

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K [™]
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	21
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 10x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx174f256bt-v-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 7: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES WITH VBAT

28-PIN QFN (TOP VIEW)^(1,2,3,4)

PIC32MX155F128D PIC32MX175F256D

28

1

in #	Full Pin Name	Pin #	Full Pin Name
1	PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12/RB1	16	Vss
3	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	17	VCAP
4	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3	18	PGED1/RPB10/CTED11/PMD2/RB10
5	Vss	19	PGEC1/TMS/RPB11/PMD1/RB11
6	OSC1/CLKI/RPA2/RA2	20	AN12/PMD0/RB12
7	OSC2/CLKO/RPA3/PMA0/RA3	21	VBAT
8	SOSCI/RPB4/RB4 ⁽⁵⁾	22	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/F
9	SOSCO/RPA4/T1CK/CTED9/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	Vdd	24	AVss
11	PGED3/RPB5/ASDA2/PMD7/RB5	25	AVdd
12	PGEC3/RPB6/ASCL2/PMD6/RB6	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	VREF+/AN0/C3INC/RPA0ASDA1//CTED1/PMA1/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSs externally.

4: Shaded pins are 5V tolerant.

5: This is an input-only pin.

	Pi	in Number ⁽	1)				
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description	
					PORTC		
RC0	—		25	I/O	ST	PORTC is a bidirectional I/O port	
RC1	—	—	26	I/O	ST		
RC2	—	—	27	I/O	ST		
RC3	—	—	36	I/O	ST		
RC4	—	—	37	I/O	ST		
RC5	—	—	38	I/O	ST		
RC6	—	—	2	I/O	ST		
RC7	—	—	3	I/O	ST		
RC8	—	—	4	I/O	ST		
RC9	—	—	5	I/O	ST		
•	CMOS = CN ST = Schmi TTL = TTL i	tt Trigger in		Analog = Analog input O = Output PPS = Peripheral Pin Select	P = Power I=Input — = N/A		

TABLE 1-6: PORTA THROUGH PORTC PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for General Purpose devices only.

3: This pin is not available for devices with VBAT.

4: This pin is not available for devices with USB.

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source.For detailed information, refer to **Section 3.** "Memory Organization" (DS60001115), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/44-pin XLP Family microcontrollers provide 4 GB unified virtual memory address space. All memory regions, including program, data memory, Special Function Registers (SFRs), and Configuration registers, reside in this address space at their respective unique addresses. The program and data memories can be optionally partitioned into user and kernel memories. In addition, the data memory can be made executable, allowing PIC32MX1XX/2XX 28/44pin XLP Family devices to execute from data memory.

Key features include:

- 32-bit native data width
- Separate User (KUSEG) and Kernel (KSEG0/KSEG1) mode address space
- Flexible program Flash memory partitioning
- Flexible data RAM partitioning for data and program space
- Separate Boot Flash memory for protected code
- Robust bus exception handling to intercept runaway code
- Simple memory mapping with Fixed Mapping Translation (FMT) unit
- Cacheable (KSEG0) and non-cacheable (KSEG1) address regions

4.1 PIC32MX1XX/2XX 28/44-pin XLP Family Memory Layout

PIC32MX1XX/2XX 28/44-pin XLP Family microcontrollers implement two address schemes: virtual and physical. All hardware resources, such as program memory, data memory and peripherals, are located at their respective physical addresses. Virtual addresses are exclusively used by the CPU to fetch and execute instructions as well as access peripherals. Physical addresses are used by bus master peripherals, such as DMA and the Flash controller, that access memory independently of the CPU.

The memory maps for the PIC32MX1XX/2XX 28/44pin XLP Family devices are illustrated in Figure 4-1 and Figure 4-2.

Table 4-1 provides SFR memory map details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	_	_	_	_	_	_	_	_
23:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	_	—	—	_	_
45.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	_	—	_	—	—	_	_
7.0	U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
7:0		_			RDWR	DMACH<2:0>		

REGISTER 9-2: DMASTAT: DMA STATUS REGISTER

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-4 Unimplemented: Read as '0'

- bit 3 RDWR: Read/Write Status bit
 - 1 = Last DMA bus access was a read
 - 0 = Last DMA bus access was a write
- bit 2-0 **DMACH<2:0>:** DMA Channel bits These bits contain the value of the most recent active DMA channel.

REGISTER 9-3: DMAADDR: DMA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
31:24		DMAADDR<31:24>								
00.40	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
23:16	DMAADDR<23:16>									
15.0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
15:8	DMAADDR<15:8>									
7:0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0		
				DMAADD	R<7:0>					

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 DMAADDR<31:0>: DMA Module Address bits

These bits contain the address of the most recent DMA access.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0
31:24	—	—	BYTC	<1:0>	WBO ⁽¹⁾	—	—	BITO
22:16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15:8	—	—	—		PLEN<4:0>			
7.0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0
7:0	CRCEN	CRCAPP ⁽¹⁾	CRCTYP	_	—	(CRCCH<2:0>	,

REGISTER 9-4: DCRCCON: DMA CRC CONTROL REGISTER

Legend:

Legena.				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-30 Unimplemented: Read as '0'

- bit 29-28 BYTO<1:0>: CRC Byte Order Selection bits
 - 11 = Endian byte swap on half-word boundaries (i.e., source half-word order with reverse source byte order per half-word)
 - 10 = Swap half-words on word boundaries (i.e., reverse source half-word order with source byte order per half-word)
 - 01 = Endian byte swap on word boundaries (i.e., reverse source byte order)
 - 00 = No swapping (i.e., source byte order)
- bit 27 **WBO:** CRC Write Byte Order Selection bit⁽¹⁾
 - 1 = Source data is written to the destination re-ordered as defined by BYTO<1:0>
 - 0 = Source data is written to the destination unaltered
- bit 26-25 Unimplemented: Read as '0'
- bit 24 BITO: CRC Bit Order Selection bit

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode):

- 1 = The IP header checksum is calculated Least Significant bit (LSb) first (i.e., reflected)
- 0 = The IP header checksum is calculated Most Significant bit (MSb) first (i.e., not reflected)

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = The LFSR CRC is calculated Least Significant bit first (i.e., reflected)
- 0 = The LFSR CRC is calculated Most Significant bit first (i.e., not reflected)

bit 23-13 Unimplemented: Read as '0'

bit 12-8 **PLEN<4:0>:** Polynomial Length bits

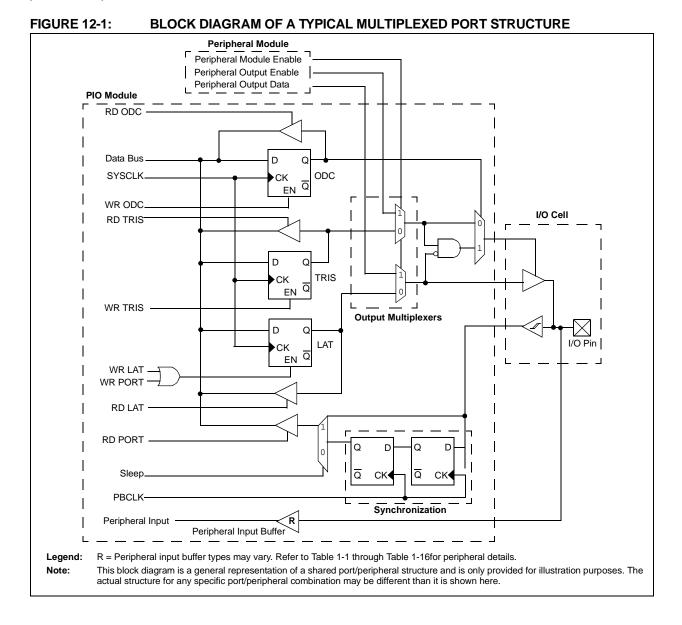
<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): These bits are unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Denotes the length of the polynomial -1.

bit 7 CRCEN: CRC Enable bit

- 1 = CRC module is enabled and channel transfers are routed through the CRC module
- 0 = CRC module is disabled and channel transfers proceed normally
- Note 1: When WBO = 1, unaligned transfers are not supported and the CRCAPP bit cannot be set.

12.0 I/O PORTS


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "I/O Ports" (DS60001120), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

General purpose I/O pins are the simplest of peripherals. They allow the PIC[®] MCU to monitor and control other devices. To add flexibility and functionality, some pins are multiplexed with alternate functions. These functions depend on which peripheral features are on the device. In general, when a peripheral is functioning, that pin may not be used as a general purpose I/O pin.

The following are key features of the I/O Ports module:

- · Individual output pin open-drain enable/disable
- Individual input pin weak pull-up and pull-down
- Monitor selective inputs and generate interrupt when change in pin state is detected
- Operation during Sleep and Idle modes
- Fast bit manipulation using CLR, SET, and INV registers

Figure 12-1 illustrates a block diagram of a typical multiplexed I/O port.

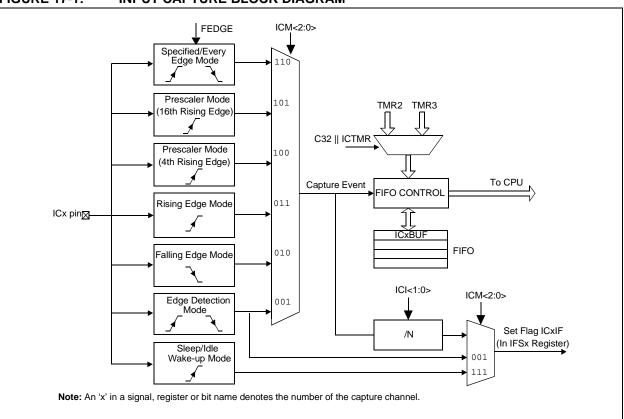
17.0 INPUT CAPTURE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Input Capture" (DS60001122), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement.

The Input Capture module captures the 16-bit or 32-bit value of the selected Time Base registers when an event occurs at the ICx pin. The following events cause capture events:

- Simple capture event modes:
 - Capture timer value on every rising and falling edge of input at ICx pin
 - Capture timer value on every edge (rising and falling)
 - Capture timer value on every edge (rising and falling), specified edge first.


- Prescaler capture event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select between one of two 16-bit timers (Timer2 or Timer3) for the time base, or two 16-bit timers (Timer2 and Timer3) together to form a 32-bit timer. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during Sleep and Idle modes
- Interrupt on input capture event
- 4-word FIFO buffer for capture values (interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled)
- Input capture can also be used to provide additional sources of external interrupts

Figure 17-1 illustrates a general block diagram of the Input Capture module.

FIGURE 17-1: INPUT CAPTURE BLOCK DIAGRAM

20.0 INTER-INTEGRATED CIRCUIT (I²C)

Note:	This data sheet summarizes the
	features of the PIC32MX1XX/2XX
	28/44-pin XLP Family of devices. It is
	not intended to be a comprehensive
	reference source. To complement the
	information in this data sheet, refer to
	Section 24. "Inter-Integrated Circuit
	(I ² C)" (DS60001116), which is available
	from the Documentation > Reference
	Manual section of the Microchip PIC32
	web site (www.microchip.com/pic32).

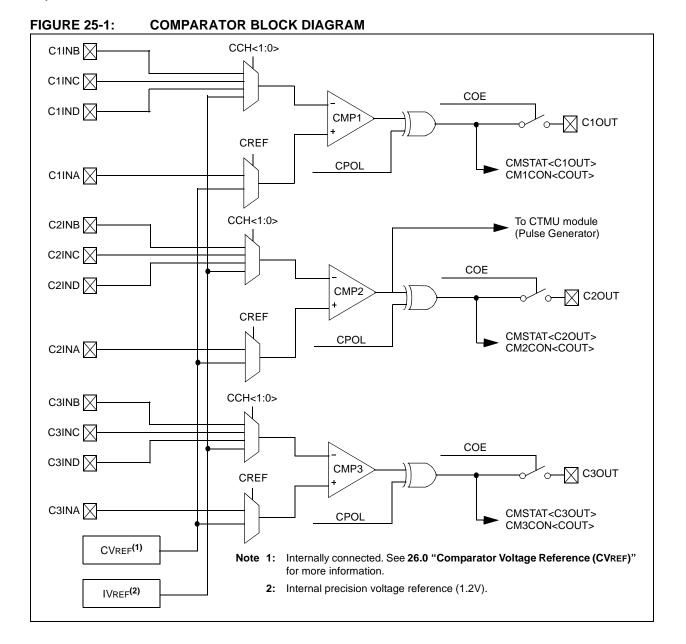
The I²C module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard. Figure 20-1 illustrates the I²C module block diagram.

Each I^2C module has a 2-pin interface: the SCLx pin is clock and the SDAx pin is data.

Each I²C module offers the following key features:

- I²C interface supporting both master and slave operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for the I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation; detects bus collision and arbitrates accordingly
- · Provides support for address bit masking

25.0 COMPARATOR


Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section 19. to "Comparator" (DS60001110), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Analog Comparator module contains three comparators that can be configured in a variety of ways.

The following are key features of the Comparator module:

- Selectable inputs available include:
 - Analog inputs multiplexed with I/O pins
 - On-chip internal absolute voltage reference (IVREF)
 - Comparator voltage reference (CVREF)
- Outputs can be Inverted
- Selectable interrupt generation

A block diagram of the comparator module is provided in Figure 25-1.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
31:24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24		—	-		-			—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16		—	_	—	_	_	_	—
45.0	R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	ON ⁽¹⁾	—	_	—	—	—	_	—
7.0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0		CVROE	CVRR	CVRSS	CVR<3:0>			

REGISTER 26-1: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

Legend:

R = Readable bit	Readable bit W = Writable bit		U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Comparator Voltage Reference On bit⁽¹⁾
 - 1 = Module is enabled
 - Setting this bit does not affect other bits in the register.
 - 0 = Module is disabled and does not consume current.
 - Clearing this bit does not affect the other bits in the register.
- bit 14-7 Unimplemented: Read as '0'
- bit 6 **CVROE:** CVREFOUT Enable bit 1 = Voltage level is output on CVREFOUT pin
 - 0 = Voltage level is disconnected from CVREFOUT pin
- bit 5 **CVRR:** CVREF Range Selection bit
 - 1 = 0 to 0.67 CVRSRC, with CVRSRC/24 step size
 - $\rm 0$ = 0.25 CVRsRc to 0.75 CVRsRc, with CVRsRc/32 step size
- bit 4 **CVRSS:** CVREF Source Selection bit
 - 1 = Comparator voltage reference source, CVRSRC = (VREF+) (VREF-)
 - 0 = Comparator voltage reference source, CVRSRC = AVDD AVSS
- bit 3-0 **CVR<3:0>:** CVREF Value Selection $0 \le CVR<3:0> \le 15$ bits
 - $\frac{\text{When CVRR} = 1:}{\text{CVREF} = (\text{CVR}<3:0>/24) \bullet (\text{CVRSRC})}$ $\frac{\text{When CVRR} = 0:}{\text{CVREF} = 1/4 \bullet (\text{CVRSRC}) + (\text{CVR}<3:0>/32) \bullet (\text{CVRSRC})}$
 - **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

The processor will exit, or 'wake-up', from Sleep on one of the following events:

- On any interrupt from an enabled source that is operating in Sleep. The interrupt priority must be greater than the current CPU priority.
- On any form of device Reset
- On a WDT time-out

If the interrupt priority is lower than or equal to the current priority, the CPU will remain Halted, but the PBCLK will start running and the device will enter into Idle mode.

29.3.2 IDLE MODE

In Idle mode, the CPU is Halted but the System Clock (SYSCLK) source is still enabled. This allows peripherals to continue operation when the CPU is Halted. Peripherals can be individually configured to Halt when entering Idle by setting their respective SIDL bit. Latency, when exiting Idle mode, is very low due to the CPU oscillator source remaining active.

- Note 1: Changing the PBCLK divider ratio requires recalculation of peripheral timing. For example, assume the UART is configured for 9600 baud with a PB clock ratio of 1:1 and a Posc of 8 MHz. When the PB clock divisor of 1:2 is used, the input frequency to the baud clock is cut in half; therefore, the baud rate is reduced to 1/2 its former value. Due to numeric truncation in calculations (such as the baud rate divisor), the actual baud rate may be a tiny percentage different than expected. For this reason, any timing calculation required for a peripheral should be performed with the new PB clock frequency instead of scaling the previous value based on a change in the PB divisor ratio.
 - 2: Oscillator start-up and PLL lock delays are applied when switching to a clock source that was disabled and that uses a crystal and/or the PLL. For example, assume the clock source is switched from Posc to LPRC just prior to entering Sleep in order to save power. No oscillator startup delay would be applied when exiting Idle. However, when switching back to Posc, the appropriate PLL and/or oscillator start-up/lock delays would be applied.

The device enters Idle mode when the SLPEN (OSCCON<4>) bit is clear and a WAIT instruction is executed.

The processor will wake or exit from Idle mode on the following events:

- On any interrupt event for which the interrupt source is enabled. The priority of the interrupt event must be greater than the current priority of the CPU. If the priority of the interrupt event is lower than or equal to current priority of the CPU, the CPU will remain Halted and the device will remain in Idle mode.
- On any form of device Reset
- On a WDT time-out interrupt

29.3.3 PERIPHERAL BUS SCALING METHOD

Most of the peripherals on the device are clocked using the PBCLK. The Peripheral Bus can be scaled relative to the SYSCLK to minimize the dynamic power consumed by the peripherals. The PBCLK divisor is controlled by PBDIV<1:0> (OSCCON<20:19>), allowing SYSCLK to PBCLK ratios of 1:1, 1:2, 1:4 and 1:8. All peripherals using PBCLK are affected when the divisor is changed. Peripherals such as the USB, Interrupt Controller, DMA, and the bus matrix are clocked directly from SYSCLK. As a result, they are not affected by PBCLK divisor changes.

Changing the PBCLK divisor affects:

- The CPU to peripheral access latency. The CPU has to wait for next PBCLK edge for a read to complete. In 1:8 mode, this results in a latency of one to seven SYSCLKs.
- The power consumption of the peripherals. Power consumption is directly proportional to the frequency at which the peripherals are clocked. The greater the divisor, the lower the power consumed by the peripherals.

To minimize dynamic power, the PB divisor should be chosen to run the peripherals at the lowest frequency that provides acceptable system performance. When selecting a PBCLK divider, peripheral clock requirements, such as baud rate accuracy, should be taken into account. For example, the UART peripheral may not be able to achieve all baud rate values at some PBCLK divider depending on the SYSCLK value.

29.5 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid. To disable a peripheral, the associated PMDx bit must be set to '1'. To enable a peripheral, the associated PMDx bit must be cleared (default). See Table 29-2 for more information.

Note: Disabling a peripheral module while it's ON bit is set, may result in undefined behavior. The ON bit for the associated peripheral module must be cleared prior to disable a module via the PMDx bits.

Peripheral ⁽¹⁾	PMDx bit Name ⁽¹⁾	Register Name and Bit Location			
ADC1	AD1MD	PMD1<0>			
CTMU	CTMUMD	PMD1<8>			
Comparator Voltage Reference	CVRMD	PMD1<12>			
Low-Voltage Detect	HLVDMD	PMD1<20>			
Comparator 1	CMP1MD	PMD2<0>			
Comparator 2	CMP2MD	PMD2<1>			
Comparator 3	CMP3MD	PMD2<2>			
Input Capture 1	IC1MD	PMD3<0>			
Input Capture 2	IC2MD	PMD3<1>			
Input Capture 3	IC3MD	PMD3<2>			
Input Capture 4	IC4MD	PMD3<3>			
Input Capture 5	IC5MD	PMD3<4>			
Output Compare 1	OC1MD	PMD3<16>			
Output Compare 2	OC2MD	PMD3<17>			
Output Compare 3	OC3MD	PMD3<18>			
Output Compare 4	OC4MD	PMD3<19>			
Output Compare 5	OC5MD	PMD3<20>			
Timer1	T1MD	PMD4<0>			
Timer2	T2MD	PMD4<1>			
Timer3	T3MD	PMD4<2>			
Timer4	T4MD	PMD4<3>			
Timer5	T5MD	PMD4<4>			
UART1	U1MD	PMD5<0>			
UART2	U2MD	PMD5<1>			
SPI1	SPI1MD	PMD5<8>			
SPI2	SPI2MD	PMD5<9>			
I2C1	I2C1MD	PMD5<16>			
12C2	I2C2MD	PMD5<17>			
USB ⁽²⁾	USBMD	PMD5<24>			
RTCC	RTCCMD	PMD6<0>			
Reference Clock Output	REFOMD	PMD6<1>			
PMP	PMPMD	PMD6<16>			

Note 1: Not all modules and associated PMDx bits are available on all devices. See TABLE 1: "PIC32MX1XX 28/44-Pin XLP (General Purpose) Family Features" and TABLE 2: "PIC32MX2XX 28/44-Pin XLP (USB) Family Features" for the lists of available peripherals.

2: The module must not be busy after clearing the associated ON bit and prior to setting the USBMD bit.

30.0 SPECIAL FEATURES

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to "Configuration" Section 32. Section (DS60001124) and 33. "Programming and **Diagnostics**" (DS60001129), which are available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/44-pin XLP Family devices include the following features intended to maximize application flexibility, reliability and minimize cost through elimination of external components.

- Flexible device configuration
- Joint Test Action Group (JTAG) interface
- In-Circuit Serial Programming[™] (ICSP[™])

30.1 Configuration Bits

The Configuration bits can be programmed using the following registers to select various device configurations.

- DEVCFG0: Device Configuration Word 0
- DEVCFG1: Device Configuration Word 1
- DEVCFG2: Device Configuration Word 2
- DEVCFG3: Device Configuration Word 3
- CFGCON: Configuration Control Register

In addition, the DEVID register (Register 30-6) provides device and revision information.

REGISTER 30-2: **DEVCFG1: DEVICE CONFIGURATION WORD 1 (CONTINUED)** bit 15-14 FCKSM<1:0>: Clock Switching and Monitor Selection Configuration bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled bit 13-12 FPBDIV<1:0>: Peripheral Bus Clock Divisor Default Value bits 11 = PBCLK is SYSCLK divided by 8 10 = PBCLK is SYSCLK divided by 4 01 = PBCLK is SYSCLK divided by 2 00 = PBCLK is SYSCLK divided by 1 bit 11 Reserved: Write '1' bit 10 **OSCIOFNC:** CLKO Enable Configuration bit 1 = CLKO output disabled 0 = CLKO output signal active on the OSCO pin; Primary Oscillator must be disabled or configured for the External Clock mode (EC) for the CLKO to be active (POSCMOD<1:0> = 11 or 00) bit 9-8 POSCMOD<1:0>: Primary Oscillator Configuration bits 11 = Primary Oscillator is disabled 10 = HS Oscillator mode is selected 01 = XT Oscillator mode is selected 00 = External Clock mode is selected bit 7 IESO: Internal External Switchover bit 1 = Internal External Switchover mode is enabled (Two-Speed Start-up is enabled) 0 = Internal External Switchover mode is disabled (Two-Speed Start-up is disabled) Reserved: Write '1' bit 6 FSOSCEN: Secondary Oscillator Enable bit bit 5 1 = Enable Secondary Oscillator 0 = Disable Secondary Oscillator bit 4-3 Reserved: Write '1' bit 2-0 FNOSC<2:0>: Oscillator Selection bits 111 = Fast RC Oscillator with divide-by-N (FRCDIV) 110 = FRCDIV16 Fast RC Oscillator with fixed divide-by-16 postscaler 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (Sosc) 011 = Primary Oscillator (Posc) with PLL module (XT+PLL, HS+PLL, EC+PLL) 010 = Primary Oscillator (XT, HS, EC)⁽¹⁾ 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIV+PLL)

- 000 = Fast RC Oscillator (FRC)
- **Note 1:** Do not disable the POSC (POSCMOD = 11) when using this oscillator source.

33.1 DC Characteristics

TABLE 33-1: OPERATING MIPS VS. VOLTAGE

	Vod Bongo	Tomp Bongo	Max. Frequency
Characteristic	VDD Range (in Volts) ⁽¹⁾	Temp. Range (in °C)	PIC32MX1XX/2XX 28/44-pin XLP Family
DC5	2.5-3.6V	-40°C to +85°C	72 MHz
DC5a	2.5-3.6V	-40°C to +105°C	72 MHz

Note 1: Overall functional device operation at VBORMIN < VDD < VDDMIN is tested, but not characterized. All device Analog modules, such as ADC, etc., will function, but with degraded performance below VDDMIN. Refer to parameter BO10 in Table 33-5 for BOR values.

TABLE 33-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Minimum	Typical	Maximum	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
V-temp Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+105	°C
Power Dissipation: Internal Chip Power Dissipation: PINT = VDD x (IDD - S IOH)	PD	PINT + PI/O			×
I/O Pin Power Dissipation: I/O = S (({VDD – VOH} x IOH) + S (VOL x IOL))					
Maximum Allowed Power Dissipation	PDMAX	(TJ — ΤΑ)/θ.	JA	W

TABLE 33-3: THERMAL PACKAGING CHARACTERISTICS

Characteristics	Symbol	Typical	Maximum	Unit	Notes
Package Thermal Resistance, 28-pin SOIC	θJA	50	—	°C/W	1
Package Thermal Resistance, 28-pin QFN	θJA	35	—	°C/W	1
Package Thermal Resistance, 44-pin QFN	θJA	32	—	°C/W	1
Package Thermal Resistance, 44-pin TQFP	θJA	45	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

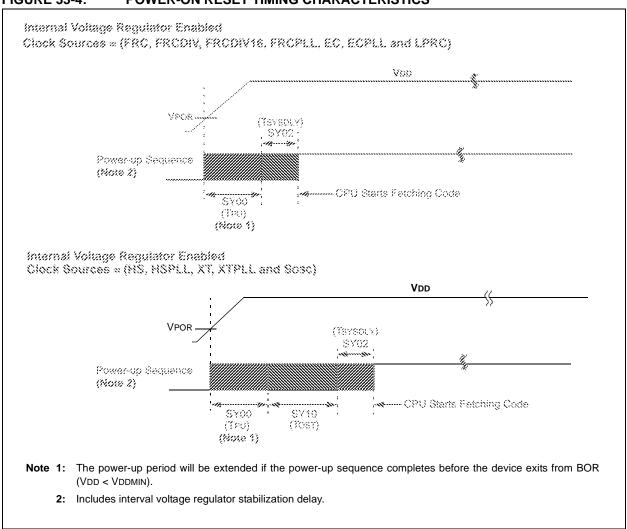
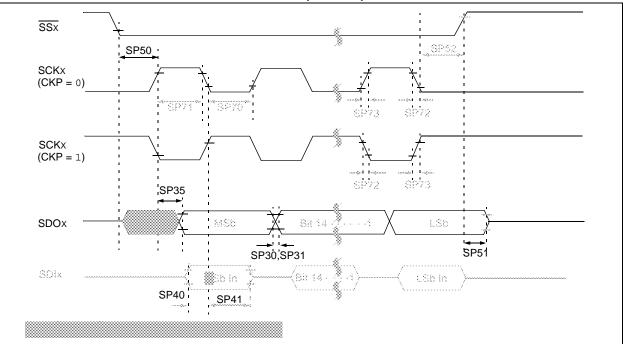

DC CHA	ARACTER	ISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: } 2.5V \ to \ 3.6V \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \ for \ Industrial \\ & -40^\circ C \leq TA \leq +105^\circ C \ for \ V-temp \end{array}$					
Param. No.	Symbol	Characteristics	Min. Typical ⁽¹⁾ Max. Units Condition					
	VIL	Input Low Voltage						
DI10		I/O Pins with PMP	Vss	—	0.15 Vdd	V		
		I/O Pins	Vss	—	0.2 Vdd	V		
DI18		SDAx, SCLx	Vss	—	0.3 Vdd	V	SMBus disabled (Note 4)	
DI19		SDAx, SCLx	Vss	—	0.8	V	SMBus enabled (Note 4)	
	VIH	Input High Voltage						
DI20		I/O Pins not 5V-tolerant ⁽⁵⁾	0.65 VDD	—	Vdd	V	(Note 4,6)	
		I/O Pins 5V-tolerant with PMP ⁽⁵⁾	0.25 VDD + 0.8V	—	5.5	V	(Note 4,6)	
		I/O Pins 5V-tolerant ⁽⁵⁾	0.65 Vdd	_	5.5	V		
DI28		SDAx, SCLx	0.65 Vdd	—	5.5	V	SMBus disabled (Note 4,6)	
DI29		SDAx, SCLx	2.1	_	5.5	V	SMBus enabled, 2.0V ≤ VPIN ≤ 5.5 (Note 4,6)	
DI30	ICNPU	Change Notification Pull-up Current	400	250	50	μΑ	VDD = 3.3V, VPIN = VSS (Note 3,6)	
DI31	ICNPD	Change Notification Pull-down Current ⁽⁴⁾	-400	-250	-50	μA	VDD = 3.3V, VPIN = VDD	
	liL	Input Leakage Current (Note 3)						
DI50		I/O Ports	_	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI51		Analog Input Pins	_	—	<u>+</u> 1	μA	$Vss \le VPIN \le VDD,$ Pin at high-impedance	
DI55		MCLR ⁽²⁾	—	—	<u>+</u> 1	μA	$Vss \leq V \text{PIN} \leq V \text{DD}$	
DI56		OSC1	_	—	<u>+</u> 1	μA	$\label{eq:VSS} \begin{split} &V{\sf SS} \leq V{\sf PIN} \leq V{\sf DD}, \\ &X{\sf T} \text{ and } {\sf HS} \text{ modes} \end{split}$	

TABLE 33-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

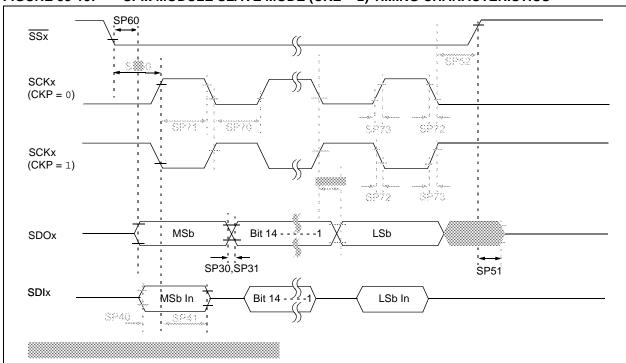
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: This parameter is characterized, but not tested in manufacturing.
- 5: See the "Pin Diagrams" section for the 5V-tolerant pins.
- 6: The VIH specifications are only in relation to externally applied inputs, and not with respect to the userselectable internal pull-ups. External open drain input signals utilizing the internal pull-ups of the PIC32 device are guaranteed to be recognized only as a logic "high" internally to the PIC32 device, provided that the external load does not exceed the minimum value of ICNPU. For External "input" logic inputs that require a pull-up source, to guarantee the minimum VIH of those components, it is recommended to use an external pull-up resistor rather than the internal pull-ups of the PIC32 device.

FIGURE 33-4: POWER-ON RESET TIMING CHARACTERISTICS

FIGURE 33-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING CHARACTERISTICS


TABLE 33-31: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. ⁽²⁾ Max. Units Conditio				
SP70	TscL	SCKx Input Low Time (Note 3)	TSCK/2	_		ns	_
SP71	TscH	SCKx Input High Time (Note 3)	TSCK/2	_		ns	—
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—		ns	See parameter DO32
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	_		ns	See parameter DO31
SP35		SDOx Data Output Valid after	_	_	15	ns	VDD > 2.7V
	TSCL2DOV	SCKx Edge	—	—	20	ns	Vdd < 2.7V
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10			ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	_	_	ns	—
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	175	_	_	ns	—
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance (Note 3)	5	—	25	ns	—
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	Тѕск + 20	_		ns	—

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 50 ns.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 33-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING CHARACTERISTICS

TABLE 33-32: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Typical ⁽²⁾	Max.	Units	Conditions		
SP70	TscL	SCKx Input Low Time (Note 3)	Тѕск/2	_		ns	_		
SP71	TscH	SCKx Input High Time (Note 3)	Tsck/2	—		ns	—		
SP72	TscF	SCKx Input Fall Time	—	5	10	ns	—		
SP73	TscR	SCKx Input Rise Time	—	5	10	ns	—		
SP30	TDOF	SDOx Data Output Fall Time (Note 4)	—	—	_	ns	See parameter DO32		
SP31	TDOR	SDOx Data Output Rise Time (Note 4)	—	—		ns	See parameter DO31		
SP35	TscH2doV,	SDOx Data Output Valid after		_	20	ns	VDD > 2.7V		
	TscL2doV	SCKx Edge	_	—	30	ns	Vdd < 2.7V		
SP40	TDIV2SCH, TDIV2SCL	Setup Time of SDIx Data Input to SCKx Edge	10	—		ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	10	—	_	ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \downarrow or SCKx \uparrow Input	175	—	_	ns	—		

Note 1: These parameters are characterized, but not tested in manufacturing.

2: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

- 3: The minimum clock period for SCKx is 50 ns.
- 4: Assumes 50 pF load on all SPIx pins.

INDEX

Α	
AC Characteristics	310
10-Bit Conversion Rate Parameters	332
ADC Specifications	330
Analog-to-Digital Conversion Requirements	333
EJTAG Timing Requirements	340
Internal FRC Accuracy	312
Internal RC Accuracy	
OTG Electrical Specifications	338
Parallel Master Port Read Requirements	337
Parallel Master Port Write	338
Parallel Master Port Write Requirements	338
Parallel Slave Port Requirements	336
PLL Clock Timing	
ADC Pinout I/O Descriptions	
Analog-to-Digital Converter (ADC)	
Assembler	
MPASM Assembler	

В

Block Diagrams
ADC Module
Comparator I/O Operating Modes245
Comparator Voltage Reference
Connections for On-Chip Voltage Regulator
Core and Peripheral Modules
CPU
CTMU Configurations
Time Measurement
DMA
I ² C Circuit
Input Capture 179
Interrupt Controller 69
JTAG Programming, Debugging and Trace Ports 289
Output Compare Module 183
PMP Pinout and Connections to External Devices 211
Prefetch Module 113
Reset System61
RTCC
SPI Module 187
Timer1163
Timer2/3/4/5 (16-Bit) 167
Typical Multiplexed Port Structure 147
UART
WDT and Power-up Timer 173, 177
Brown-out Reset (BOR)
and On-Chip Voltage Regulator

С

C Compilers
MPLAB C18 294
Charge Time Measurement Unit (CTMU)257
Comparator
Specifications
Comparator 1, 2, and CVREF Pinout I/O Descriptions 27
Comparator Module
Comparator Voltage Reference (CVref249
Configuration Bit
Configuring Analog Port Pins148
CPU
Architecture Overview 40
Coprocessor 0 Registers41
Core Exception Types

42
42
33, 39
30
361
361
361

D

DC and AC Characteristics	
Graphs and Tables	341
DC Characteristics	298
I/O Pin Input Specifications	4, 305
I/O Pin Output Specifications	306
Idle Current (IIDLE)	302
Power-Down Current (IPD)	303
Program Memory	307
Temperature and Voltage Specifications	299
Development Support	293
Direct Memory Access (DMA) Controller	93

Е

Electrical Characteristics	297
AC	310
High/Low-Voltage Detect	300
Errata	16
External Clock	
Timer1 Timing Requirements	316
Timer2, 3, 4, 5 Timing Requirements	317
Timing Requirements	311
External Interrupts Pinout I/O Descriptions	22
F	

Н

High-Voltage Detect (HVD)	63
I	
I/O Ports	147
Parallel I/O (PIO)	148
Write/Read Timing	148
I2C1 through I2C4 Pinout I/O Descriptions	
IC1 through IC5 Pinout I/O Descriptions	
Input Change Notification	
Instruction Set	291
Inter-Integrated Circuit (I ² C)	
Internal Voltage Reference Specifications	
Internet Address	361
Interrupt Controller	69
IRG, Vector and Bit Location	

J

JTAG, Trace, and Programming/Debugging Pinout I/O Descriptions	32
Μ	
Memory Maps	
PIC32MX150/250 Devices	
(32 KB RAM, 128 KB Flash) 4	4
PIC32MX170/270	
(64 KB RAM, 256 KB Flash) 4	15
Memory Organization 4	ł3