

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	MIPS32 ® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	17
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx254f128b-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

TABLE 3: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES WITH VBAT

-F	PIN SOIC (TOP VIEW) ^(1,2,3)		1 28
			SOIC
	PIC32MX155F128B PIC32MX175F256B		
#	Full Pin Name	Pin #	Full Pin Name
#	Full Pin Name	Pin #	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0	Pin #	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1	Pin # 15 16 17	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0	Pin # 15 16 17 18	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1	Pin # 15 16 17 18 19	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INB/C3IND/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	Pin # 15 16 17 18 19 20	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3	Pin # 15 16 17 18 19 20 21	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss	Pin # 15 16 17 18 19 20 21 22	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2	Pin # 15 16 17 18 19 20 21 22 23	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12
<u>#</u>	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	Pin # 15 16 17 18 19 20 21 22 23 24	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 VSS VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 ⁽⁴⁾	Pin # 15 16 17 18 19 20 21 22 23 24 25	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/R
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 ⁽⁴⁾ SOSCO/RPA4/T1CK/CTED9/RA4	Pin # 15 16 17 18 19 20 21 22 23 24 25 26	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RI AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCO/RPA4/T1CK/CTED9/RA4 VDD	Pin # 15 16 17 18 19 20 21 22 23 24 25 26 27	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/R AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15 AVss

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: This is an input-only pin.

1

TABLE 5: PIN NAMES FOR 28-PIN USB DEVICES WITH VBAT

28-PIN	SOIC	(TOP	VIEW) ^(1,2,3)
--------	------	------	------	----------------------

28

PIC32MX255F128B PIC32MX275F256B

Pin #	Full Pin Name	Pin #	Full Pin Name
1	MCLR	15	VBUS
2	PGED3/VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMD7/RA0	16	TDI/RPB7/CTED3/PMD5/INT0/RB7
3	PGEC3/VREF-/AN1/RPA1/ASCL1/CTED2/PMD6/RA1	17	TCK/RPB8/SCL1/CTED10/PMD4/RB8
4	PGED2/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0	18	TDO/RPB9/SDA1/CTED4/PMD3/RB9
5	PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12/PMD1//RB1	19	Vss
6	PGED1/AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2	20	VCAP
7	PGEC1/AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/PMWR/RB3	21	D+
8	Vss	22	D-
9	OSC1/CLKI/RPA2/RA2	23	VUSB3V3
10	OSC2/CLKO/RPA3/PMA0/RA3	24	VBAT
11	SOSCI/RPB4/CTED11/RB4 ⁽⁴⁾	25	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMA1/RB14
12	SOSCO/RPA4/T1CK/CTED9/RA4	26	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
13	Vdd	27	AVss
14	TMS/RPB5/USBID/PMRD/RB5	28	AVdd

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: This is an input-only pin.

	P	in Number	(1)					
Pin Name	e 28-pin QFN	28-pin 28-pin QFN/ QFN SOIC TQFP Pin Buffer Description						
				Pow	ver and Gro	ound		
AVdd	25	28	17	Р	—	Positive supply for analog module be connected at all times.	es. This pin must	
AVss	24	27	16	Р	—	Ground reference for analog moc	lules	
Vdd	10	13	28, 40	Р		Positive supply for peripheral logi	c and I/O pins	
VCAP	17	20	7	Р	—	CPU logic filter capacitor connect	ion	
Vss	5, 16	8, 19	6, 29, 39	Р	—	Ground reference for logic and I/O pins. This pin must be connected at all times.		
LVDIN	2	5	22			Low-Voltage Detect pin		
Vbat	21 ⁽²⁾	24(2)	11 ⁽²⁾			Positive supply for the battery backed section. It is recommended to connect this pin to VDD if VBAT mode is not used (i.e., not connected to the battery)		
				Volt	age Refere	ence		
VREF+	27	2	19	I	Analog	Analog voltage reference (high) ir	nput	
Vref-	28	3	20	I	Analog	Analog voltage reference (low) in	put	
Legend:	CMOS = CM ST = Schmi TTL = TTL i	MOS compa itt Trigger ir input buffer	atible input	or outpu //OS lev	it els	Analog = Analog input O = Output PPS = Peripheral Pin Select	P = Power I = Input — = N/A	

TABLE 1-15: POWER, GROUND, AND VOLTAGE REFERENCE PINOUT I/O DESCRIPTIONS

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for devices with VBAT only.

NOTES:

FIGURE 4-1: MEMORY MAP ON RESET FOR PIC32MX15X/25X DEVICES (32 KB RAM, 128 KB FLASH)

NOTES:

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24					_			
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	-	—	_	—	_	—	_	-
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	_	—	_	—	_	—	_	_
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
7.0	_	_			_			VREGS

REGISTER 6-4: PWRCON: POWER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-1 Unimplemented: Read as '0'

bit 0 VREGS: Voltage Regulator Stand-by Enable bit

1 = Voltage regulator will remain active during Sleep

0 = Voltage regulator will go to Stand-by mode during Sleep

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y	
31:24	—	—	—	—	—	U	PLLODIV<2:()>	
00.40	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y	
23:16	—	—	—	—	—	U	UPLLMULT<2:0>		
15.0	U-0	U-0	U-0	U-0	U-0	R/W-y	R/W-y	R/W-y	
15.6	—	—	—	—	—	UPLLIDIV<2:0>			
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
7:0						_			

REGISTER 8-4: UPLLCON: USB PLL CONTROL REGISTER

Legend:	y = Value set from Configuration bits on POR			
R = Readable bit	W = Writable bit	le bit U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-27 Unimplemented: Read as '0'

bit 26-24 **UPLLODIV<2:0>:** USB PLL Output Clock Divider bits

111 = PLL Divide by 16 110 = PLL Divide by 12 101 = PLL Divide by 8 100 = PLL Divide by 6 011 = PLL Divide by 4 010 = PLL Divide by 3 001 = PLL Divide by 2 000 = PLL Divide by 1

bit 23-19 Unimplemented: Read as '0'

bit 18-16 UPLLMULT<2:0>: USB PLL Multiplier bits

- 111 = Multiply by 24 110 = Multiply by 21 101 = Multiply by 20 100 = Multiply by 19 011 = Multiply by 18 010 = Multiply by 17 001 = Multiply by 16 000 = Multiply by 15
- bit 15-11 Unimplemented: Read as '0'

bit 10-8 UPLLIDIV<2:0>: USB PLL Input Clock Divider bits

- 111 = Divide by 12 110 = Divide by 10 101 = Divide by 6 100 = Divide by 5 011 = Divide by 4 010 = Divide by 3 001 = Divide by 2
- 000 = Divide by 1
- bit 7-0 Unimplemented: Read as '0'

Note 1: Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	U-0	U-0	U-0	U-0	R-1	U-0	U-0	U-0
15:8	—	—	—	—	PBDIVRDY	—	_	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x
7:0					_		PBDI	/<1:0>

REGISTER 8-7: PB0DIV: PERIPHERAL BUS CLOCK 0 DIVISOR CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-12 Unimplemented: Read as '0'

bit 11 **PBDIVRDY:** Peripheral Bus 'x' Clock Divisor Ready bit

1 = Clock divisor logic is not switching divisors and the PBxDIV<6:0> bits may be written

0 = Clock divisor logic is currently switching values and the PBxDIV<6:0> bits cannot be written

- bit 10-2 Unimplemented: Read as '0'
- bit 1-0 **PBDIV<1:0>:** Peripheral Bus 'x' Clock Divisor Control bits
 - 11 = PBCLKx is SYSCLK divided by 8
 - 10 = PBCLKx is SYSCLK divided by 4
 - 01 = PBCLKx is SYSCLK divided by 2
 - 00 = PBCLKx is SYSCLK divided by 1

Note: Writes to this register require an unlock sequence. Refer to **Section 42. "Oscillators with Enhanced PLL"** (DS60001250) in the *"PIC32 Family Reference Manual"* for details.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0				
24.24	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
31:24				CHEPFAB	T<31:24>							
00.40	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
23:16	CHEPFABT<23:16>											
45.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
15:8	CHEPFABT<15:8>											
7.0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x				
7.0	CHEPFABT<7:0>											
Legend	:											
R = Rea	dable bit		W = Writable	e bit	U = Unimple	emented bit, re	ead as '0'					

REGISTER 10-12: CHEPFABT: PREFETCH CACHE ABORT STATISTICS REGISTER

'1' = Bit is set

bit 31-0 CHEPFABT<31:0>: Prefab Abort Count bits

-n = Value at POR

Incremented each time an automatic prefetch cache is aborted due to a non-sequential instruction fetch, load or store.

'0' = Bit is cleared

x = Bit is unknown

12.3 Peripheral Pin Select

A major challenge in general purpose devices is providing the largest possible set of peripheral features while minimizing the conflict of features on I/O pins. The challenge is even greater on low pin-count devices. In an application where more than one peripheral needs to be assigned to a single pin, inconvenient workarounds in application code or a complete redesign may be the only option.

The Peripheral Pin Select (PPS) configuration provides an alternative to these choices by enabling peripheral set selection and their placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, users can better tailor the device to their entire application, rather than trimming the application to fit the device.

The PPS configuration feature operates over a fixed subset of digital I/O pins. Users may independently map the input and/or output of most digital peripherals to these I/O pins. PPS is performed in software and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping once it has been established.

12.3.1 AVAILABLE PINS

The number of available pins is dependent on the particular device and its pin count. Pins that support the PPS feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable port number.

12.3.2 AVAILABLE PERIPHERALS

The peripherals managed by the PPS are all digitalonly peripherals. These include general serial communications (UART and SPI), general purpose timer clock inputs, timer-related peripherals (input capture and output compare) and interrupt-on-change inputs.

In comparison, some digital-only peripheral modules are never included in the PPS feature. This is because the peripheral's function requires special I/O circuitry on a specific port and cannot be easily connected to multiple pins. These modules include I²C among others. A similar requirement excludes all modules with analog inputs, such as the Analog-to-Digital Converter (ADC).

A key difference between remappable and non-remappable peripherals is that remappable peripherals are not associated with a default I/O pin. The peripheral must always be assigned to a specific I/O pin before it can be used. In contrast, non-remappable peripherals are always available on a default pin, assuming that the peripheral is active and not conflicting with another peripheral.

When a remappable peripheral is active on a given I/O pin, it takes priority over all other digital I/O and digital communication peripherals associated with the pin.

Priority is given regardless of the type of peripheral that is mapped. Remappable peripherals never take priority over any analog functions associated with the pin.

12.3.3 CONTROLLING PERIPHERAL PIN SELECT

PPS features are controlled through two sets of SFRs: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral-selectable pin is handled in two different ways, depending on whether an input or output is being mapped.

12.3.4 INPUT MAPPING

The inputs of the PPS options are mapped on the basis of the peripheral. That is, a control register associated with a peripheral dictates the pin it will be mapped to. The [*pin name*]R registers, where [*pin name*] refers to the peripheral pins listed in Table , are used to configure peripheral input mapping (see Register 12-1). Each register contains sets of 4 bit fields. Programming these bit fields with an appropriate value maps the RPn pin with the corresponding value to that peripheral. For any given device, the valid range of values for any bit field is shown in Table .

For example, Figure 12-2 illustrates the remappable pin selection for the U1RX input.

FIGURE 12-2: REMAPPABLE INPUT EXAMPLE FOR U1RX

TABLE 12-4: PORTB REGISTER MAP

ess			Bits																
Virtual Addr (BF88_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
6100		31:16	_		—	—	—	-	_	_		_	—		—	_		—	0000
0100	ANOLLD	15:0	ANSB15	ANSB14	ANSB13 ⁽³⁾	ANSB12 ⁽²⁾	—	_	_	—	_	_	—	_	ANSB3	ANSB2	ANSB1	ANSB0	EOOF
6110	TRISB	31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0000
0110	IIIIOD	15:0	TRISB15	TRISB14	TRISB13 ⁽³⁾	TRISB12 ⁽²⁾	TRISB11 ⁽²⁾	TRISB10 ⁽²⁾	TRISB9	TRISB8	TRISB7	TRISB6 ⁽²⁾	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
6120	PORTB	31:16	—	-	—	—	—	—	—	—		_	—						0000
0120	FORTB	15:0	RB15	RB14	RB13 ⁽³⁾	RB12 ⁽²⁾	RB11 ⁽²⁾	RB10 ⁽²⁾	RB9	RB8	RB7	RC6 ⁽²⁾	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
6130	LATB	31:16	—	-	-	—	-	-	—	—	-	-	—	_	—	_	-	—	0000
0.00	22	15:0	LATB15	LATB14	LATB13 ⁽³⁾	LATB12 ⁽²⁾	LATB11 ⁽²⁾	LATB10 ⁽²⁾	LATB9	LATB8	LATB7	LATB6 ⁽²⁾	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
6140	ODCB	31:16	—	-	-	—	—	-	—	—	-	-	—	_	—	_	-	—	0000
0140		15:0	ODCB15	ODCB14	ODCB13 ⁽³⁾	ODCB12 ⁽²⁾	ODCB11 ⁽²⁾	ODCB10 ⁽²⁾	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000
6150	CNPUB	31:16	—	-	-	—	-	-	-	—	-	-	—	_	—	_	-	—	0000
0100		15:0	CNPUB15	CNPUB14	CNPUB13 ⁽³⁾	CNPUB12(2)	CNPUB11 ⁽²⁾	CNPUB10 ⁽²⁾	CNPUB9	CNPUB8	CNPUB7	CNPUB6 ⁽²⁾	CNPUB5	CNPUB4	CNPUB3	CNPUB2	CNPUB1	CNPUB0	0000
6160	CNPDB	31:16	_		—	—	—	—	—			—	—		—	_		_	0000
0100		15:0	CNPDB15	CNPDB14	CNPDB13	CNPDB12(2)	CNPDB11 ⁽²⁾	CNPDB10 ⁽²⁾	CNPDB9	CNPDB8	CNPDB7	CNPDB6 ⁽²⁾	CNPDB5	CNPDB4	CNPDB3	CNPDB2	CNPDB1	CNPDB0	0000
6170	CNCONB	31:16	_	_	—	—	—	_	_	—	—	_	—	_	—	—	_	—	0000
0110	oncond	15:0	ON		SIDL	_	—	_	_	_		_				—		_	0000
6180	CNENB	31:16	_	—	—	—	—	—	—			—				—			0000
0100	0.12110	15:0	CNIEB15	CNIEB14	CNIEB13 ⁽³⁾	CNIEB11 ⁽²⁾	CNIEB11 ⁽²⁾	CNIEB10 ⁽²⁾	CNIEB9	CNIEB8	CNIEB7	CNIEB6 ⁽²⁾	CNIEB5	CNIEB4	CNIEB3	CNIEB2	CNIEB1	CNIEB0	0000
		31:16	_	—	—	—	_	_	—	—	_	_		—	—	—		—	0000
6190	CNSTATB	15:0	CN STATB15	CN STATB14	CN STATB13 ⁽³⁾	CN STATB12 ⁽²⁾	CN STATB11 ⁽²⁾	CN STATB10 ⁽²⁾	CN STATB9	CN STATB8	CN STATB7	CN STATB6 ⁽²⁾	CN STATB5	CN STATB4	CN STATB3	CN STATB2	CN STATB1	CN STATB0	0000

Advance Information

Legend: x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

2: This bit is not available on USB devices.

3: This bit is not available on VBAT devices.

I²C Control Registers 20.1

TABLE 20-1: I2C1 AND I2C2 REGISTER MAP

ess										Ві	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	1201000	31:16	—	-	—	—	—	—	—	—	_	—	—	—	—	_	—	_	0000
5000	12CTCON	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5010		31:16	—		—	—	-	—	—			_	—	-		_	_		0000
3010	120131AI	15:0	ACKSTAT	TRSTAT	—	—	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
5020		31:16	—		—	—	-	—	—			_	—	-		_	_		0000
3020	IZCIADD	15:0	—	-	—	—	—	—					Address	Register					0000
5030	I2C1MSK	31:16	—	-	—	—	—	—	—	—	-	—	—	_	-	—	—	_	0000
3030	120110101	15:0	—	_	—	—	—	—					Address Ma	ask Register	·	-			0000
5040	I2C1BRG	31:16	—	_	—	—	—	—	—	—	—	—	—		—	—	—	—	0000
	12CTBRG	15:0	—	—	—	—					Baud Rate Generator Register								0000
5050	I2C1TRN	31:16	—	—	—	—	—	—	—	_	—	—	—		—	—	—	—	0000
0000	12011111	15:0	—	-	—	—	—	—		—			-	Transmit	Register				0000
5060	I2C1RCV	31:16	—	—	—	—	—	—	—	_	—	—	—		—	—	—	—	0000
		15:0	—	-	—	—	—	—	—	_				Receive	Register				0000
5100	I2C2CON	31:16	—	-	—	—	—	—	—	—	-	—	—	—	—	—	—	—	0000
0.00		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C2STAT	31:16		—	—	—		—	—	—		—	—		—	—	—	—	0000
		15:0	ACKSTAT	TRSTAT	—	—	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
5120	I2C2ADD	31:16	—	_	—	—	—	—	—	—	—		—	—	—	—	—	—	0000
		15:0	—	—	—	-		—					Address	Register					0000
5130	I2C2MSK	31:16	_	_	—	—		—		—	_	_	—	_	—	—	—	—	0000
		15:0	—	—	—	—	—	—					Address Ma	ask Register					0000
5140	I2C2BRG	31:16	_	_	—	—	_	_	—	—	_	_	—	_	—	—	—	—	0000
		15:0	—	—	—	—					Βαι	ud Rate Ger	nerator Reg	ister					0000
5150	I2C2TRN	31:16	_	_	—	_	_	_		_	—	—	—	_	_	_	—	—	0000
		15:0	_	_	_	_		_		_				Transmit	Register				0000
5160	I2C2RCV	31:16	—	—	-	-	-		—	—	—		—			—	—	—	0000
	<u> </u>	15:0	—	—		<u> </u>	_		<u> </u>					Receive	Register				0000
Legen	d: x = u	unknow	n value on	Keset: — =	unimpleme	ented, read	as '0'. Rese	t values are	e snown in h	exadecima									

© 2016 Microchip Technology Inc.

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

22.1 PMP Control Registers

TABLE 22-1: PARALLEL MASTER PORT REGISTER MAP

ess		a								В	its								ú
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset:
7000	PMCON	31:16	_	—	_	_	—	—	—	_	RDSTART	_	—	-	_	—	—		000
1000	TMOON	15:0	ON	—	SIDL	ADRMU	JX<1:0>	PMPTTL	PTWREN	PTRDEN	CSF	<1:0>	ALP	_	CS1P	—	WRSP	RDSP	000
7010		31:16	_	—	—	—	—	—	—	—		—	—	—	—	—	—	—	000
7010	TIMMODE	15:0	BUSY	IRQM	l<1:0>	INCM	<1:0>	—	MODE	<1:0>	WAITE	3<1:0>		WAITM	A<3:0>		WAITE	<1:0>	000
7020		31:16	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	000
1020	FINADDR	15:0	CS1ADDR<10:0> 0000																
7030		31:16									IT_31:0>								000
1030	TIMDOOT	15:0								DAIAOC	51<51.02								000
7040	PMDIN	31:16		DATAIN<31:0>															
1010		15:0	000(
7050	PMAEN	31:16	_	—	—	—	_	_	—		—	—	—	—	—	—	—	—	000
1000	1100 (214	15:0	—	PTEN14	—	—	—		-				PTEN<10:0:	>		-			000
7060	PMSTAT	31:16	—	—	—	—	—	—	—	—	—	_	—	_	—	—	—	-	000
		15:0	IBF	IBOV	—	—	IB3F	IB2F	IB1F	IB0F	OBE	OBUF	_	_	OB3E	OB2E	OB1E	OB0E	008
7070		31:16	_	—	—	—	_	_	—		—	—	—	—	—	—	—	—	000
		15:0	_	WCS1	—	—	—					W	ADDR<10:0)>					000
7090		31:16	_	—	—	—	_	—	—	—	_	_	—	_	—	—	—	—	000
7000	FINIKADDK	15:0	—	RCS1	—	—	—					R	ADDR<10:0)>					000
7090		31:16	_	—	—	—	—	-	—	—	-	—	—	—	—	—	—	—	000
1090	PIVIRDIN	15:0								RDATAI	IN<15:0>								000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

27.1 Control Registers

DS60001404A-page 254

TABLE 27-1: HIGH/LOW-VOLTAGE DETECT REGISTER MAP

ess		Bit Range		Bits														s	
Virtual Addr (BF80_#)	Register Name ⁽¹⁾		31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Reset
		04.40																	
1800		31:16								—	—	—	—		_	_	_		0000
		15:0	ON	_	_		VDIR	BGVST		HLVDET	_	_		_		HLVDL	<3:0>		0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: The register in this table has corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 13.2 "CLR, SET, and INV Registers" for more information.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
31:24	EDG1MOD	EDG2STAT	EDG1STAT					
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0
23.10	EDG2MOD	EDG2POL		EDG2S	—	—		
15.0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
15.0	ON	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0			IRNG<1:0>					

REGISTER 28-1: CTMUCON: CTMU CONTROL REGISTER

Legend:

Logonan							
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'					
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				

- bit 31 EDG1MOD: Edge1 Edge Sampling Select bit
 - 1 = Input is edge-sensitive
 - 0 = Input is level-sensitive
- bit 30 **EDG1POL:** Edge 1 Polarity Select bit
 - 1 = Edge1 programmed for a positive edge response
 - 0 = Edge1 programmed for a negative edge response
- bit 29-26 EDG1SEL<3:0>: Edge 1 Source Select bits
 - 1111 = C3OUT pin is selected
 - 1110 = C2OUT pin is selected
 - 1101 = C1OUT pin is selected
 - 1100 = IC3 Capture Event is selected
 - 1011 = IC2 Capture Event is selected
 - 1010 = IC1 Capture Event is selected
 - 1001 = CTED8 pin is selected
 - 1000 = CTED7 pin is selected
 - 0111 = CTED6 pin is selected
 - 0110 = CTED5 pin is selected
 - 0101 = CTED4 pin is selected
 - 0100 = CTED3 pin is selected
 - 0011 = CTED1 pin is selected
 - 0010 = CTED2 pin is selected
 - 0001 = OC1 Compare Event is selected 0000 = Timer1 Event is selected
- bit 25 EDG2STAT: Edge2 Status bit

Indicates the status of Edge2 and can be written to control edge source

- 1 = Edge2 has occurred
- 0 = Edge2 has not occurred
- Note 1: When this bit is set for Pulse Delay Generation, the EDG2SEL<3:0> bits must be set to '1110' to select C2OUT.
 - 2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitive measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC module must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.
 - 3: Refer to the CTMU Current Source Specifications (Table 33-42) in 33.0 "Electrical Characteristics" for current values.
 - 4: This bit setting is not available for the CTMU temperature diode.

29.5.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

29.5.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the Configuration bit, PMDLOCK (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 6.** "**Oscillator**" (DS60001112) in the "*PIC32 Family Reference Manual*" for details.

29.5.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The Configuration bit, PMDL1WAY (DEVCFG3<28>), blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

REGISTER 30-3: DEVCFG2: DEVICE CONFIGURATION WORD 2 (CONTINUED)

bit 2-0 FPLLIDIV<2:0>: PLL Input Divider bits

111 = 12x divider110 = 10x divider101 = 6x divider100 = 5x divider011 = 4x divider010 = 3x divider001 = 2x divider000 = 1x divider

Note 1: This bit is only available on PIC32MX2XX devices.

NOTES: