

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

⊡XFI

| Product Status             | Active                                                                         |
|----------------------------|--------------------------------------------------------------------------------|
| Core Processor             | MIPS32® M4K™                                                                   |
| Core Size                  | 32-Bit Single-Core                                                             |
| Speed                      | 72MHz                                                                          |
| Connectivity               | I <sup>2</sup> C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG                  |
| Peripherals                | Brown-out Detect/Reset, DMA, HLVD, I <sup>2</sup> S, POR, PWM, WDT             |
| Number of I/O              | 17                                                                             |
| Program Memory Size        | 128KB (128K x 8)                                                               |
| Program Memory Type        | FLASH                                                                          |
| EEPROM Size                | -                                                                              |
| RAM Size                   | 32K x 8                                                                        |
| Voltage - Supply (Vcc/Vdd) | 2.5V ~ 3.6V                                                                    |
| Data Converters            | A/D 9x10b                                                                      |
| Oscillator Type            | Internal                                                                       |
| Operating Temperature      | -40°C ~ 105°C (TA)                                                             |
| Mounting Type              | Surface Mount                                                                  |
| Package / Case             | 28-VQFN Exposed Pad                                                            |
| Supplier Device Package    | 28-QFN-S (6x6)                                                                 |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic32mx254f128b-v-mm |
|                            |                                                                                |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### TABLE 6: PIN NAMES FOR 28-PIN USB DEVICES WITHOUT VBAT

28-PIN SOIC (TOP VIEW)<sup>(1,2,3)</sup>

SOIC

28

1

# PIC32MX254F128B PIC32MX274F256B

| Pin # | Full Pin Name                                     | Pin # | Full Pin Name                                  |
|-------|---------------------------------------------------|-------|------------------------------------------------|
| 1     | MCLR                                              | 15    | VBUS                                           |
| 2     | PGED3/VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMD7/RA0   | 16    | TDI/RPB7/CTED3/PMD5/INT0/RB7                   |
| 3     | PGEC3/VREF-/AN1/RPA1/ASCL1/CTED2/PMD6/RA1         | 17    | TCK/RPB8/SCL1/CTED10/PMD4/RB8                  |
| 4     | PGED2/AN2/C1IND/C2INB/C3IND/RPB0/PMD0/RB0         | 18    | TDO/RPB9/SDA1/CTED4/PMD3/RB9                   |
| 5     | PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12/PMD1//RB1 | 19    | Vss                                            |
| 6     | PGED1/AN4/C1INB/C2IND/RPB2/SDA2/CTED13/PMD2/RB2   | 20    | VCAP                                           |
| 7     | PGEC1/AN5/C1INA/C2INC/RTCC/RPB3/SCL2/PMWR/RB3     | 21    | D+                                             |
| 8     | Vss                                               | 22    | D-                                             |
| 9     | OSC1/CLKI/RPA2/RA2                                | 23    | VUSB3V3                                        |
| 10    | OSC2/CLKO/RPA3/PMA0/RA3                           | 24    | AN11/RPB13/CTPLS/PMRD/RB13                     |
| 11    | SOSCI/RPB4/CTED11/RB4 <sup>(4)</sup>              | 25    | CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMA1/RB14 |
| 12    | SOSCO/RPA4/T1CK/CTED9/RA4                         | 26    | AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15          |
| 13    | Vdd                                               | 27    | AVss                                           |
| 14    | TMS/RPB5/USBID/RB5                                | 28    | AVdd                                           |

1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: This is an input-only pin.

Note

|                     | P                                      | in Number <sup>(</sup> | (1)                    |             |                |                                                                    |                                   |
|---------------------|----------------------------------------|------------------------|------------------------|-------------|----------------|--------------------------------------------------------------------|-----------------------------------|
| Pin Name            | 28-pin<br>QFN                          | 28-pin<br>SOIC         | 44-pin<br>QFN/<br>TQFP | Pin<br>Type | Buffer<br>Type | Description                                                        |                                   |
| -                   |                                        |                        | 4                      | nalog-t     | o-Digital C    | Converter                                                          |                                   |
| AN0                 | 27                                     | 2                      | 19                     | I           | Analog         | Analog input channels.                                             |                                   |
| AN1                 | 28                                     | 3                      | 20                     | I           | Analog         |                                                                    |                                   |
| AN2                 | 1                                      | 4                      | 21                     | I           | Analog         |                                                                    |                                   |
| AN3                 | 2                                      | 5                      | 22                     | I           | Analog         |                                                                    |                                   |
| AN4                 | 3                                      | 6                      | 23                     | Ι           | Analog         |                                                                    |                                   |
| AN5                 | 4                                      | 7                      | 24                     | I           | Analog         |                                                                    |                                   |
| AN6                 | —                                      | —                      | 25                     | I           | Analog         |                                                                    |                                   |
| AN7                 | —                                      | —                      | 26                     | Ι           | Analog         |                                                                    |                                   |
| AN8                 | —                                      | —                      | 27                     | I           | Analog         |                                                                    |                                   |
| AN9                 | 23                                     | 26                     | 15                     | I           | Analog         |                                                                    |                                   |
| AN10                | 22                                     | 25                     | 14                     | I           | Analog         |                                                                    |                                   |
| AN11 <sup>(3)</sup> | 21                                     | 24                     | 11                     | I           | Analog         |                                                                    |                                   |
| AN12                | 20 <sup>(2)</sup>                      | 23 <sup>(2)</sup>      | 10                     | Ι           | Analog         |                                                                    |                                   |
| Legend:             | CMOS = CM<br>ST = Schmi<br>TTL = TTL i | tt Trigger in          |                        |             |                | Analog = Analog input<br>O = Output<br>PPS = Peripheral Pin Select | P = Power<br>I = Input<br>— = N/A |

# TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for General Purpose devices only.

**3:** This pin is not available on VBAT devices.

### TABLE 1-12: PARALLEL MASTER PORT PINOUT I/O DESCRIPTIONS

|          | Р                                      | in Number                                   | (1)                                    |             |                |                                                                                                   |
|----------|----------------------------------------|---------------------------------------------|----------------------------------------|-------------|----------------|---------------------------------------------------------------------------------------------------|
| Pin Name | 28-pin<br>QFN                          | 28-pin<br>SOIC                              | 44-pin<br>QFN/<br>TQFP                 | Pin<br>Type | Buffer<br>Type | Description                                                                                       |
|          |                                        |                                             |                                        | Para        | llel Master    | Port                                                                                              |
| PMA0     | 7                                      | 10                                          | 15                                     | I/O         | TTL/ST         | Parallel Master Port Address bit 0 Input (Buffered Slave modes) and Output (Master modes)         |
| PMA1     | 27 <sup>(2)</sup><br>22 <sup>(3)</sup> | 2 <sup>(2)</sup><br>25 <sup>(3)</sup>       | 2                                      | I/O         | TTL/ST         | Parallel Master Port Address bit 1 Input (Buffered Slave modes) and Output (Master modes)         |
| PMA2     | —                                      | —                                           | 24                                     | 0           | _              | Parallel Master Port Address (Demultiplexed Master                                                |
| PMA3     | _                                      | _                                           | 41 <sup>(2)</sup><br>19 <sup>(3)</sup> | 0           |                | modes)                                                                                            |
| PMA4     | —                                      | —                                           | 44                                     | 0           | —              |                                                                                                   |
| PMA5     | —                                      | —                                           | 43                                     | 0           | —              |                                                                                                   |
| PMA6     | _                                      | _                                           | 42 <sup>(2)</sup><br>20 <sup>(3)</sup> | 0           | _              |                                                                                                   |
| PMA7     | —                                      | —                                           | 1                                      | 0           | —              |                                                                                                   |
| PMA8     | _                                      | _                                           | 8 <sup>(2)</sup><br>23 <sup>(3)</sup>  | 0           | _              |                                                                                                   |
| PMA9     |                                        | _                                           | 9 <sup>(2)</sup><br>22 <sup>(3)</sup>  | 0           |                |                                                                                                   |
| PMA10    |                                        | _                                           | 12 <sup>(2)</sup><br>21 <sup>(3)</sup> | 0           |                |                                                                                                   |
| PMCS1    | 23                                     | 26                                          | 3                                      | 0           | _              | Parallel Master Port Chip Select 1 Strobe                                                         |
| PMD0     | 20 <sup>(2)</sup><br>1 <sup>(3)</sup>  | 23 <sup>(2)</sup><br>4 <sup>(3)</sup>       | 10 <sup>(2)</sup><br>12 <sup>(3)</sup> | I/O         | TTL/ST         | Parallel Master Port Data (Demultiplexed Master mode) or Address/Data (Multiplexed Master modes)  |
| PMD1     | 19 <sup>(2)</sup><br>2 <sup>(3)</sup>  | 22 <sup>(2)</sup><br>5 <sup>(3)</sup>       | 35                                     | I/O         | TTL/ST         |                                                                                                   |
| PMD2     | 18 <sup>(2)</sup><br>3 <sup>(3)</sup>  | 21 <sup>(2)</sup><br>6 <sup>(3)</sup>       | 32                                     | I/O         | TTL/ST         |                                                                                                   |
| PMD3     | 15                                     | 18                                          | 13                                     | I/O         | TTL/ST         |                                                                                                   |
| PMD4     | 10                                     | 17                                          | 37                                     | I/O         | TTL/ST         |                                                                                                   |
| PMD5     | 13                                     | 16                                          | 4                                      | I/O         | TTL/ST         | -                                                                                                 |
| PMD6     | 12 <sup>(2)</sup><br>28 <sup>(3)</sup> | 15 <sup>(2)</sup><br>3 <sup>(3)</sup>       | 5                                      | I/O         | TTL/ST         |                                                                                                   |
| PMD7     | 11 <sup>(2)</sup><br>27 <sup>(3)</sup> | 14 <sup>(2)</sup><br>2 <sup>(3)</sup>       | 38                                     | I/O         | TTL/ST         |                                                                                                   |
| PMRD     | 21 <sup>(2,5)</sup>                    | 24 <sup>(2,5)</sup>                         | 11 <sup>(4)</sup>                      | 6           |                | Parallel Master Port Read Strobe                                                                  |
|          | 11 <sup>(3,5)</sup>                    | 14 <sup>(3)</sup>                           | 36 <sup>(5)</sup>                      | 0           | _              |                                                                                                   |
| PMWR     | 22 <sup>(2)</sup><br>4 <sup>(3)</sup>  | 25 <sup>(2)</sup><br>7 <sup>(3)</sup>       | 27                                     | 0           | _              | Parallel Master Port Write Strobe                                                                 |
| 0        | CMOS = CI<br>ST = Schmi<br>TTL = TTL i | MOS compa<br>itt Trigger in<br>input buffer | put with Cl                            | MOS lev     | els            | Analog = Analog input $P = Power$ $O = Output$ $I = Input$ $PPS = Peripheral Pin Select$ $ = N/A$ |
|          | Pin number<br>Pin number               |                                             |                                        |             |                | "Pin Diagrams" section for device pin availability.                                               |

3: Pin number for USB devices only.

4: Pin number for devices with VBAT only.

5: Pin number for devices without VBAT only.

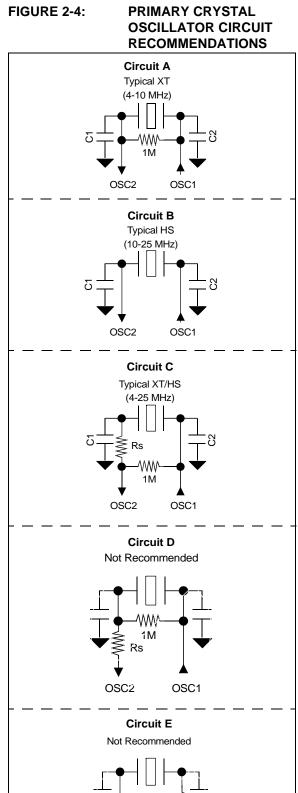
# PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

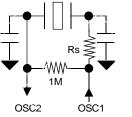
# 2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32\_OSC2\_Pin Capacitance = ~4-5 pF
- COUT = PIC32\_OSC1\_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

### EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION


| Crystal manufacturer recommended: $C1 = C2 = 15 pF$                                                              |
|------------------------------------------------------------------------------------------------------------------|
| Therefore:                                                                                                       |
| $CLOAD = \{ ([CIN + C1] * [COUT + C2]) / [CIN + C1 + C2 + COUT] \} + estimated oscillator PCB stray capacitance$ |
| $= \{([5 + 15][5 + 15]) / [5 + 15 + 15 + 5]\} + 2.5 pF$                                                          |
| = {( [20][20]) / [40] } + 2.5                                                                                    |
| = 10 + 2.5 = 12.5  pF                                                                                            |
| Rounded to the nearest standard value or 13 pF in this example for Primary Oscillator crystals "C1" and "C2".    |


The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
  - Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

#### 2.8.1.1 Additional Microchip References

- AN588 "PICmicro<sup>®</sup> Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC<sup>™</sup> and PICmicro<sup>®</sup> Devices"
- AN849 "Basic PICmicro® Oscillator Design"





| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|
| 04.04        | W-0               | W-0               | W-0               | W-0               | W-0               | W-0               | W-0              | W-0              |  |  |  |  |  |
| 31:24        | NVMKEY<31:24>     |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 00.40        | W-0               | W-0               | W-0               | W-0               | W-0               | W-0               | W-0              | W-0              |  |  |  |  |  |
| 23:16        | NVMKEY<23:16>     |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 45.0         | W-0               | W-0               | W-0               | W-0               | W-0               | W-0               | W-0              | W-0              |  |  |  |  |  |
| 15:8         | NVMKEY<15:8>      |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 7.0          | W-0               | W-0               | W-0               | W-0               | W-0               | W-0               | W-0              | W-0              |  |  |  |  |  |
| 7:0          |                   |                   |                   | NVMK              | EY<7:0>           |                   |                  |                  |  |  |  |  |  |

## REGISTER 5-2: NVMKEY: PROGRAMMING UNLOCK REGISTER

# Legend:

| Legena.           |                  |                           |                    |  |
|-------------------|------------------|---------------------------|--------------------|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, re | ad as '0'          |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared      | x = Bit is unknown |  |

#### bit 31-0 NVMKEY<31:0>: Unlock Register bits

These bits are write-only, and read as '0' on any read

Note: This register is used as part of the unlock sequence to prevent inadvertent writes to the PFM.

### REGISTER 5-3: NVMADDR: FLASH ADDRESS REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |  |  |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|--|--|--|--|--|
| 24.24        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
| 31:24        | NVMADDR<31:24>    |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 00.40        | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
| 23:16        | NVMADDR<23:16>    |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 45.0         | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
| 15:8         | NVMADDR<15:8>     |                   |                   |                   |                   |                   |                  |                  |  |  |  |  |  |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |  |  |  |  |  |
| 7:0          |                   |                   |                   | NVMAE             | DDR<7:0>          |                   |                  |                  |  |  |  |  |  |

| Legend:           |                  |                                    |                    |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

bit 31-0 NVMADDR<31:0>: Flash Address bits

Bulk/Chip/PFM Erase: Address is ignored. Page Erase: Address identifies the page to erase. Row Program: Address identifies the row to program. Word Program: Address identifies the word to program.

# 6.1 Reset Control Registers

# TABLE 6-1: RESET CONTROL REGISTER MAP

| ess                         |                                 | 0         |       | Bits  |       |       |         |          |      |      |           |      |      |      |       |      |                      | ß                   |            |
|-----------------------------|---------------------------------|-----------|-------|-------|-------|-------|---------|----------|------|------|-----------|------|------|------|-------|------|----------------------|---------------------|------------|
| Virtual Address<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11   | 26/10    | 25/9 | 24/8 | 23/7      | 22/6 | 21/5 | 20/4 | 19/3  | 18/2 | 17/1                 | 16/0                | All Resets |
| F040                        | RCON                            | 31:16     | —     | —     | _     | —     | BCFGERR | BCFGFAIL | —    | -    | —         | -    | —    | —    | _     | —    | VBPOR <sup>(3)</sup> | VBAT <sup>(3)</sup> | C802       |
| F040                        | RCON                            | 15:0      |       |       | —     | -     | _       | DPSLP    | CMR  | -    | EXTR      | SWR  |      | WDTO | SLEEP | IDLE | BOR                  | POR                 | 0003       |
| E050                        | RSWRST                          | 31:16     | -     | -     | _     |       | _       | _        |      |      |           |      |      | _    |       |      | _                    | _                   | 0000       |
| 1 030                       | RowRol                          | 15:0      | -     | -     | _     |       | _       | _        |      |      |           |      |      | _    |       |      | _                    | SWRST               | 0000       |
| E060                        | RNMICON                         | 31:16     | -     | -     | _     |       | _       | _        |      | WDTO | SWNMI     |      |      | _    | GNMI  | HLVD | CF                   | WDTS                | 0000       |
| 1 000                       |                                 | 15:0      |       |       |       |       |         |          |      | NMI  | CNT<15:0> |      |      |      |       |      |                      |                     | 0000       |
| E070                        | PWRCON                          | 31:16     | —     | _     | _     |       | _       | _        | _    |      |           |      |      | _    |       |      | _                    | _                   | 0000       |
| 1070                        | PWRCON                          | 15:0      | —     | —     | _     | _     | —       | —        | —    | _    | _         | _    | —    | —    | _     | —    | —                    | VREGS               | 0000       |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

2: Reset values are dependent on the DEVCFGx Configuration bits and the type of reset.

3: This bit is only available on devices with VBAT.

RNMICON: NON-MASKABLE INTERRUPT (NMI) CONTROL REGISTER

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                           | - (                                                              |                                                       |                    |                           |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|--------------------|---------------------------|--|--|--|--|
| Bit<br>Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Bit<br>31/23/15/7                                                                                    | Bit<br>30/22/14/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Bit<br>29/21/13/5                                                                            | Bit<br>28/20/12/4                                         | Bit<br>27/19/11/3                                                | Bit<br>26/18/10/2                                     | Bit<br>25/17/9/1   | Bit<br>24/16/8/0          |  |  |  |  |
| 24.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | U-0                                                                                                  | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U-0                                                                                          | U-0                                                       | U-0                                                              | U-0                                                   | U-0                | R/W-0                     |  |  |  |  |
| 31:24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | —                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | —                                                         | —                                                                | —                                                     | —                  | WDTO                      |  |  |  |  |
| 23:16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0                                                                                                | U-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U-0                                                                                          | U-0                                                       | R/W-0                                                            | R/W-0                                                 | R/W-0              | R/W-0                     |  |  |  |  |
| 23.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SWNMI                                                                                                | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                              | —                                                         | GNMI                                                             | HLVD                                                  | CF                 | WDTS                      |  |  |  |  |
| 15.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R/W-0                                                                                                | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0                                                                                        | R/W-0                                                     | R/W-0                                                            | R/W-0                                                 | R/W-0              | R/W-0                     |  |  |  |  |
| R/W-0      R/W-0 <th< td=""><td>1</td></th<> | 1                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
| 7:0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | R/W-0                                                                                                | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | R/W-0                                                                                        |                                                           |                                                                  | R/W-0                                                 | R/W-0              | R/W-0                     |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              | NMIC                                                      | NI<7:0>                                                          |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                           | -                                                                |                                                       |                    |                           |  |  |  |  |
| -n = Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e at POR                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | '1' = Bit is se                                                                              | et                                                        | '0' = Bit is cl                                                  | eared                                                 | x = Bit is unk     | nown                      |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
| bit 31-25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Unimpleme                                                                                            | nted: Read a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>s</b> '0'                                                                                 |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
| bit 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WDTO: Wate                                                                                           | chdog Timer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Time-Out Flag                                                                                | g bit                                                     |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | curred and ca                                                                                | used a NMI                                                |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | e-out has no                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a WDT NMI e                                                                                  | vent, and MN                                              | NICN1 will be                                                    | gin counting.                                         |                    |                           |  |  |  |  |
| bit 23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | tware NMI Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | will be genera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
| hit 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                      | will not be ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>S</b> 0                                                                                   |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
| bit 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | GNMI: Gene                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | has heen dete                                                                                | acted or a use                                            | ar-initiated NI                                                  | All event has or                                      | curred             |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      | A general NMI event has been detected or a user-initiated NMI event has occurred<br>A general NMI event has not been detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Setting GNMI to a '1' causes a user-initiated NMI event. This bit is also set by writing 0x4E to the |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | :31:24>) bits.                                                                               |                                                           |                                                                  | 5 DIL 15 2150 5                                       | et by writing      |                           |  |  |  |  |
| bit 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | Low-Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ,                                                                                            |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
| bit io                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | •                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | low-voltage c                                                                                | ondition and                                              | caused an N                                                      | МІ                                                    |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | d a low-voltage                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
| bit 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CF: Clock Fa                                                                                         | ail Detect bit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                           |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | lock failure ar                                                                              |                                                           | NMI                                                              |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 = FSCM has                                                                                         | as not detect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ed clock failur                                                                              | е                                                         |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Setting this b                                                                                       | oit will cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | a a CF NMI e                                                                                 | vent.                                                     |                                                                  |                                                       |                    |                           |  |  |  |  |
| bit 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | WDTS: Wate                                                                                           | chdog Timer <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time-out in SI                                                                               | eep Mode Fl                                               | ag bit                                                           |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |                                                           |                                                                  | a wake-up from                                        | ı sleep            |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0 = WDT tim                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t occurred du                                                                                | rina Sleen ma                                             |                                                                  |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              | ing oleep nit                                             | ode                                                              |                                                       |                    |                           |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Setting this b                                                                                       | bit will cause                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                              |                                                           | ode                                                              |                                                       |                    |                           |  |  |  |  |
| bit 15-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NMICNT<15                                                                                            | bit will cause a<br>: <b>0&gt;:</b> NMI Res                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a WDT NMI.<br>set Counter V                                                                  | alue bits                                                 |                                                                  |                                                       |                    |                           |  |  |  |  |
| bit 15-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NMICNT<15<br>These bits s                                                                            | bit will cause a<br>bi: <b>0&gt;:</b> NMI Res<br>pecify the relo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | a WDT NMI.<br>set Counter V<br>pad value use                                                 | alue bits<br>d by the NMI                                 | reset counte                                                     |                                                       |                    | (4                        |  |  |  |  |
| bit 15-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NMICNT<15<br>These bits sp<br>111111111                                                              | bit will cause a<br><b>:0&gt;: NMI</b> Res<br>pecify the rela<br>1111111-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a WDT NMI.<br>set Counter V<br>pad value use                                                 | alue bits<br>d by the NMI                                 | reset counte                                                     | LK cycles befo                                        |                    | eset occurs <sup>(1</sup> |  |  |  |  |
| bit 15-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NMICNT<15<br>These bits sp<br>111111111                                                              | bit will cause a<br><b>:0&gt;: NMI</b> Res<br>pecify the rela<br>1111111-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | a WDT NMI.<br>set Counter V<br>pad value use                                                 | alue bits<br>d by the NMI                                 | reset counte                                                     |                                                       |                    | eset occurs <sup>(1</sup> |  |  |  |  |
| bit 15-0<br>Note 1:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NMICNT<15<br>These bits s<br>11111111<br>000000000<br>If a Watchdo                                   | bit will cause a<br>control cause a<br>contr | a WDT NMI.<br>set Counter V<br>bad value use<br>00000000000<br>lo delay betwo<br>event (when | alue bits<br>of by the NMI<br>00001 = Num<br>een NMI asso | l reset counte<br>aber of SYSC<br>ertion and de<br>mode) is clea | LK cycles befo                                        | nt<br>counter reac | hes '0', no               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NMICNT<15<br>These bits s<br>11111111<br>000000000<br>If a Watchdo                                   | bit will cause a<br>control cause a<br>contr | a WDT NMI.<br>set Counter V<br>bad value use<br>00000000000<br>lo delay betwo<br>event (when | alue bits<br>of by the NMI<br>00001 = Num<br>een NMI asso | l reset counte<br>aber of SYSC<br>ertion and de<br>mode) is clea | LK cycles befor<br>vice Reset eve<br>rred before this | nt<br>counter reac | hes '0', no               |  |  |  |  |

# Note: The system unlock sequence must be performed before the SWRST bit can be written. Refer to Section 42. "Oscillators with Enhanced PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

**REGISTER 6-3:** 

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2   | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|---------------------|------------------|------------------|
| 24.24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0                 | U-0              | U-0              |
| 31:24        | —                 | —                 | —                 | —                 | —                 | —                   | —                | —                |
| 22:46        | U-0               | R-0               | U-0               | U-0               | U-0               | U-0                 | U-0              | U-0              |
| 23:16        | —                 | —                 |                   | —                 |                   | -                   |                  | —                |
| 45.0         | U-0               | R-0               | U-0               | U-0               | U-0               | U-0                 | U-0              | U-0              |
| 15:8         | —                 | —                 | _                 | —                 | _                 | _                   | _                | —                |
| 7.0          | U-0               | U-0               | R/W-0             | R/W-0             | R/W-0             | R/W-0               | R/W-0            | R/W-0            |
| 7:0          | _                 | —                 |                   |                   | TUN<              | 5:0> <sup>(1)</sup> |                  |                  |

# REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

# Legend:

| 0                 |                  |                                    |                    |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

#### bit 31-6 Unimplemented: Read as '0'

**Note 1:** OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

| Note: | Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced |
|-------|-----------------------------------------------------------------------------------------------------|
|       | PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.                               |

| Bit<br>Range | Bit      Bit      Bit      Bit      Bit      Bit        31/23/15/7      30/22/14/6      29/21/13/5      28/20/12/4      27/19/11/3 |       | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |       |       |       |  |  |  |
|--------------|------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------|------------------|------------------|-------|-------|-------|--|--|--|
| 21.24        | R/W-x                                                                                                                              | R/W-x | R/W-x             | R/W-x            | R/W-x            | R/W-x | R/W-x | R/W-x |  |  |  |
| 31:24        | CHEW3<31:24>                                                                                                                       |       |                   |                  |                  |       |       |       |  |  |  |
| 00.40        | R/W-x                                                                                                                              | R/W-x | R/W-x             | R/W-x R/W-x      |                  | R/W-x | R/W-x | R/W-x |  |  |  |
| 23:16        | CHEW3<23:16>                                                                                                                       |       |                   |                  |                  |       |       |       |  |  |  |
| 45.0         | R/W-x                                                                                                                              | R/W-x | R/W-x             | R/W-x            | R/W-x            | R/W-x | R/W-x | R/W-x |  |  |  |
| 15:8         | CHEW3<15:8>                                                                                                                        |       |                   |                  |                  |       |       |       |  |  |  |
| 7.0          | R/W-x                                                                                                                              | R/W-x | R/W-x             | R/W-x            | R/W-x            | R/W-x | R/W-x | R/W-x |  |  |  |
| 7:0          |                                                                                                                                    | •     |                   | CHEW3            | <7:0>            |       |       |       |  |  |  |

## REGISTER 10-8: CHEW3: CACHE WORD 3

| Legend:           |                  |                          |                    |
|-------------------|------------------|--------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, r | ead as '0'         |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared     | x = Bit is unknown |

# bit 31-0 **CHEW3<31:0>:** Word 3 of the cache line selected by the CHEIDX<3:0> bits (CHEACC<3:0>) Readable only if the device is not code-protected.

Note: This register is a window into the cache data array and is readable only if the device is not code-protected.

#### REGISTER 10-9: CHELRU: CACHE LRU REGISTER

| Bit<br>Range | Bit<br>31/23/15/7 |     |     | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |     |            |  |  |  |
|--------------|-------------------|-----|-----|-------------------|------------------|------------------|-----|------------|--|--|--|
| 21.24        | U-0               | U-0 | U-0 | U-0               | U-0              | U-0              | U-0 | R-0        |  |  |  |
| 31:24        | —                 | —   | _   | —                 | —                | _                | —   | CHELRU<24> |  |  |  |
| 22:16        | R-0               | R-0 | R-0 | R-0               | R-0              | R-0              | R-0 | R-0        |  |  |  |
| 23:16        | CHELRU<23:16>     |     |     |                   |                  |                  |     |            |  |  |  |
| 45.0         | R-0               | R-0 | R-0 | R-0               | R-0              | R-0              | R-0 | R-0        |  |  |  |
| 15:8         | CHELRU<15:8>      |     |     |                   |                  |                  |     |            |  |  |  |
| 7:0          | R-0               | R-0 | R-0 | R-0               | R-0              | R-0              | R-0 | R-0        |  |  |  |
| 7.0          |                   |     |     | CHELF             | RU<7:0>          |                  |     |            |  |  |  |

| Legend:           |                  |                                    |                    |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |

bit 31-25 Unimplemented: Write '0'; ignore read

bit 24-0 **CHELRU<24:0>:** Cache Least Recently Used State Encoding bits Indicates the pseudo-LRU state of the cache.

# PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 | Bit<br>29/21/13/5 | Bit<br>28/20/12/4 | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |
|--------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|------------------|
| 31:24        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 31.24        | —                 |                   |                   |                   | -                 |                   |                  | —                |
| 22.16        | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 23:16        | —                 |                   |                   |                   |                   |                   |                  | —                |
| 15:8         | U-0               | U-0               | U-0               | U-0               | U-0               | U-0               | U-0              | U-0              |
| 15.6         | —                 | _                 | _                 | -                 | _                 | _                 | -                | —                |
| 7.0          | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0             | R/W-0            | R/W-0            |
| 7:0          | LSPDEN            |                   |                   | D                 | EVADDR<6:0        | >                 |                  |                  |

# REGISTER 11-12: U1ADDR: USB ADDRESS REGISTER

# Legend:

| •                 |                              |                      |                    |
|-------------------|------------------------------|----------------------|--------------------|
| R = Readable bit  | eadable bit W = Writable bit |                      | ead as '0'         |
| -n = Value at POR | '1' = Bit is set             | '0' = Bit is cleared | x = Bit is unknown |

bit 31-8 Unimplemented: Read as '0'

bit 7 **LSPDEN:** Low-Speed Enable Indicator bit

1 = Next token command to be executed at Low-Speed

0 = Next token command to be executed at Full-Speed

bit 6-0 **DEVADDR<6:0>:** 7-bit USB Device Address bits

| Bit<br>Range | Bit<br>31/23/15/7 | Bit<br>30/22/14/6 |     |      | Bit<br>27/19/11/3 | Bit<br>26/18/10/2 | Bit<br>25/17/9/1 | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|-------------------|-----|------|-------------------|-------------------|------------------|------------------|--|--|--|
| 04.04        | U-0               | U-0               | U-0 | U-0  | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 31:24        |                   | —                 |     |      |                   | —                 |                  | —                |  |  |  |
| 22.16        | U-0               | U-0               | U-0 | U-0  | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 23:16        | —                 | —                 | —   | -    | -                 | —                 | -                | —                |  |  |  |
| 15.0         | U-0               | U-0               | U-0 | U-0  | U-0               | U-0               | U-0              | U-0              |  |  |  |
| 15:8         |                   | —                 |     |      |                   | —                 |                  | —                |  |  |  |
| 7.0          | R-0               | R-0               | R-0 | R-0  | R-0               | R-0               | R-0              | R-0              |  |  |  |
| 7:0          |                   |                   |     | FRML | <7:0>             |                   |                  |                  |  |  |  |

#### REGISTER 11-13: U1FRML: USB FRAME NUMBER LOW REGISTER

| Legend:           |                  |                                    |                    |  |  |  |
|-------------------|------------------|------------------------------------|--------------------|--|--|--|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read as '0' |                    |  |  |  |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared               | x = Bit is unknown |  |  |  |

bit 31-8 Unimplemented: Read as '0'

bit 7-0 FRML<7:0>: The 11-bit Frame Number Lower bits

The register bits are updated with the current frame number whenever a SOF TOKEN is received.

## TABLE 12-7: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP

| SS                          |                      |           |       |       |       |       |       |       |      | Bi   | ts   |      |      |      |               |      |       |      |            |
|-----------------------------|----------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|------|------|------|---------------|------|-------|------|------------|
| Virtual Address<br>(BF80_#) | Register<br>Name     | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6 | 21/5 | 20/4 | 19/3          | 18/2 | 17/1  | 16/0 | All Resets |
| FB00                        | RPA0R                | 31:16     |       | —     | —     | —     | —     | —     | —    | _    |      |      | —    | _    |               | —    |       | —    | 0000       |
| FBUU                        | KFAUK                | 15:0      | _     | —     | —     | —     | —     | —     | _    | —    | _    | _    | —    | —    |               | RPA0 | <3:0> |      | 0000       |
| FB04                        | RPA1R                | 31:16     |       | _     | _     | _     | _     | _     | -    | -    |      |      | _    | _    |               | —    |       | _    | 0000       |
| FB04                        | RPAIR                | 15:0      |       | —     | —     | —     | _     | —     | —    | —    |      |      | —    | _    |               | RPA1 | <3:0> |      | 0000       |
| FB08                        | RPA2R                | 31:16     |       | —     | —     | —     | _     | —     | —    | —    |      |      | —    | _    |               | —    |       | —    | 0000       |
| FBUO                        | RPAZR                | 15:0      |       | —     | —     | —     | _     | —     | —    | —    |      |      | —    | _    |               | RPA2 | <3:0> |      | 0000       |
| FDOC                        |                      | 31:16     | -     | _     | _     | _     | _     | _     | —    | —    | _    |      | —    | —    |               | —    | _     | _    | 0000       |
| FB0C                        | RPA3R                | 15:0      | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    |               | RPA3 | <3:0> |      | 0000       |
| 5040                        |                      | 31:16     | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    | _             | _    | _     | _    | 0000       |
| FB10                        | RPA4R                | 15:0      | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    |               | RPA4 | <3:0> |      | 0000       |
| 5000                        |                      | 31:16     | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    | _             | _    | _     | _    | 0000       |
| FB20                        | RPA8R <sup>(1)</sup> | 15:0      | _     | _     | _     | _     | _     | —     | _    | —    | _    | _    | _    | —    |               | RPA8 | <3:0> |      | 0000       |
|                             | <b>DD4 0D(1)</b>     | 31:16     | _     | _     | _     | _     | _     | —     | _    | —    | _    | _    | _    | —    | _             | —    | _     | _    | 0000       |
| FB24                        | RPA9R <sup>(1)</sup> | 15:0      | _     | _     | _     | _     | _     | —     | _    | —    | _    | _    | _    | —    |               | RPA9 | <3:0> |      | 0000       |
|                             |                      | 31:16     | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    | _             | _    | _     | _    | 0000       |
| FB2C                        | RPB0R                | 15:0      | _     | _     | _     | _     | _     | _     | _    | _    | _    | -    | _    | _    |               | RPB0 | <3:0> | •    | 0000       |
|                             |                      | 31:16     | _     | _     | _     | _     | _     | _     | _    | _    | _    | -    | _    | _    | -             | _    | _     | _    | 0000       |
| FB30                        | RPB1R                | 15:0      | _     | _     | _     | _     | _     | _     | _    | _    | _    | -    | _    | _    |               | RPB1 | <3:0> | •    | 0000       |
|                             |                      | 31:16     | _     | _     | _     | _     |       | _     | _    | _    |      | -    | _    | _    | _             | _    | _     | _    | 0000       |
| FB34                        | RPB2R                | 15:0      | _     | _     | _     | _     | _     | _     | —    | —    | _    | _    | —    | _    |               | RPB2 | <3:0> |      | 0000       |
|                             |                      | 31:16     | _     | _     | _     | _     | _     | _     | —    | —    | _    | _    | —    | _    | -             | _    | —     | —    | 0000       |
| FB38                        | RPB3R                | 15:0      | _     | _     | _     | _     | _     | _     | —    | —    | _    | _    | —    | _    |               | RPB3 | <3:0> |      | 0000       |
|                             |                      | 31:16     | _     | _     | _     | _     | _     | _     | _    | —    | _    | _    | _    | _    | _             | —    | —     | —    | 0000       |
| FB3C                        | RPB4R                | 15:0      | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    |               | RPB4 | <3:0> |      | 0000       |
|                             |                      | 31:16     | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    | —             | —    | —     | _    | 0000       |
| FB40                        | RPB5R                | 15:0      | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    | RPB5<3:0> 000 |      |       |      | 0000       |
|                             | (0)                  | 31:16     | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    | _             | _    | _     | _    | 0000       |
| FB44                        | RPB6R <sup>(2)</sup> | 15:0      | _     | _     | _     | _     | _     | _     | _    | _    | _    | _    | _    | _    |               | RPB6 | <3:0> |      | 0000       |

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is only available on 44-pin devices.

This register is only available on USB devices.

2: 3: This register is only available on VBAT devices. PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

# REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER (CONTINUED)

- bit 5-4 **TCKPS<1:0>:** Timer Input Clock Prescale Select bits
  - 11 = 1:256 prescale value
  - 10 = 1:64 prescale value
  - 01 = 1:8 prescale value
  - 00 = 1:1 prescale value
- bit 3 Unimplemented: Read as '0'
- bit 2 TSYNC: Timer External Clock Input Synchronization Selection bit
  - <u>When TCS = 1:</u> 1 = External clock input is synchronized
    - 0 = External clock input is not synchronized
    - When TCS = 0:
    - This bit is ignored.
- bit 1 **TCS:** Timer Clock Source Select bit 1 = External clock is defined by the TECS<1:0> bits 0 = Internal peripheral clock
- bit 0 Unimplemented: Read as '0'
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

# REGISTER 22-2: PMMODE: PARALLEL PORT MODE REGISTER (CONTINUED)

- bit 1-0 WAITE<1:0>: Data Hold After Read/Write Strobe Wait States bits<sup>(1)</sup>
  - 11 = Wait of 4 Трв
  - 10 = Wait of 3 TPB
  - 01 = Wait of 2 Трв
  - 00 = Wait of 1 TPB (default)

For Read operations:

- 11 = Wait of 3 TPB
- 10 = Wait of 2 TPB
- 01 = Wait of 1 ТРВ
- 00 = Wait of 0 TPB (default)
- **Note 1:** Whenever WAITM<3:0> = 0000, WAITB and WAITE bits are ignored and forced to 1 TPBCLK cycle for a write operation; WAITB = 1 TPBCLK cycle, WAITE = 0 TPBCLK cycles for a read operation.
  - 2: Address bit A14 is not subject to auto-increment/decrement if configured as Chip Select CS1.

| Bit<br>Range | Bit<br>31/23/15/7 |            |     | Bit Bit<br>29/21/13/5 28/20/12/4 |      | Bit Bit<br>27/19/11/3 26/18/10/2 |      | Bit<br>24/16/8/0 |  |  |  |
|--------------|-------------------|------------|-----|----------------------------------|------|----------------------------------|------|------------------|--|--|--|
| 04.04        | U-0               | U-0        | U-0 | U-0                              | U-0  | U-0                              | U-0  | U-0              |  |  |  |
| 31:24        | _                 | —          | _   | _                                | _    | _                                | _    | —                |  |  |  |
| 22:46        | U-0               | U-0        | U-0 | U-0                              | U-0  | U-0                              | U-0  | U-0              |  |  |  |
| 23:16        |                   | —          |     |                                  |      | -                                |      | —                |  |  |  |
| 45.0         | R-0               | R/W-0, HSC | U-0 | U-0                              | R-0  | R-0                              | R-0  | R-0              |  |  |  |
| 15:8         | IBF               | IBOV       | _   | _                                | IB3F | IB2F                             | IB1F | IB0F             |  |  |  |
| 7.0          | R-1               | R/W-0, HSC | U-0 | U-0                              | R-1  | R-1                              | R-1  | R-1              |  |  |  |
| 7:0          | OBE               | OBUF       |     | _                                | OB3E | OB2E                             | OB1E | OB0E             |  |  |  |

# REGISTER 22-5: PMSTAT: PARALLEL PORT STATUS REGISTER (SLAVE MODES ONLY)

| Legend:           | HSC = Set by Hardware; Cleared by Software          |                      |                    |  |  |  |  |
|-------------------|-----------------------------------------------------|----------------------|--------------------|--|--|--|--|
| R = Readable bit  | W = Writable bit U = Unimplemented bit, read as '0' |                      |                    |  |  |  |  |
| -n = Value at POR | '1' = Bit is set                                    | '0' = Bit is cleared | x = Bit is unknown |  |  |  |  |

#### bit 31-16 Unimplemented: Read as '0'

- bit 15 IBF: Input Buffer Full Status bit
  - 1 = All writable input buffer registers are full
  - 0 = Some or all of the writable input buffer registers are empty
- bit 14 IBOV: Input Buffer Overflow Status bit
  - 1 = A write attempt to a full input byte buffer occurred (must be cleared in software)0 = No overflow occurred
- bit 13-12 Unimplemented: Read as '0'
- bit 11-8 **IBxF:** Input Buffer 'x' Status Full bits
  - 1 = Input Buffer contains data that has not been read (reading buffer will clear this bit)
  - 0 = Input Buffer does not contain any unread data
- bit 7 **OBE:** Output Buffer Empty Status bit
  - 1 = All readable output buffer registers are empty
  - 0 = Some or all of the readable output buffer registers are full
- bit 6 **OBUF:** Output Buffer Underflow Status bit
  - 1 = A read occurred from an empty output byte buffer (must be cleared in software)
    0 = No underflow occurred
- bit 5-4 **Unimplemented:** Read as '0'
- bit 3-0 **OBxE:** Output Buffer 'x' Status Empty bits
  - 1 = Output buffer is empty (writing data to the buffer will clear this bit)
  - 0 = Output buffer contains data that has not been transmitted

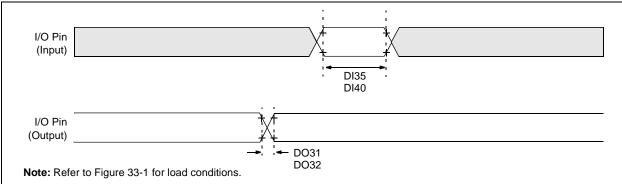
# 25.1 Comparator Control Registers

# TABLE 25-1: COMPARATOR REGISTER MAP

| ess                         |                                 | е         |       | Bits  |       |       |       |       |      |      |      |        |      |      |      |       |       |       |            |
|-----------------------------|---------------------------------|-----------|-------|-------|-------|-------|-------|-------|------|------|------|--------|------|------|------|-------|-------|-------|------------|
| Virtual Address<br>(BF80_#) | Register<br>Name <sup>(1)</sup> | Bit Range | 31/15 | 30/14 | 29/13 | 28/12 | 27/11 | 26/10 | 25/9 | 24/8 | 23/7 | 22/6   | 21/5 | 20/4 | 19/3 | 18/2  | 17/1  | 16/0  | All Resets |
| A 000                       | CM1CON                          | 31:16     | _     | _     | _     | _     | -     | _     |      |      | —    | —      | —    | _    |      | —     | —     | _     | 0000       |
| A000                        | CIVITCON                        | 15:0      | ON    | COE   | CPOL  | —     | —     | —     | —    | COUT | EVPO | L<1:0> | —    | CREF | —    | —     | CCH   | <1:0> | 00C3       |
| A010                        | CM2CON                          | 31:16     | -     | _     |       |       |       |       |      |      | -    | _      | _    |      |      | _     | -     |       | 0000       |
| AUTU                        | CIVIZCON                        | 15:0      | ON    | COE   | CPOL  |       |       |       |      | COUT | EVPO | L<1:0> | _    | CREF |      | _     | CCH   | <1:0> | 00C3       |
| A020                        | CM3CON                          | 31:16     | -     | _     |       |       |       |       |      |      | -    | _      | _    |      |      | _     | -     |       | 0000       |
| A020                        | CIVISCON                        | 15:0      | ON    | COE   | CPOL  |       |       |       | -    | COUT | EVPO | L<1:0> | -    | CREF | -    | -     | CCH   | <1:0> | 00C3       |
| A060                        | CMSTAT                          | 31:16     | -     | _     | -     |       |       |       |      |      | _    | _      | —    | _    |      | _     | _     |       | 0000       |
| 7000                        | CIVISTAI                        | 15:0      | _     | _     | SIDL  | _     | _     | _     |      | -    | _    | _      | _    | _    |      | C3OUT | C2OUT | C10UT | 0000       |

Legend: x = unknown value on Reset; --- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.


| DC<br>CHARAC  | TERISTICS              |               |       | $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                                                         |  |  |  |  |
|---------------|------------------------|---------------|-------|------------------------------------------------------|---------------------------------------------------------|--|--|--|--|
| Param.<br>No. | Typical <sup>(2)</sup> | Maximum       | Units | s Conditions                                         |                                                         |  |  |  |  |
| Power-Do      | own Curren             | t (IPD) (Note | 1)    |                                                      |                                                         |  |  |  |  |
| DC40k         |                        | _             | μA    | -40°C                                                |                                                         |  |  |  |  |
| DC40I         | 25                     | 42            | μA    | +25°C                                                | Sloop (Note 1)                                          |  |  |  |  |
| DC40m         | 240                    | 390           | μA    | +85°C                                                | Sleep (Note 1)                                          |  |  |  |  |
| DC40n         | _                      |               | μA    | +105°C                                               |                                                         |  |  |  |  |
| DC41k         | _                      |               | nA    | -40°C                                                |                                                         |  |  |  |  |
| DC41I         | 673                    | 800           | nA    | +25°C                                                | Deep Sleep (Note 5)                                     |  |  |  |  |
| DC41m         | _                      |               | nA    | +85°C                                                | Deep Sleep (Note 5)                                     |  |  |  |  |
| DC41n         | _                      |               | nA    | +105°C                                               |                                                         |  |  |  |  |
| DC42k         | _                      |               | nA    | -40°C                                                |                                                         |  |  |  |  |
| DC42I         | _                      |               | nA    | +25°C                                                | VBAT <b>(Note 6)</b>                                    |  |  |  |  |
| DC42m         | _                      |               | nA    | +85°C                                                | VDAT (NOLE O)                                           |  |  |  |  |
| DC42n         | _                      | _             | nA    | +105°C                                               |                                                         |  |  |  |  |
| Module D      | oifferential (         | Current       |       |                                                      |                                                         |  |  |  |  |
| DC44a         | 5                      | _             | μA    | 3.6V                                                 | Watchdog Timer Current: AIWDT (Note 3)                  |  |  |  |  |
| DC44b         | 23                     | —             | μA    | 3.6V                                                 | RTCC + Timer1 w/32 kHz Crystal: ΔIRTCC + ΔITMR (Note 3) |  |  |  |  |
| DC44c         | 1000                   | —             | mA    | 3.6V                                                 | ADC Current: AIADC (Notes 3, 4)                         |  |  |  |  |
| DC44d         | 15                     | _             | μA    | 3.6V                                                 | Deadman Timer Current: ∆IDMT                            |  |  |  |  |
| DC44e         | 0.71                   | —             | μA    | 3.6V                                                 | Deep Sleep Watchdog Timer Current: ΔIDSWDT (Note 3)     |  |  |  |  |
| DC44f         | 0.8                    | _             | μA    | 3.6V                                                 | RTCC Current: AIRTCC (Note 3)                           |  |  |  |  |

#### TABLE 33-9: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

**Note 1:** The test conditions for IPD current measurements are as follows:

- Oscillator mode is EC (for 8 MHz and below) and EC+PLL (for above 8 MHz) with OSC1 driven by external square wave from rail-to-rail, (OSC1 input clock input over/undershoot < 100 mV required)</li>
- OSC2/CLKO is configured as an I/O input pin
- USB PLL is disabled (USBMD = 1), VUSB3V3 is connected to VSS
- CPU is in Sleep mode
- L1 Cache and Prefetch modules are disabled
- No peripheral modules are operating, (ON bit = 0), and the associated PMD bit is set. All clocks are disabled ON bit (PBxDIV<15>) = 0 (x ≠ 1,7)
- WDT, DMT, Clock Switching, Fail-Safe Clock Monitor, and Secondary Oscillator are disabled
- All I/O pins are configured as inputs and pulled to Vss
- $\overline{\text{MCLR}}$  = VDD
- RTCC and JTAG are disabled
- Voltage regulator is in Stand-by mode (VREGS = 0; IOANCPEN = 0)
- 2: Data in the "Typical" column is at 3.3V, +25°C unless otherwise stated. Parameters are for design guidance only and are not tested.
- 3: The  $\Delta$  current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- **4:** Voltage regulator is operational (VREGS = 1).
- 5: The test conditions for Deep Sleep mode current measurements are as follows:
  - All I/O pins are configured as inputs and pulled to Vss
  - DSBOREN, DSWDTEN, and DGPREN are set to '0' and RTCDIS is set to '1'
- 6: The test conditions for VBAT mode current measurements is as follows:
  - VBATBOREN is set to '0'

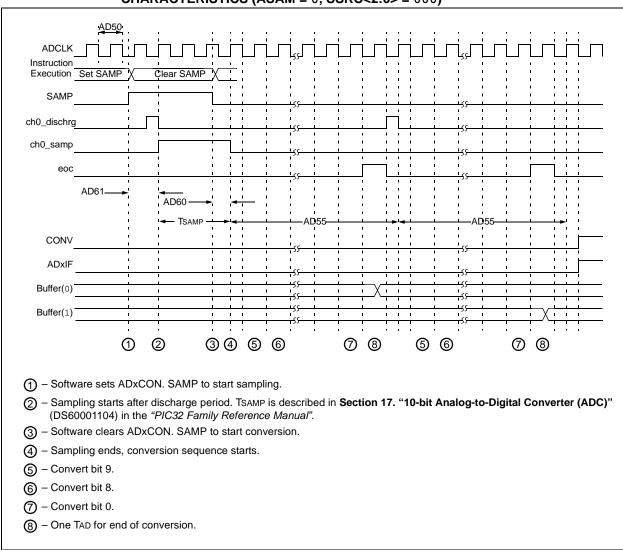
# FIGURE 33-3: I/O TIMING CHARACTERISTICS



### TABLE 33-22: I/O TIMING REQUIREMENTS

| AC CHARACTERISTICS |                     |                       | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$ |      |                        |         |       |            |  |  |
|--------------------|---------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------------------|---------|-------|------------|--|--|
| Param.<br>No.      | Symbol Characterist |                       |                                                                                                                                                                                                                                                                                   | Min. | Typical <sup>(1)</sup> | Max.    | Units | Conditions |  |  |
| DO31               | TIOR                | Port Output Rise Time |                                                                                                                                                                                                                                                                                   | _    | 5                      | 15      | ns    | Vdd < 2.0V |  |  |
|                    |                     |                       |                                                                                                                                                                                                                                                                                   | _    | 5                      | 10      | ns    | Vdd > 2.0V |  |  |
| DO32               | TIOF                | Port Output Fall Time |                                                                                                                                                                                                                                                                                   | —    | 5                      | 15      | ns    | Vdd < 2.0V |  |  |
|                    |                     |                       |                                                                                                                                                                                                                                                                                   | _    | 5                      | 10      | ns    | VDD > 2.0V |  |  |
| DI35               | Tinp                | INTx Pin High or Lo   | 20                                                                                                                                                                                                                                                                                | _    | _                      | ns      |       |            |  |  |
| DI40               | Trbp                | CNx High or Low Tir   | 2                                                                                                                                                                                                                                                                                 | 10   | _                      | TSYSCLK |       |            |  |  |

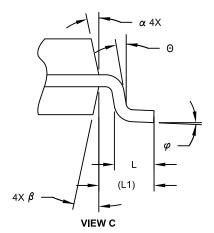
Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

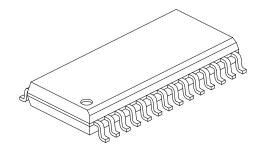

**2:** This parameter is characterized, but not tested in manufacturing.

| TABLE 33-34: | <b>I2Cx BUS DATA</b> | TIMING REQUIREMENTS | (SLAVE MODE) |
|--------------|----------------------|---------------------|--------------|
|              |                      |                     |              |

| AC CHA        | RACTERIS | STICS                      |                        | $\begin{array}{l} \mbox{Standard Operating Conditions: 2.5V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +105^\circ C \mbox{ for V-temp} \end{array}$ |       |            |                                            |  |  |
|---------------|----------|----------------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|--------------------------------------------|--|--|
| Param.<br>No. | Symbol   | Charact                    | Min.                   | Max.                                                                                                                                                                                                                                                                              | Units | Conditions |                                            |  |  |
| IS10 TLO:SCL  |          | Clock Low Time             | 100 kHz mode           | 4.7                                                                                                                                                                                                                                                                               | —     | μS         | PBCLK must operate at a minimum of 800 kHz |  |  |
|               |          |                            | 400 kHz mode           | 1.3                                                                                                                                                                                                                                                                               | —     | μS         | PBCLK must operate at a minimum of 3.2 MHz |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | 0.5                                                                                                                                                                                                                                                                               | —     | μS         | _                                          |  |  |
| IS11          | THI:SCL  | Clock High Time            | 100 kHz mode           | 4.0                                                                                                                                                                                                                                                                               | _     | μS         | PBCLK must operate at a minimum of 800 kHz |  |  |
|               |          |                            | 400 kHz mode           | 0.6                                                                                                                                                                                                                                                                               | —     | μS         | PBCLK must operate at a minimum of 3.2 MHz |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | 0.5                                                                                                                                                                                                                                                                               | —     | μS         | —                                          |  |  |
| IS20          | TF:SCL   | SDAx and SCLx              | 100 kHz mode           | _                                                                                                                                                                                                                                                                                 | 300   | ns         | CB is specified to be from                 |  |  |
|               |          | Fall Time                  | 400 kHz mode           | 20 + 0.1 Св                                                                                                                                                                                                                                                                       | 300   | ns         | 10 to 400 pF                               |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | —                                                                                                                                                                                                                                                                                 | 100   | ns         |                                            |  |  |
| IS21          | TR:SCL   | SDAx and SCLx<br>Rise Time | 100 kHz mode           |                                                                                                                                                                                                                                                                                   | 1000  | ns         | CB is specified to be from                 |  |  |
|               |          |                            | 400 kHz mode           | 20 + 0.1 Св                                                                                                                                                                                                                                                                       | 300   | ns         | 10 to 400 pF                               |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | —                                                                                                                                                                                                                                                                                 | 300   | ns         |                                            |  |  |
| IS25          | TSU:DAT  | Data Input                 | 100 kHz mode           | 250                                                                                                                                                                                                                                                                               |       | ns         | —                                          |  |  |
|               |          | Setup Time                 | 400 kHz mode           | 100                                                                                                                                                                                                                                                                               |       | ns         |                                            |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | 100                                                                                                                                                                                                                                                                               | —     | ns         |                                            |  |  |
| IS26          | THD:DAT  | Data Input                 | 100 kHz mode           | 0                                                                                                                                                                                                                                                                                 |       | ns         | —                                          |  |  |
|               |          | Hold Time                  | 400 kHz mode           | 0                                                                                                                                                                                                                                                                                 | 0.9   | μs         |                                            |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | 0                                                                                                                                                                                                                                                                                 | 0.3   | μS         |                                            |  |  |
| IS30          | TSU:STA  | Start Condition            | 100 kHz mode           | 4700                                                                                                                                                                                                                                                                              | —     | ns         | Only relevant for Repeated                 |  |  |
|               |          | Setup Time                 | 400 kHz mode           | 600                                                                                                                                                                                                                                                                               | —     | ns         | Start condition                            |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | 250                                                                                                                                                                                                                                                                               | —     | ns         |                                            |  |  |
| IS31          | THD:STA  | Start Condition            | 100 kHz mode           | 4000                                                                                                                                                                                                                                                                              |       | ns         | After this period, the first               |  |  |
|               |          | Hold Time                  | 400 kHz mode           | 600                                                                                                                                                                                                                                                                               | _     | ns         | clock pulse is generated                   |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | 250                                                                                                                                                                                                                                                                               | —     | ns         |                                            |  |  |
| IS33          | Tsu:sto  | Stop Condition             | 100 kHz mode           | 4000                                                                                                                                                                                                                                                                              |       | ns         | —                                          |  |  |
|               |          | Setup Time                 | 400 kHz mode           | 600                                                                                                                                                                                                                                                                               |       | ns         |                                            |  |  |
|               |          |                            | 1 MHz mode<br>(Note 1) | 600                                                                                                                                                                                                                                                                               | _     | ns         |                                            |  |  |

**Note 1:** Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).


# PIC32MX1XX/2XX 28/44-PIN XLP FAMILY




# FIGURE 33-18: ANALOG-TO-DIGITAL CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0, SSRC<2:0> = 000)

# 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





|                          | MILLIMETERS |           |           |      |  |  |  |
|--------------------------|-------------|-----------|-----------|------|--|--|--|
| Dimension                | Limits      | MIN       | NOM       | MAX  |  |  |  |
| Number of Pins           | N           |           | 28        |      |  |  |  |
| Pitch                    | е           |           | 1.27 BSC  |      |  |  |  |
| Overall Height           | A           | -         | -         | 2.65 |  |  |  |
| Molded Package Thickness | A2          | 2.05      | -         | -    |  |  |  |
| Standoff §               | A1          | 0.10      | -         | 0.30 |  |  |  |
| Overall Width            | E           |           | 10.30 BSC |      |  |  |  |
| Molded Package Width     | E1          | 7.50 BSC  |           |      |  |  |  |
| Overall Length           |             | 17.90 BSC |           |      |  |  |  |
| Chamfer (Optional)       | h           | 0.25      | -         | 0.75 |  |  |  |
| Foot Length              | L           | 0.40      | -         | 1.27 |  |  |  |
| Footprint                | L1          |           | 1.40 REF  |      |  |  |  |
| Lead Angle               | Θ           | 0°        | -         | -    |  |  |  |
| Foot Angle               | φ           | 0°        | -         | 8°   |  |  |  |
| Lead Thickness           | С           | 0.18      | -         | 0.33 |  |  |  |
| Lead Width               | b           | 0.31      | -         | 0.51 |  |  |  |
| Mold Draft Angle Top     | α           | 5°        | _         | 15°  |  |  |  |
| Mold Draft Angle Bottom  | β           | 5°        | -         | 15°  |  |  |  |

#### Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
  BSC: Basic Dimension. Theoretically exact value shown without tolerances.
  REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2