

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx174f256b-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-4:	OC1 THROUGH OC5 PINOUT I/O DESCRIPTIONS
------------	---

	Pi	Pin Number ⁽¹⁾							
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description			
		are							
OC1	PPS	PPS	PPS	0		Output Compare Output 1-5			
OC2	PPS	PPS	PPS	0	_				
OC3	PPS	PPS	PPS	0	_				
OC4	PPS	PPS	PPS	0	—				
OC5	PPS	PPS	PPS	0	—				
OCFA	PPS	PPS	PPS	I	ST	Output Compare Fault A Input			
OCFB	PPS	PPS	PPS	I	ST	Output Compare Fault B Input			
Legend:	CMOS = CM	IOS compa	atible input	or outpu	t	Analog = Analog input P = Power			
	ST = Schmi	00	put with CN	NOS lev	els	O = Output I = Input			
	TTL = TTL i	•				$PPS = Peripheral Pin Select \qquad = N/A$			

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

TABLE 1-5: EXTERNAL INTERRUPTS PINOUT I/O DESCRIPTIONS

	P	in Number	(1)							
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description				
	External Interrupts									
INT0	13	16	43	I	ST	External Interrupt 0-4				
INT1	PPS	PPS	PPS	I	ST					
INT2	PPS	PPS	PPS	I	ST					
INT3	PPS	PPS	PPS	I	ST					
INT4	PPS	PPS	PPS	I	ST	1				
Legend:	CMOS = C	MOS compa	atible input	or outpu	t	Analog = Analog input	P = Power			
-	ST = Schmi	tt Trigger in	put with CI	MOS lev	els	O = Output I = Input				
	TTL = TTL i	nput buffer				$PPS = Peripheral Pin Select \qquad= N/A$				
Note 1:	Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.									

NOTES:

Interrupt Source ⁽¹⁾	IRQ	Vector		Interru	pt Bit Location		Persistent
Interrupt Source	#	#	Flag	Enable	Priority	Sub-priority	Interrupt
U1E – UART1 Fault	39	32	IFS1<7>	IEC1<7>	IPC8<4:2>	IPC8<1:0>	Yes
U1RX – UART1 Receive Done	40	32	IFS1<8>	IEC1<8>	IPC8<4:2>	IPC8<1:0>	Yes
U1TX – UART1 Transfer Done	41	32	IFS1<9>	IEC1<9>	IPC8<4:2>	IPC8<1:0>	Yes
I2C1B – I2C1 Bus Collision Event	42	33	IFS1<10>	IEC1<10>	IPC8<12:10>	IPC8<9:8>	Yes
I2C1S – I2C1 Slave Event	43	33	IFS1<11>	IEC1<11>	IPC8<12:10>	IPC8<9:8>	Yes
I2C1M – I2C1 Master Event	44	33	IFS1<12>	IEC1<12>	IPC8<12:10>	IPC8<9:8>	Yes
CNA – PORTA Input Change Interrupt	45	34	IFS1<13>	IEC1<13>	IPC8<20:18>	IPC8<17:16>	Yes
CNB – PORTB Input Change Interrupt	46	34	IFS1<14>	IEC1<14>	IPC8<20:18>	IPC8<17:16>	Yes
CNC – PORTC Input Change Interrupt	47	34	IFS1<15>	IEC1<15>	IPC8<20:18>	IPC8<17:16>	Yes
PMP – Parallel Master Port	48	35	IFS1<16>	IEC1<16>	IPC8<28:26>	IPC8<25:24>	Yes
PMPE – Parallel Master Port Error	49	35	IFS1<17>	IEC1<17>	IPC8<28:26>	IPC8<25:24>	Yes
SPI2E – SPI2 Fault	50	36	IFS1<18>	IEC1<18>	IPC9<4:2>	IPC9<1:0>	Yes
SPI2RX – SPI2 Receive Done	51	36	IFS1<19>	IEC1<19>	IPC9<4:2>	IPC9<1:0>	Yes
SPI2TX – SPI2 Transfer Done	52	36	IFS1<20>	IEC1<20>	IPC9<4:2>	IPC9<1:0>	Yes
U2E – UART2 Error	53	37	IFS1<21>	IEC1<21>	IPC9<12:10>	IPC9<9:8>	Yes
U2RX – UART2 Receiver	54	37	IFS1<22>	IEC1<22>	IPC9<12:10>	IPC9<9:8>	Yes
U2TX – UART2 Transmitter	55	37	IFS1<23>	IEC1<23>	IPC9<12:10>	IPC9<9:8>	Yes
I2C2B – I2C2 Bus Collision Event	56	38	IFS1<24>	IEC1<24>	IPC9<20:18>	IPC9<17:16>	Yes
I2C2S – I2C2 Slave Event	57	38	IFS1<25>	IEC1<25>	IPC9<20:18>	IPC9<17:16>	Yes
I2C2M – I2C2 Master Event	58	38	IFS1<26>	IEC1<26>	IPC9<20:18>	IPC9<17:16>	Yes
CTMU – CTMU Event	59	39	IFS1<27>	IEC1<27>	IPC9<28:26>	IPC9<25:24>	Yes
DMA0 – DMA Channel 0	60	40	IFS1<28>	IEC1<28>	IPC10<4:2>	IPC10<1:0>	No
DMA1 – DMA Channel 1	61	41	IFS1<29>	IEC1<29>	IPC10<12:10>	IPC10<9:8>	No
DMA2 – DMA Channel 2	62	42	IFS1<30>	IEC1<30>	IPC10<20:18>	IPC10<17:16>	No
DMA3 – DMA Channel 3	63	43	IFS1<31>	IEC1<31>	IPC10<28:26>	IPC10<25:24>	No
		Lowes	t Natural O	rder Priority			

TABLE 7-1: INTERRUPT IRQ, VECTOR AND BIT LOCATION (CONTINUED)

Note 1: Not all interrupt sources are available on all devices. See TABLE 1: "PIC32MX1XX 28/44-Pin XLP (General Purpose) Family Features" and TABLE 2: "PIC32MX2XX 28/44-Pin XLP (USB) Family Features" for the lists of available peripherals.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
31:24		CHSSA<31:24>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
23:16	CHSSA<23:16>											
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
15:8				CHSSA	<15:8>							
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
7:0				CHSSA	<7:0>							

REGISTER 9-10: DCHxSSA: DMA CHANNEL 'x' SOURCE START ADDRESS REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 CHSSA<31:0> Channel Source Start Address bits Channel source start address. Note: This must be the physical address of the source.

REGISTER 9-11: DCHxDSA: DMA CHANNEL 'x' DESTINATION START ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
31:24				CHDSA<	31:24>					
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23:16	CHDSA<23:16>									
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
15:8				CHDSA.	<15:8>					
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				CHDSA	<7:0>					

Legend:				
R = Readable bit	W = Writable bit $U = Unimplemented bit, read as '0'$			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 **CHDSA<31:0>:** Channel Destination Start Address bits Channel destination start address. **Note:** This must be the physical address of the destination.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

INE OIO I	LK 11-5.							
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_	-	—	—	—	—	—
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	-	—	—	—	—	—
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	_	_	—	_		—	_
7:0	R-0	U-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
7.0	UACTPND	—		USLPGRD	USBBUSY ⁽¹⁾	_	USUSPEND	USBPWR

REGISTER 11-5: U1PWRC: USB POWER CONTROL REGISTER

Legend:

Logona.			
R = Readable bit	le bit W = Writable bit		nd as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 UACTPND: USB Activity Pending bit
 - 1 = USB bus activity has been detected; however, an interrupt is pending, which has yet to be generated
 0 = An interrupt is not pending
- bit 6-5 Unimplemented: Read as '0'
- bit 4 USLPGRD: USB Sleep Entry Guard bit
 - 1 = Sleep entry is blocked if USB bus activity is detected or if a notification is pending
 - 0 = USB module does not block Sleep entry
- bit 3 USBBUSY: USB Module Busy bit⁽¹⁾
 - 1 = USB module is active or disabled, but not ready to be enabled
 - 0 = USB module is not active and is ready to be enabled
- bit 2 Unimplemented: Read as '0'
- bit 1 USUSPEND: USB Suspend Mode bit
 - 1 = USB module is placed in Suspend mode
 - (The 48 MHz USB clock will be gated off. The transceiver is placed in a low-power state.)
 - 0 = USB module operates normally
- bit 0 USBPWR: USB Operation Enable bit
 - 1 = USB module is turned on
 - 0 = USB module is disabled
 - (Outputs held inactive, device pins not used by USB, analog features are shut down to reduce power consumption.)
- **Note 1:** When USBPWR = 0 and USBBUSY = 1, status from all other registers is invalid and writes to all USB module registers produce undefined results.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	_			_	_		
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	_			_	_		
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	_			_	_		
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R-0	R/WC-0, HS
7:0	STALLIF	ATTACHIF ⁽¹⁾	RESUMEIF ⁽²⁾	IDLEIF	TRNIF ⁽³⁾	SOFIF	UERRIF ⁽⁴⁾	URSTIF ⁽⁵⁾
	JIALLIF		INE SOMEIFY /	IDLEIF		JULI		DETACHIF ⁽⁶⁾

REGISTER 11-6: U1IR: USB INTERRUPT REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
-n = Value at POR	'1' = Bit is set	0' = Bit is cleared $x = Bit is unknown$

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIF: STALL Handshake Interrupt bit 1 = In Host mode a STALL handshake was received during the handshake phase of the transaction In Device mode a STALL handshake was transmitted during the handshake phase of the transaction 0 = STALL handshake has not been sent
bit 6	ATTACHIF: Peripheral Attach Interrupt bit ⁽¹⁾ 1 = Peripheral attachment was detected by the USB module 0 = Peripheral attachment was not detected
bit 5	RESUMEIF: Resume Interrupt bit ⁽²⁾ 1 = K-State is observed on the D+ or D- pin for 2.5 µs 0 = K-State is not observed
bit 4	IDLEIF: Idle Detect Interrupt bit 1 = Idle condition detected (constant Idle state of 3 ms or more) 0 = No Idle condition detected
bit 3	TRNIF: Token Processing Complete Interrupt bit ⁽³⁾ 1 = Processing of current token is complete; a read of the U1STAT register will provide endpoint information 0 = Processing of current token not complete
bit 2	SOFIF: SOF Token Interrupt bit 1 = SOF token received by the peripheral or the SOF threshold reached by the host 0 = SOF token was not received nor threshold reached
bit 1	UERRIF: USB Error Condition Interrupt bit ⁽⁴⁾ 1 = Unmasked error condition has occurred 0 = Unmasked error condition has not occurred
bit 0	<pre>URSTIF: USB Reset Interrupt bit (Device mode)⁽⁵⁾ 1 = Valid USB Reset has occurred 0 = No USB Reset has occurred DETACHIF: USB Detach Interrupt bit (Host mode)⁽⁶⁾ 1 = Peripheral detachment was detected by the USB module 0 = Peripheral detachment was not detected</pre>
3	 This bit is valid only if the HOSTEN bit is set (see Register 11-11), there is no activity on the USB for 2.5 µs, and the current bus state is not SE0. When not in Suspend mode, this interrupt should be disabled. Clearing this bit will cause the STAT FIFO to advance. Only error conditions enabled through the U1EIE register will set this bit. Device mode. Host mode.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

REGIOI											
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24				_		—	—	_			
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
23.10						—	—				
15:8	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
15.6						—	—				
	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS	R/WC-0, HS			
7:0	BTSEF	BMXEF	DMAEF ⁽¹⁾	BTOEF ⁽²⁾	DFN8EF	CRC16EF	CRC5EF ⁽⁴⁾	PIDEF			
	DIGLI	DIVIALI		DIOLI		GIGTUEI	EOFEF ^(3,5)				

REGISTER 11-8: U1EIR: USB ERROR INTERRUPT STATUS REGISTER

Legend:	WC = Write '1' to clear	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared x =	= Bit is unknown			

- bit 31-8 Unimplemented: Read as '0'
- bit 7 BTSEF: Bit Stuff Error Flag bit
 - 1 = Packet rejected due to bit stuff error
 - 0 = Packet accepted
- bit 6 BMXEF: Bus Matrix Error Flag bit
 - 1 = The base address, of the Buffer Descriptor Table, or the address of an individual buffer pointed to by a Buffer Descriptor Table entry, is invalid.
 - 0 = No address error
- bit 5 **DMAEF:** DMA Error Flag bit⁽¹⁾
 - 1 = USB DMA error condition detected
 - 0 = No DMA error
- bit 4 BTOEF: Bus Turnaround Time-Out Error Flag bit⁽²⁾
 - 1 = Bus turnaround time-out has occurred
 - 0 = No bus turnaround time-out
- bit 3 **DFN8EF:** Data Field Size Error Flag bit
 - 1 = Data field received is not an integral number of bytes
 - 0 = Data field received is an integral number of bytes
- bit 2 CRC16EF: CRC16 Failure Flag bit
 - 1 = Data packet rejected due to CRC16 error
 - 0 = Data packet accepted
- **Note 1:** This type of error occurs when the module's request for the DMA bus is not granted in time to service the module's demand for memory, resulting in an overflow or underflow condition, and/or the allocated buffer size is not sufficient to store the received data packet causing it to be truncated.
 - 2: This type of error occurs when more than 16-bit-times of Idle from the previous End-of-Packet (EOP) has elapsed.
 - **3:** This type of error occurs when the module is transmitting or receiving data and the SOF counter has reached zero.
 - 4: Device mode.
 - 5: Host mode.

TABLE 12-5: PORTC REGISTER MAP

ess											Bits								
Virtual Address (BF88_#)	Register Name ^(1,2)	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6200	ANSELC	31:16	_		_			-	—	_	-		-	-	—	-	—	_	0000
0200	ANGLLO	15:0	—	—	—	—	_			_		—	_		ANSC3	ANSC2	ANSC1	ANSC0	000F
6210	TRISC	31:16	—	_	—	—	_	_	—	_	—		—	—	—	—	—		0000
0210	11000	15:0	—	—	—	—	_	_	TRISC9	TRISC8	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	03FF
6220	PORTC	31:16	—	—	—	—	_	—	—		_	—	-						0000
0220	1 on 10	15:0	—	—	—	—	_	_	RC9	RC8	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx
6230	LATC	31:16	—	_	—	—	_	—	—	-	_	—	-	_	—	-	—		0000
0200	27.110	15:0	—	_	—	—	_	—	LATC9	LATC8	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx
6240	ODCC	31:16	—	_	—	—	_	—	—	-	_	—	-	_	—	-	—		0000
0240		15:0	—	_	—	—	_	—	ODCC9	ODCC8	ODCC7	ODCC6	ODCC5	ODCC4	ODCC3	ODCC2	ODCC1	ODCC0	0000
6250	CNPUC	31:16	—	_	—	—	_	—	—	-	_	—	-	_	—	-	—		0000
0200		15:0	—	_	—	—	_	—	CNPUC9	CNPUC8	CNPUC7	CNPUC6	CNPUC5	CNPUC4	CNPUC3	CNPUC2	CNPUC1	CNPUC0	0000
6260	CNPDC	31:16	—	_	—	—	_	—	—	-	_	—	-	_	—	-	—		0000
0200		15:0	—	_	—	—	_	—	CNPDC9	CNPDC8	CNPDC7	CNPDC6	CNPDC5	CNPDC4	CNPDC3	CNPDC2	CNPDC1	CNPDC0	0000
6270	CNCONC	31:16	—	_	—	—	_	—	—	-	_	—	_	_	—	_	—	-	0000
0270		15:0	ON	_	SIDL	—	_	—	—	-	_	—	_	_	—	_	—	-	0000
6280	CNENC	31:16	—	_	—	—	_	—	—	-	_	—	-	_	—	-	—		0000
0200		15:0	—	_	—	—	—	—	CNIEC9	CNIEC8	CNIEC7	CNIEC6	CNIEC5	CNIEC4	CNIEC3	CNIEC2	CNIEC1	CNIEC0	0000
6290	CNSTATC	31:16	—	—	—	—	_	—	—		—	—	-	_	—	-	—		0000
5230	UNUIAIC	15:0	—	—	—	—	—	—	CNSTATC9	CNSTATC8	CNSTATC7	CNSTATC6	CNSTATC5	CNSTATC4	CNSTATC3	CNSTATC2	CNSTATC1	CNSTATC0	0000

Legend: x = unknown value on Reset; -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

2: PORTC is not available on 28-pin devices.

TABLE 12-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP (CONTINUED)

SS					ULLU					Bi									
Virtual Address (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
FB48	RPB7R	31:16 15:0	_	—	—			-	-	-		—	-	-	—	— RPB7	— <3:0>	—	0000
FB4C	RPB8R	31:16 15:0	_						_		_		_	_	_	— RPB8	— <3:0>	_	0000
FB50	RPB9R	31:16 15:0	_	_		_	_		_		_		_		—	— RPB9	— <3:0>	—	0000
FB54	RPB10R	31:16 15:0	_	_		_	_	_	-	-	_	_	-	-	_	— RPB1	— 0<3:0>	—	0000
FB58	RPB11R	31:16 15:0	_	_		_	-		-		-		-		-	— RPB1	_	-	0000
FB60	RPB13R ⁽³⁾	31:16 15:0	-		—	-		_	_	_		_	_	_	—	— RPB1	— 3<3:0>	—	0000
FB64	RPB14R	31:16 15:0	_												_	— RPB1-	— 4<3:0>	—	0000
FB68	RPB15R	31:16 15:0	_			_			_	_			_	_	_	— RPB1	—	_	0000
FB6C	RPC0R ⁽¹⁾	31:16 15:0	_			_			_	_			_	_	—	— RPC0	— <3:0>	_	0000
FB70	RPC1R ⁽¹⁾	31:16 15:0	_			_		_	_	_	_		_	_	_	— RPC1	_	_	0000
FB74	RPC2R ⁽¹⁾	31:16 15:0	_	_		_	_	_	-	-	_	_	-	-	_	— RPC2	_	—	0000
FB78	RPC3R ⁽¹⁾	31:16 15:0	_	—	—			_	-	_		—	-	_	—	– RPC3	— <3:0>	—	0000
FB7C	RPC4R ⁽¹⁾	31:16 15:0	-		_ _	_	_	-	-	-	_	_ _	-	-	-	— RPC4	— ·<3:0>	—	0000
FB80	RPC5R ⁽¹⁾	31:16 15:0	_	_	_	_		-	_	_	_	_	_	_	—	— RPC5	— <3:0>	—	0000

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is only available on 44-pin devices.

2: This register is only available on USB devices.

3: This register is only available on VBAT devices.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

REGIST	REGISTER 19-2: SPIXCON2: SPI CONTROL REGISTER 2										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24	—	—	—	—	—	_		_			
23:16	U-0 U-0		U-0	U-0	U-0	U-0	U-0	U-0			
23.10	—	—	—	—	—	_		—			
15:8	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
15.0	SPISGNEXT	—	—	FRMERREN	SPIROVEN	SPITUREN	IGNROV	IGNTUR			
7:0	R/W-0	U-0	U-0	U-0	R/W-0	U-0	R/W-0	R/W-0			
7.0	AUDEN ⁽¹⁾	_	_	_	AUDMONO ^(1,2)	_	AUDMOD)<1:0> ^(1,2)			

ICTED 10 2

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 SPISGNEXT: Sign Extend Read Data from the RX FIFO bit
 - 1 = Data from RX FIFO is sign extended
 - 0 = Data from RX FIFO is not sign extended
- bit 14-13 Unimplemented: Read as '0'
- bit 12 FRMERREN: Enable Interrupt Events via FRMERR bit
 - 1 = Frame Error overflow generates error events
 - 0 = Frame Error does not generate error events
- bit 11 SPIROVEN: Enable Interrupt Events via SPIROV bit
 - 1 = Receive overflow generates error events
 - 0 = Receive overflow does not generate error events
- bit 10 SPITUREN: Enable Interrupt Events via SPITUR bit
 - 1 = Transmit underrun generates error events
 - 0 = Transmit underrun does not generate error events
- bit 9 IGNROV: Ignore Receive Overflow bit (for Audio Data Transmissions)
 - 1 = A ROV is not a critical error; during ROV data in the FIFO is not overwritten by receive data 0 = A ROV is a critical error that stops SPI operation
- bit 8 IGNTUR: Ignore Transmit Underrun bit (for Audio Data Transmissions)
 - 1 = A TUR is not a critical error and zeros are transmitted until the SPIxTXB is not empty
 - 0 = A TUR is a critical error that stops SPI operation
- bit 7 AUDEN: Enable Audio CODEC Support bit⁽¹⁾
- 1 = Audio protocol enabled
 - 0 = Audio protocol disabled
- bit 6-5 Unimplemented: Read as '0'

AUDMONO: Transmit Audio Data Format bit^(1,2) bit 3

- 1 = Audio data is mono (Each data word is transmitted on both left and right channels)
- 0 = Audio data is stereo
- bit 2 Unimplemented: Read as '0'

AUDMOD<1:0>: Audio Protocol Mode bit^(1,2) bit 1-0

- 11 = PCM/DSP mode
- 10 = Right-Justified mode
- 01 = Left-Justified mode
- $00 = I^2 S \mod e$
- **Note 1:** This bit can only be written when the ON bit = 0.
 - This bit is only valid for AUDEN = 1. 2:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
31:24	MASK<7:0>										
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
23:16	ADDR<7:0>										
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-1			
15:8	UTXISE	L<1:0>	UTXINV	URXEN	UTXBRK	UTXEN	UTXBF	TRMT			
7.0	R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/W-0	R-0			
7:0	URXISE	L<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA			

REGISTER 21-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-25 MASK<7:0>: UARTx Address Match Mask bits

These bits are used to mask the ADDR<7:0> bits.

11111111 = Corresponding ADDRx bits are used to detect the address match

Note: This setting allows the user to assign individual address as well as a group broadcast address to a UART.

00000000 = Corresponding ADDRx bits are not used to detect the address match.

bit 23-16 ADDR<7:0>: Automatic Address Mask bits

When the ADDEN bit is '1', this value defines the address character to use for automatic address detection.

bit 15-14 UTXISEL<1:0>: TX Interrupt Mode Selection bits

- 11 = Reserved, do not use
- 10 = Interrupt is generated and asserted while the transmit buffer is empty
- 01 = Interrupt is generated and asserted when all characters have been transmitted
- 00 = Interrupt is generated and asserted while the transmit buffer contains at least one empty space

bit 13 UTXINV: Transmit Polarity Inversion bit

- If IrDA mode is disabled (i.e., IREN (UxMODE<12>) is '0'):
- 1 = UxTX Idle state is '0'
- 0 = UxTX Idle state is '1'

If IrDA mode is enabled (i.e., IREN (UxMODE<12>) is '1'):

- 1 = IrDA encoded UxTX Idle state is '1'
- 0 = IrDA encoded UxTX Idle state is '0'

bit 12 URXEN: Receiver Enable bit

- 1 = UARTx receiver is enabled. UxRX pin is controlled by UARTx (if ON = 1)
- 0 = UARTx receiver is disabled. UxRX pin is ignored by the UARTx module
 - **Note:** The event of disabling an enabled receiver will release the RX pin to the PORT function; however, the receive buffers *will not* be reset. Disabling the receiver has no effect on the receive status flags.

bit 11 UTXBRK: Transmit Break bit

- 1 = Send Break on next transmission. Start bit followed by twelve '0' bits, followed by Stop bit; cleared by hardware upon completion
- 0 = Break transmission is disabled or completed

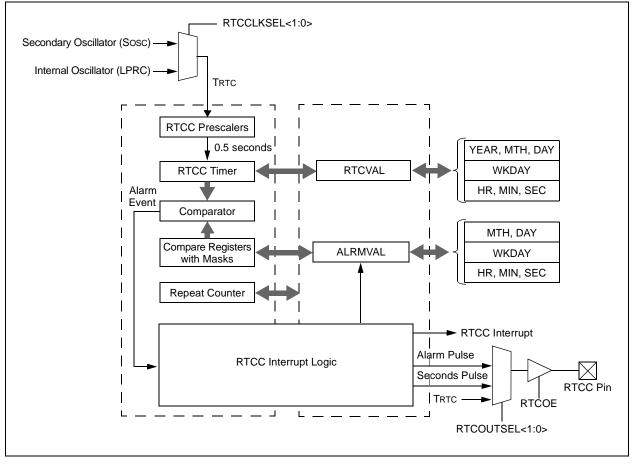
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04-04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	_	—	—	—	_
00.40	R/W-0, HC	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	RDSTART	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	0N ⁽¹⁾	—	SIDL	ADRML	JX<1:0>	PMPTTL	PTWREN	PTRDEN
7.0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	R/W-0	R/W-0
7:0	CSF<	1:0> (2)	ALP ⁽²⁾		CS1P ⁽²⁾	—	WRSP	RDSP

REGISTER 22-1: PMCON: PARALLEL PORT CONTROL REGISTER

Legend:

5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-14 Unimplemented: Read as '0'


bit 23 **RDSTART:** Start Read on PMP Bus bit

This bit is cleared by hardware at the end of the read cycle.

- 1 = Start a read cycle on the PMP bus
- 0 = No effect
- bit 22-16 Unimplemented: Read as '0'
- bit 15 **ON:** Parallel Master Port Enable bit⁽¹⁾
 - 1 = PMP enabled
 - 0 = PMP disabled, no off-chip access performed
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Discontinue module operation when the device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode
- bit 12-11 ADRMUX<1:0>: Address/Data Multiplexing Selection bits
 - 11 = Lower 8 bits of address are multiplexed on PMD<7:0> pins; upper 8 bits are not used
 - 10 = All 16 bits of address are multiplexed on PMD<7:0> pins
 - 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper bits are on PMA<10:8> and PMA<14>
 - 00 = Address and data appear on separate pins
- bit 10 **PMPTTL:** PMP Module TTL Input Buffer Select bit
 - 1 = PMP module uses TTL input buffers
 - 0 = PMP module uses Schmitt Trigger input buffer
- bit 9 **PTWREN:** Write Enable Strobe Port Enable bit
 - 1 = PMWR/PMENB port enabled
 - 0 = PMWR/PMENB port disabled
- bit 8 **PTRDEN:** Read/Write Strobe Port Enable bit
 - 1 = PMRD/PMWR port enabled
 - 0 = PMRD/PMWR port disabled
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON control bit.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

FIGURE 23-1: RTCC BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04-04	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
31:24	—	—	HR10	<1:0>		HR01	<3:0>		
00.40	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
23:16			MIN10<2:0>		MIN01<3:0>				
45.0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
15:8	—		SEC10<2:0>		SEC01<3:0>				
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
7:0	—	—	—	—	_	_	—	_	
		•	•	•	•		•	•	
Legend:									
R = Read	ahle hit		W = Writable	hit	II – I Inimple	emented bit re	ad as 'O'		

REGISTER 23-3: RTCTIME: RTC TIME VALUE REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-28 HR10<1:0>: Binary-Coded Decimal Value of Hours bits, 10s place digit; contains a value from 0 to 2

bit 27-24 **HR01<3:0>:** Binary-Coded Decimal Value of Hours bits, 1s place digit; contains a value from 0 to 9 bit 23 **Unimplemented:** Read as '0'

bit 22-20 MIN10<2:0>: Binary-Coded Decimal Value of Minutes bits, 10s place digit; contains a value from 0 to 5

bit 19-16 **MIN01<3:0>:** Binary-Coded Decimal Value of Minutes bits, 1s place digit; contains a value from 0 to 9 bit 15 **Unimplemented:** Read as '0'

bit 14-12 SEC10<2:0>: Binary-Coded Decimal Value of Seconds bits, 10s place digit; contains a value from 0 to 5

bit 11-8 **SEC01<3:0>:** Binary-Coded Decimal Value of Seconds bits, 1s place digit; contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

Note: This register is only writable when RTCWREN = 1 (RTCCON<3>).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	—	_	_	_	—
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16	—	—	_	MONTH10		01<3:0>		
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8	_	_	DAY1	0<1:0>		DAY01	<3:0>	
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
7:0	_	_	_	_	_	V	VDAY01<2:0:	>

REGISTER 23-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

3				
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-21 Unimplemented: Read as '0'

bit 20 MONTH10: Binary Coded Decimal value of months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary Coded Decimal value of days bits, 10s place digit; contains a value from 0 to 3

bit 11-8 **DAY01<3:0>:** Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 Unimplemented: Read as '0'

bit 2-0 WDAY01<2:0>: Binary Coded Decimal value of weekdays bits; contains a value from 0 to 6

27.1 Control Registers

DS60001404A-page 254

TABLE 27-1: HIGH/LOW-VOLTAGE DETECT REGISTER MAP

ess		0								Bits									Ś
Virtual Addre (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
1000	HLVDCON	31:16	-	—	—	—	—	_	—	—	_	—	—	—	—	-	—	-	0000
1800	HLVDCON	15:0	ON	—	_	—	VDIR	BGVST	-	HLVDET		_	—	—		HLVDL	<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 13.2 "CLR, SET, and INV Registers" for more information.

29.3.4 DEEP SLEEP MODE

Deep Sleep mode brings the device into its lowest power consumption state without requiring the use of external switches to remove power from the device.

• Deep Sleep

In this mode, the CPU, RAM and most peripherals are powered down. Power is maintained to the DSGPR0 register and one or more of the RTCC, DSWDT and DSGPR1 through DSGPR32 registers.

Which of these peripherals is active depends on the state of the following register bits when Deep Sleep mode is entered:

• RTCDIS (DSCON<12>)

This bit must be set to disable the RTCC in Deep Sleep mode (see Register 29-1).

• DSWDTEN (DEVCFG2<30>)

This Configuration bit must be set to enable the DSWDT register in Deep Sleep mode (see Register 30-3)

• DSGPREN (DSCON<13>)

This bit must be set to enable the DSGPR1 through DSGPR32 registers in Deep Sleep mode (see Register 29-1).

Note: The Deep Sleep Control registers can only be accessed after the system unlock sequence has been performed. In addition, the Deep Sleep Control registers must be written twice.

In addition to the conditionally enabled peripherals described above, the MCLR filter and INT0 pin are enabled in Deep Sleep mode.

29.3.5 VBAT MODE

VBAT mode is similar to Deep Sleep mode, except that the device is powered from the VBAT pin. VBAT mode is controlled strictly by hardware, without any software intervention. VBAT mode is initiated when VDD falls VPOR (refer the 33.0 "Electrical below to Characteristics" for definitions of VDD and VPOR). An external power source must be connected to the VBAT pin before power is removed from VDD to enter VBAT mode. VBAT is the lowest battery-powered mode that can maintain an RTCC. Wake-up from VBAT mode can only occur when VDD is reapplied. The wake-up will appear to be a POR to the rest of the device.

In VBAT mode, the Deep Sleep Watchdog Timer is disabled. The RTCC and DSGPR1 through DSGPR32 registers may be enabled or disabled depending on the state of the RTCDIS bit (DSCON<12>) and the DSGPREN bit (DSCON<13>), respectively. Deep Sleep Persistent General Purpose Register 0 (DSGPR0) is always enabled in VBAT mode.

29.3.6 XLP POWER-SAVING MODES

Figure 29-1 shows a block diagram of the system domain for XLP devices and the related power-saving features. The various blocks are controlled by the following Configuration bit settings and SFRs:

- DSBOREN (DEVCFG2<20>)
- DSEN (DSCON<15>)
- DSGPREN (DSCON<13>)
- DSWDTEN (DEVCFG2<30>)
- DSWDTOSC (DEVCFG2<29>)
- RELEASE (DSCON<0>)
- RTCCLKSEL (RTCCON <9:8>)
- RTCDIS (DSCON<12>)
- SLPEN (OSCCON<4>)
- VREGS (PWRCON<0>)

DC CHA		STICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq T_A \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq T_A \leq +105^\circ C \mbox{ for V-temp} \end{array}$						
Param. No.	Symbol	Characteristics	Min.	Тур.	Max.	Units	Comments		
D312	TSET	Internal 4-bit DAC Comparator Reference Settling time	_	_	10	μs	See Note 1		
D313	DACREFH		AVss	—	AVdd	V	CVRSRC with CVRSS = 0		
		Reference Range	VREF-	—	VREF+	V	CVRSRC with CVRSS = 1		
D314	DVref	CVREF Programmable Output Range	0	_	0.625 x DACREFH	V	0 to 0.625 DACREFH with DACREFH/24 step size		
			0.25 x DACREFH	_	0.719 x DACREFH	V	0.25 x DACREFH to 0.719 DACREFH with DACREFH/32 step size		
D315	DACRES	Resolution	—	_	DACREFH/24		CVRCON <cvrr> = 1</cvrr>		
			—	_	DACREFH/32	-	CVRCON <cvrr> = 0</cvrr>		
D316	DACACC	ACACC Absolute Accuracy ⁽²⁾	—	_	1/4	LSB	DACREFH/24, CVRCON <cvrr> = 1</cvrr>		
			—	_	1/2	LSB	DACREFH/32, CVRCON <cvrr> = 0</cvrr>		

TABLE 33-15: COMPARATOR VOLTAGE REFERENCE SPECIFICATIONS

Note 1: Settling time was measured while CVRR = 1 and CVR<3:0> transitions from '0000' to '1111'. This parameter is characterized, but is not tested in manufacturing.

2: These parameters are characterized but not tested.

TABLE 33-16: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

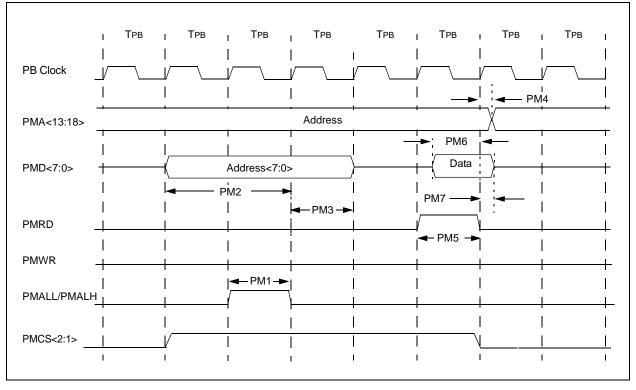

DC CHARACTERISTICS				$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Param. No.	Symbol	Characteristics	Min.	Typical	Max.	Units	Comments		
D321	Cefc	External Filter Capacitor Value	8	10		μF	Capacitor must be low series resistance (1 ohm). Typical voltage on the VCAP pin is 1.8V.		

TABLE 33-38: PARALLEL SLAVE PORT REQUIREMENTS

АС СН	ARACTE	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions	
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20	_	_	ns	_	
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40	—	-	ns	—	
PS3	TrdL2dt V	\overline{RD} and \overline{CS} Active to Data-Out Valid	_	—	60	ns	_	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	—	10	ns	_	
PS5	Tcs	CS Active Time	Трв + 40	_	_	ns	—	
PS6	Twr	WR Active Time	Трв + 25	_	_	ns	—	
PS7	Trd	RD Active Time	Трв + 25	_	_	ns	_	

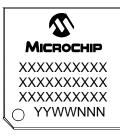
Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 33-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

35.0 PACKAGING INFORMATION

35.1 Package Marking Information

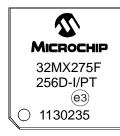
28-Lead SOIC


28-Lead QFN

44-Lead QFN

44-Lead TQFP

Example


Example

Example

Example

Legenc	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
Note:		Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.