until the same value is read twice. This must be done since multiple bits may be changing.
- 0 = ARPT<7:0> and ALRMEN can be read without concerns of rollover because the prescaler is more than 32 real-time clocks away from a half-second rollover

bit 11-8 AMASK<3:0>: Alarm Mask Configuration bits⁽²⁾

- 0000 = Every half-second
- 0001 = Every second
- 0010 = Every 10 seconds
- 0011 = Every minute
- 0100 = Every 10 minutes
- 0101 = Every hour
- 0110 = Once a day
- 0111 = Once a week
- 1000 =Once a month
- 1001 = Once a year (except when configured for February 29, once every four years)
- 1010 = Reserved
- 1011 = Reserved
- 11xx = Reserved
- Note 1: Hardware clears the ALRMEN bit anytime the alarm event occurs, when ARPT < 7:0 > = 0.0 and CHIME = 0.
 - 2: This field should not be written when the RTCC ON bit = '1' (RTCCON<15>) and ALRMSYNC = 1.

Note: This register is reset only on a Power-on Reset (POR).

25.0 COMPARATOR


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section 19. to "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module contains three comparators that can be configured in a variety of ways.

The following are key features of the Comparator module:

- Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- Outputs can be Inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 25-1.

25.1 Comparator Control Registers

TABLE 25-1: COMPARATOR REGISTER MAP

ess		е		Bits															
Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A 000	CM1CON	31:16	_	_	_	_	-	_			—	—	—	_		—	—	_	0000
A000	CIVITCON	15:0	ON	COE	CPOL	—	—	—	—	COUT	EVPO	L<1:0>	—	CREF	—	—	CCH	<1:0>	00C3
A010	CM2CON	31:16	-	_							-	_	_	_		_	-		0000
AUTU	CIVIZCON	15:0	ON	COE	CPOL					COUT	EVPO	L<1:0>	_	CREF		_	CCH	<1:0>	00C3
A020	CM3CON	31:16	-	_							-	_	_	_		_	-		0000
A020	CIVISCON	15:0	ON	COE	CPOL				-	COUT	EVPO	L<1:0>	-	CREF	-	-	CCH	<1:0>	00C3
A060	CMSTAT	31:16	-	_	-						_	_	_	_		_	_		0000
7000	CIVISTAI	15:0	_	_	SIDL	_	_	_		-	_	_	_	_		C3OUT	C2OUT	C10UT	0000

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

29.0 POWER-SAVING FEATURES

Note:	This data sheet summarizes the features
	of the PIC32MX1XX/2XX 28/44-pin XLP
	Family of devices. It is not intended to be
	a comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 10. "Power-
	Saving Features" (DS60001130), which
	is available from the Documentation >
	Reference Manual section of the
	Microchip PIC32 web site
	(www.microchip.com/pic32).

This section describes power-saving features for the PIC32MX1XX/2XX 28/44-pin XLP Family. The PIC32 devices offer a total of nine methods and modes, organized into two categories, that allow the user to balance power consumption with device performance. In all of the methods and modes described in this section, power-saving is controlled by software.

29.1 Power Saving with CPU Running

When the CPU is running, power consumption can be controlled by reducing the CPU clock frequency, lowering the PBCLK and by individually disabling modules. These methods are grouped into the following categories:

- FRC Run mode: the CPU is clocked from the FRC clock source with or without postscalers
- LPRC Run mode: the CPU is clocked from the LPRC clock source
- Sosc Run mode: the CPU is clocked from the Sosc clock source

In addition, the Peripheral Bus Scaling mode is available where peripherals are clocked at the programmable fraction of the CPU clock (SYSCLK).

29.2 CPU Halted Methods

The device supports two power-saving modes, Sleep and Idle, both of which Halt the clock to the CPU. These modes operate with all clock sources, as follows:

- Posc Idle mode: the system clock is derived from the Posc. The system clock source continues to operate. Peripherals continue to operate, but can optionally be individually disabled.
- FRC Idle mode: the system clock is derived from the FRC with or without postscalers. Peripherals continue to operate, but can optionally be individually disabled.
- Sosc Idle mode: the system clock is derived from the Sosc. Peripherals continue to operate, but can optionally be individually disabled.

- LPRC Idle mode: the system clock is derived from the LPRC. Peripherals continue to operate, but can optionally be individually disabled. This is the lowest power mode for the device with a clock running.
- Sleep mode: the CPU, the system clock source and any peripherals that operate from the system clock source are Halted. Some peripherals can operate in Sleep using specific clock sources. This is the lowest power mode for the device.

29.3 Power-Saving Operation

Peripherals and the CPU can be Halted or disabled to further reduce power consumption.

29.3.1 SLEEP MODE

Sleep mode has the lowest power consumption of the device power-saving operating modes. The CPU and most peripherals are Halted. Select peripherals can continue to operate in Sleep mode and can be used to wake the device from Sleep. See the individual peripheral module sections for descriptions of behavior in Sleep.

Sleep mode includes the following characteristics:

- The CPU is halted
- The system clock source is typically shutdown. See **29.3.3** "**Peripheral Bus Scaling Method**" for specific information.
- There can be a wake-up delay based on the oscillator selection
- The Fail-Safe Clock Monitor (FSCM) does not operate during Sleep mode
- The BOR circuit remains operative during Sleep mode
- The WDT, if enabled, is not automatically cleared prior to entering Sleep mode
- Some peripherals can continue to operate at limited functionality in Sleep mode. These peripherals include I/O pins that detect a change in the input signal, WDT, ADC, UART and peripherals that use an external clock input or the internal LPRC oscillator (e.g., RTCC, Timer1 and Input Capture).
- I/O pins continue to sink or source current in the same manner as they do when the device is not in Sleep
- The USB module can override the disabling of the Posc or FRC. Refer to the USB section for specific details.
- Modules can be individually disabled by software prior to entering Sleep in order to further reduce consumption

TABLE 33-19: PLL CLOCK TIMING SPECIFICATIONS

AC CHA	RACTERI	STICS	Standard (unless of Operating	herwise	ture -40°C	\leq Ta \leq +	-85°C fo	r Industrial or V-temp
Param. No.	Symbol	Characteristi	cs ⁽¹⁾	Min.	Typical	Max.	Units	Conditions
OS50	FIN	PLL Voltage Control Oscillator (VCO) Inp Frequency Range	4		5	MHz	ECPLL, HSPLL, and FRCPLL modes	
OS51	Fsys	On-Chip VCO Syste Frequency	60	_	120	MHz	_	
OS52	TLOCK	PLL Start-up Time (L	_	_	2	ms	—	
OS53	DCLK	CLKO Stability ⁽²⁾ (Period Jitter or Curr	-0.25	_	+0.25	%	Measured over 100 ms period	

Note 1: These parameters are characterized, but not tested in manufacturing.

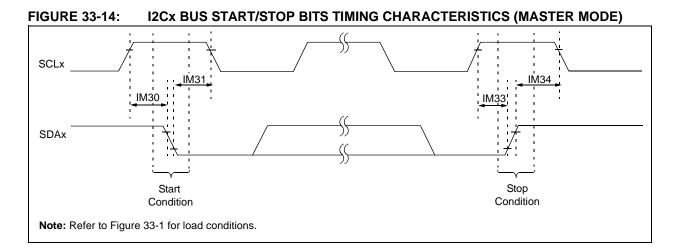
2: This jitter specification is based on clock-cycle by clock-cycle measurements. To get the effective jitter for individual time-bases on communication clocks, use the following formula:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{SYSCLK}{CommunicationClock}}}$$

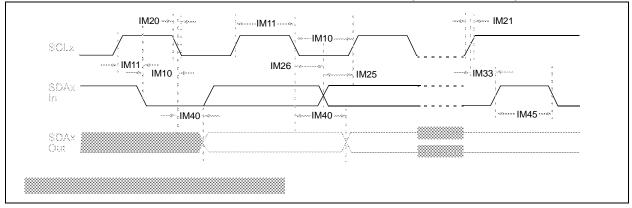
For example, if SYSCLK = 40 MHz and SPI bit rate = 20 MHz, the effective jitter is as follows:

$$EffectiveJitter = \frac{D_{CLK}}{\sqrt{\frac{40}{20}}} = \frac{D_{CLK}}{1.41}$$

TABLE 33-20: INTERNAL FRC ACCURACY


АС СНА	RACTERISTICS	(unless	Standard Operating Conditions: 2.5V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +105^{\circ}C$ for V-temp								
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions					
Internal	Internal FRC Accuracy @ 8.00 MHz ⁽¹⁾										
F20b	FRC	-0.9	—	+0.9	%	—					

Note 1: Frequency calibrated at 25°C and 3.3V. The TUN bits can be used to compensate for temperature drift.


TABLE 33-21: INTERNAL LPRC ACCURACY

AC CHA	RACTERISTICS	(unless	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +105^{\circ}C \mbox{ for V-temp} \end{array}$									
Param. No.	Characteristics	Min.	Typical	Max.	Units	Conditions						
LPRC @	LPRC @ 31.25 kHz ⁽¹⁾											
F21	LPRC	C -15 — +15 % —										

Note 1: Change of LPRC frequency as VDD changes.

