

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	17
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx254f128bt-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

Pin Diagrams

TABLE 3: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES WITH VBAT

-F	PIN SOIC (TOP VIEW) ^(1,2,3)		1 28
			SOIC
	PIC32MX155F128B PIC32MX175F256B		
#	Full Pin Name	Pin #	Full Pin Name
#	Full Pin Name	Pin #	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0	Pin #	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1	Pin # 15 16 17	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0	Pin # 15 16 17 18	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1	Pin # 15 16 17 18 19	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INB/C3IND/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	Pin # 15 16 17 18 19 20	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3	Pin # 15 16 17 18 19 20 21	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss	Pin # 15 16 17 18 19 20 21 22	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2	Pin # 15 16 17 18 19 20 21 22 23	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12
<u>#</u>	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3	Pin # 15 16 17 18 19 20 21 22 23 24	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 VSS VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 ⁽⁴⁾	Pin # 15 16 17 18 19 20 21 22 23 24 25	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/R
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCI/RPB4/RB4 ⁽⁴⁾ SOSCO/RPA4/T1CK/CTED9/RA4	Pin # 15 16 17 18 19 20 21 22 23 24 25 26	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RI AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
#	Full Pin Name MCLR VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0 VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1 PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0 PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12//RB1 AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2 AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3 Vss OSC1/CLKI/RPA2/RA2 OSC2/CLKO/RPA3/PMA0/RA3 SOSCO/RPA4/T1CK/CTED9/RA4 VDD	Pin # 15 16 17 18 19 20 21 22 23 24 25 26 27	Full Pin Name PGEC3/RPB6/ASCL2/PMD6/RB6 TDI/RPB7/CTED3/PMD5/INT0/RB7 TCK/RPB8/SCL1/CTED10/PMD4/RB8 TDO/RPB9/SDA1/CTED4/PMD3/RB9 Vss VCAP PGED1/RPB10/CTED11/PMD2/RB10 PGEC1/TMS/RPB11/PMD1/RB11 AN12/PMD0/RB12 VBAT CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/R AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15 AVss

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: Shaded pins are 5V tolerant.

4: This is an input-only pin.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

TABLE 7: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES WITH VBAT

28-PIN QFN (TOP VIEW)^(1,2,3,4)

PIC32MX155F128D PIC32MX175F256D

28

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12/RB1	16	Vss
3	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	17	VCAP
4	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/CTPLS/RB3	18	PGED1/RPB10/CTED11/PMD2/RB10
5	Vss	19	PGEC1/TMS/RPB11/PMD1/RB11
6	OSC1/CLKI/RPA2/RA2	20	AN12/PMD0/RB12
7	OSC2/CLKO/RPA3/PMA0/RA3	21	VBAT
8	SOSCI/RPB4/RB4 ⁽⁵⁾	22	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14
9	SOSCO/RPA4/T1CK/CTED9/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	VDD	24	AVss
11	PGED3/RPB5/ASDA2/PMD7/RB5	25	AVDD
12	PGEC3/RPB6/ASCL2/PMD6/RB6	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	VREF+/AN0/C3INC/RPA0ASDA1//CTED1/PMA1/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	VREF-/AN1/RPA1/ASCL1/CTED2/PMRD/RA1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to VSs externally.

4: Shaded pins are 5V tolerant.

5: This is an input-only pin.

The MIPS architecture defines that the result of a multiply or divide operation be placed in the HI and LO registers. Using the Move-From-HI (MFHI) and Move-From-LO (MFLO) instructions, these values can be transferred to the General Purpose Register file.

In addition to the HI/LO targeted operations, the MIPS32[®] architecture also defines a multiply instruction, MUL, which places the least significant results in the primary register file instead of the HI/LO register pair. By avoiding the explicit MFLO instruction required when using the LO register, and by supporting multiple destination registers, the throughput of multiply-intensive operations is increased.

Two other instructions, Multiply-Add (MADD) and Multiply-Subtract (MSUB), are used to perform the multiply-accumulate and multiply-subtract operations. The MADD instruction multiplies two numbers and then

adds the product to the current contents of the HI and LO registers. Similarly, the MSUB instruction multiplies two operands and then subtracts the product from the HI and LO registers. The MADD and MSUB operations are commonly used in DSP algorithms.

3.2.3 SYSTEM CONTROL COPROCESSOR (CP0)

In the MIPS architecture, CP0 is responsible for the virtual-to-physical address translation, the exception control system, the processor's diagnostics capability, the operating modes (Kernel, User and Debug) and whether interrupts are enabled or disabled. Configuration information, such as presence of options like MIPS16e, is also available by accessing the CP0 registers, listed in Table 3-2.

Register Number	Register Name	Function
0-6	Reserved	Reserved in the PIC32MX1XX/2XX XLP Family core.
7	HWREna	Enables access via the RDHWR instruction to selected hardware registers.
8	BadVAddr ⁽¹⁾	Reports the address for the most recent address-related exception.
9	Count ⁽¹⁾	Processor cycle count.
10	Reserved	Reserved in the PIC32MX1XX/2XX XLP Family core.
11	Compare ⁽¹⁾	Timer interrupt control.
12	Status ⁽¹⁾	Processor status and control.
12	IntCtl ⁽¹⁾	Interrupt system status and control.
12	SRSCtl ⁽¹⁾	Shadow register set status and control.
12	SRSMap ⁽¹⁾	Provides mapping from vectored interrupt to a shadow set.
13	Cause ⁽¹⁾	Cause of last general exception.
14	EPC ⁽¹⁾	Program counter at last exception.
15	PRId	Processor identification and revision.
15	EBASE	Exception vector base register.
16	Config	Configuration register.
16	Config1	Configuration Register 1.
16	Config2	Configuration Register 2.
16	Config3	Configuration Register 3.
17-22	Reserved	Reserved in the PIC32MX1XX/2XX XLP Family core.
23	Debug ⁽²⁾	Debug control and exception status.
24	DEPC ⁽²⁾	Program counter at last debug exception.
25-29	Reserved	Reserved in the PIC32MX1XX/2XX XLP Family core.
30	ErrorEPC ⁽¹⁾	Program counter at last error.
31	DESAVE ⁽²⁾	Debug handler scratchpad register.

TABLE 3-2: COPROCESSOR 0 REGISTERS

Note 1: Registers used in exception processing.

2: Registers used during debug.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				NVMDA	TA<31:24>				
00.40	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	NVMDATA<23:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	NVMDATA<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
		NVMDATA<7:0>							

REGISTER 5-4: NVMDATA: FLASH PROGRAM DATA REGISTER

Legend:

Legena.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 NVMDATA<31:0>: Flash Programming Data bits

Note: The bits in this register are only reset by a Power-on Reset (POR).

REGISTER 5-5: NVMSRCADDR: SOURCE DATA ADDRESS REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
04.04	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31:24				NVMSRCA	DDR<31:24>	>			
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23:16	NVMSRCADDR<23:16>								
45.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15:8	NVMSRCADDR<15:8>								
7:0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
				NVMSRC	ADDR<7:0>				

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 31-0 NVMSRCADDR<31:0>: Source Data Address bits

The system physical address of the data to be programmed into the Flash when the NVMOP<3:0> bits (NVMCON<3:0>) are set to perform row programming.

7.0 INTERRUPT CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Interrupt Controller" (DS60001108), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

PIC32MX1XX/2XX 28/44-pin XLP Family devices generate interrupt requests in response to interrupt events from peripheral modules. The interrupt control module exists externally to the CPU logic and prioritizes the interrupt events before presenting them to the CPU. The PIC32MX1XX/2XX 28/44-pin XLP Family interrupt module includes the following features:

- Up to 64 interrupt sources
- · Up to 44 interrupt vectors
- · Single and multi-vector mode operations
- Five external interrupts with edge polarity control
- Interrupt proximity timer
- Seven user-selectable priority levels for each vector
- Four user-selectable subpriority levels within each priority
- Software can generate any interrupt
- User-configurable Interrupt Vector Table (IVT) location
- · User-configurable interrupt vector spacing
- Note: The dedicated shadow register set is not present on PIC32MX1XX/2XX 28/44-pin XLP Family devices.

A simplified block diagram of the Interrupt Controller module is illustrated in Figure 7-1.

FIGURE 7-1: INTERRUPT CONTROLLER MODULE BLOCK DIAGRAM

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				DCRCDAT	4<31:24>				
22.10	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	DCRCDATA<23:16>								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	DCRCDATA<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				DCRCDA	TA<7:0>				

REGISTER 9-5: DCRCDATA: DMA CRC DATA REGISTER

Legend:

Legend.			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCDATA<31:0>: CRC Data Register bits

Writing to this register will seed the CRC generator. Reading from this register will return the current value of the CRC. Bits greater than PLEN will return '0' on any read.

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): Only the lower 16 bits contain IP header checksum information. The upper 16 bits are always '0'. Data written to this register is converted and read back in 1's complement form (i.e., current IP header checksum value).

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode): Bits greater than PLEN will return '0' on any read.

REGISTER 9-6: DCRCXOR: DMA CRCXOR ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
24.24	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
31.24				DCRCXOF	₹<31:24>				
22.46	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
23.10	DCRCXOR<23:16>								
15.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
15.6	DCRCXOR<15:8>								
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
7:0				DCRCXC	R<7:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-0 DCRCXOR<31:0>: CRC XOR Register bits

<u>When CRCTYP (DCRCCON<15>) = 1</u> (CRC module is in IP Header mode): This register is unused.

<u>When CRCTYP (DCRCCON<15>) = 0</u> (CRC module is in LFSR mode):

- 1 = Enable the XOR input to the Shift register
- 0 = Disable the XOR input to the Shift register; data is shifted in directly from the previous stage in the register

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

REGISTER 11-7: U1IE: USB INTERRUPT ENABLE REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—		—	—	—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	-	—	—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.0	—	—	—	-	—	—	—	—
	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	STALLIE	ATTACHIE	RESUMEIE		TRNIE	SOFIE	LIERRIE(1)	URSTIE ⁽²⁾
						CONE	0 EI WIE	DETACHIE ⁽³⁾

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	STALLIE: STALL Handshake Interrupt Enable bit
	1 = STALL interrupt is enabled

- 0 = STALL interrupt is disabled
- bit 6 ATTACHIE: ATTACH Interrupt Enable bit
 - 1 =ATTACH interrupt is enabled
 - 0 = ATTACH interrupt is disabled
- bit 5 RESUMEIE: RESUME Interrupt Enable bit
 - 1 = RESUME interrupt is enabled
 - 0 = RESUME interrupt is disabled
- bit 4 IDLEIE: Idle Detect Interrupt Enable bit
 - 1 = Idle interrupt is enabled
 - 0 = Idle interrupt is disabled
- bit 3 TRNIE: Token Processing Complete Interrupt Enable bit
 - 1 = TRNIF interrupt is enabled
 - 0 = TRNIF interrupt is disabled
- bit 2 SOFIE: SOF Token Interrupt Enable bit
 - 1 = SOFIF interrupt is enabled
 - 0 = SOFIF interrupt is disabled
- bit 1 UERRIE: USB Error Interrupt Enable bit⁽¹⁾
 - 1 = USB Error interrupt is enabled
 - 0 = USB Error interrupt is disabled
- bit 0 URSTIE: USB Reset Interrupt Enable bit⁽²⁾
 - 1 = URSTIF interrupt is enabled
 - 0 = URSTIF interrupt is disabled

DETACHIE: USB Detach Interrupt Enable bit⁽³⁾

- 1 = DATTCHIF interrupt is enabled
- 0 = DATTCHIF interrupt is disabled

Note 1: For an interrupt to propagate USBIF, the UERRIE (U1IE<1>) bit must be set.

- 2: Device mode.
- 3: Host mode.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

		• • • • • • •						
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—		—	—			—
22.10	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—		—	—			—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15.6	—	—		—	—			—
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0				BDTPTR	H<23:16>			

REGISTER 11-18: U1BDTP2: USB BUFFER DESCRIPTOR TABLE PAGE 2 REGISTER

Legend:R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRH<23:16>:** Buffer Descriptor Table Base Address bits This 8-bit value provides address bits 23 through 16 of the Buffer Descriptor Table base address, which defines the starting location of the Buffer Descriptor Table in system memory. The 32-bit Buffer Descriptor Table base address is 512-byte aligned.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
31.24	—	—	—	—	—	—	—	—		
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
23:16	—	—	—	—	—	—	—	—		
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
15.6	—	—	—	—	—	—	—	—		
7.0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
7:0				BDTPTR	U<31:24>					

REGISTER 11-19: U1BDTP3: USB BUFFER DESCRIPTOR TABLE PAGE 3 REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7-0 **BDTPTRU<31:24>:** Buffer Descriptor Table Base Address bits This 8-bit value provides address bits 31 through 24 of the Buffer Descriptor Table base address, defines the starting location of the Buffer Descriptor Table in system memory. The 32-bit Buffer Descriptor Table base address is 512-byte aligned.

Input Capture Control Registers 17.1

ess										Bi	ts								
Virtual Addr (BF80_#)	Register Name	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
2000		31:16		—	—	_	—	—	—	_	—	-		—	—				0000
2000	IC ICON ,	15:0	:0 ON - SIDL FEDGE C32 ICTMR ICI<1:0> ICOV ICBNE ICM<2:0>										0000						
2010	IC1BUE	31:16	.16 IC1BUE<31:0>										xxxx						
2010	ютвот	15:0									<01.02								xxxx
2200	1C2CON(1)	31:16	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—	0000
2200	102001	15:0	ON		SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2210 I	IC2BLIE	C2BUF 31:16 IC2BUF<31:0>											xxxx						
	102001												xxxx						
2400	1C3CON ⁽¹⁾	31:16	-	—	—	_	—	—	—	—	—	_	—	—	—	—	—	—	0000
2100	1000011	15:0	ON	_	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2410	IC3BUE	31:16								IC3BUE	<31.0>								xxxx
		15:0																	XXXX
2600	IC4CON ⁽¹⁾	31:16	_		_			_	—	—	_	_					—	_	0000
		15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2610	IC4BUF	31:16								IC4BUF	<31:0>								XXXX
		15:0													-				XXXX
2800	IC5CON ⁽¹⁾	31:16	—	—	—	—	—	—	—	—	—	—		—	—	—	—	—	0000
		15:0	ON	—	SIDL	—	—	—	FEDGE	C32	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
2810	IC5BUF	31:16								IC5BUF	<31:0>								XXXX
		15:0																	xxxx

TABLE 17-1: INPUT CAPTURE 1-INPUT CAPTURE 5 REGISTER MAP

Legend:

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register has corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

18.0 OUTPUT COMPARE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Output Compare" (DS60001111), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

The Output Compare module is used to generate a single pulse or a train of pulses in response to selected time base events. For all modes of operation, the Output Compare module compares the values stored in the OCxR and/or the OCxRS registers to the value in the selected timer. When a match occurs, the Output Compare module generates an event based on the selected mode of operation. The following are some of the key features of the Output Compare module:

- Multiple Output Compare Modules in a device
- Programmable interrupt generation on compare event
- Single and Dual Compare modes
- Single and continuous output pulse generation
- Pulse-Width Modulation (PWM) mode
- Hardware-based PWM Fault detection and automatic output disable
- Can operate from either of two available 16-bit time bases or a single 32-bit time base

I²C Control Registers 20.1

TABLE 20-1: I2C1 AND I2C2 REGISTER MAP

ess										Ві	ts								
Virtual Addr (BF80_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
5000	1201000	31:16	—	-	—	—	—	—	—	—	_	—	—	—	—	_	—	_	0000
5000	12CTCON	15:0	ON		SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5010		31:16	—		—	—	-	—	—			_	—	-		_	_		0000
3010	120131AI	15:0	ACKSTAT	TRSTAT	—	—	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
5020		31:16	—		—	—	-	—	—			_	—	-		_	_		0000
3020	IZCIADD	15:0	—	-	—	—	—	—					Address	Register					0000
5030	I2C1MSK	31:16	—	-	—	—	—	—	—	—	-	—	—	_	-	—	—	_	0000
3030	120110101	15:0	—	_	—	—	—	—					Address Ma	ask Register	·	-			0000
5040	I2C1BRG	31:16	—	_	—	—	—	—	—	—	—	—	—		—	—	—	—	0000
0040	12010100	15:0	—	—	—	—					Βαι	id Rate Gei	nerator Reg	ister					0000
5050	I2C1TRN	31:16	—	—	—	—	—	—	—	_	—	—	—		—	—	—	—	0000
0000	12011111	15:0	—	-	—	—	—	—		—			-	Transmit	Register				0000
5060	I2C1RCV	31:16	—	—	—	—	—	—	—	_	—	—	—		—	—	—	—	0000
	.2011.01	15:0	—	-	—	—	—	—	—	_				Receive	Register				0000
5100	12C2CON	31:16	—	-	—	—	—	—	—	—	-	—	—	—	—	—	—	—	0000
0.00		15:0	ON	_	SIDL	SCLREL	STRICT	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
5110	I2C2STAT	31:16		—	—	—		—	—	—		—	—		—	—	—	—	0000
		15:0	ACKSTAT	TRSTAT	—	—	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
5120	I2C2ADD	31:16	—	_	—	—	—	—	—	—	—		—	—	—	—	—	—	0000
		15:0	—	—	—	-		—					Address	Register					0000
5130	I2C2MSK	31:16	_	_	—	—		—		—	_	_	—	_	—	—	—	—	0000
		15:0	—	—	—	—	—	—					Address Ma	ask Register					0000
5140	I2C2BRG	31:16	_	_	—	—	_	_	—	—	_	_	—	_	—	—	—	—	0000
		15:0	—	—	—	—					Βαι	ud Rate Ger	nerator Reg	ister					0000
5150	I2C2TRN	31:16	_	_	—	_	_	_		_	_	—	—	_	_	_	—	—	0000
		15:0	_	_	_	_		_		_				Transmit	Register				0000
5160	I2C2RCV	31:16	—	—	-	-	-		—	—	—		—			—	—	—	0000
	<u> </u>	15:0	—	—		<u> </u>	_							Receive	Register				0000
Legen	d: x = u	unknow	n value on	Keset: — =	unimpleme	ented, read	as '0'. Rese	t values are	e snown in h	exadecima									

© 2016 Microchip Technology Inc.

x = unknown value on Reset; — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

All registers in this table except I2CxRCV have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4, 0x8 and 0xC, respectively. See Section 11.2 "CLR, SET and INV Registers" for more information. Note 1:

21.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Universal Asynchronous Receiver Transmitter (UART)" (DS60001107), which is available from the Documentation > Reference Manual section of the web Microchip PIC32 site (www.microchip.com/pic32).

The UART module is one of the serial I/O modules available in PIC32MX1XX/2XX 28/44-pin XLP Family devices. The UART is a full-duplex, asynchronous communication channel that communicates with peripheral devices and personal computers through protocols, such as RS-232, RS-485, LIN, and IrDA[®]. The UART module also supports the hardware flow control option, with UxCTS and UxRTS pins, and also includes an IrDA encoder and decoder.

The following are key features of the UART module:

- Full-duplex, 8-bit or 9-bit data transmission
- Even, Odd or No Parity options (for 8-bit data)
- One or two Stop bits
- Hardware auto-baud feature
- Hardware flow control option
- Fully integrated Baud Rate Generator (BRG) with 16-bit prescaler
- Baud rates ranging from 33.4 bps to 17.5 Mbps at 72 MHz
- 8-level deep First In First Out (FIFO) transmit data buffer
- 8-level deep FIFO receive data buffer
- Parity, framing and buffer overrun error detection
- Support for interrupt-only on address detect (9th bit = 1)
- · Separate transmit and receive interrupts
- Loopback mode for diagnostic support
- · LIN protocol support
- IrDA encoder and decoder with 16x baud clock output for external IrDA encoder/decoder support
- · Auto-baud support
- · Ability to receive data during Sleep mode

Figure 21-1 illustrates a simplified block diagram of the UART module.

FIGURE 21-1: UART SIMPLIFIED BLOCK DIAGRAM

REGISTER 23-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER (CONTINUED)

- When a new value is written to these bits, the Seconds Value register should also be written to properly reset the clock prescalers in the RTCC. 11 = Reserved 10 = Reserved 01 = RTCC uses the external 32.768 kHz Secondary Oscillator (SOSC) 00 = RTCC uses the internal 32 kHz oscillator (LPRC) RTCOUTSEL<1:0>: RTCC Output Data Select bits⁽²⁾ bit 8-7 11 = Reserved 10 = RTCC Clock is presented on the RTCC pin 01 = Seconds Clock is presented on the RTCC pin 00 = Alarm Pulse is presented on the RTCC pin when the alarm interrupt is triggered bit 6 RTCCLKON: RTCC Clock Enable Status bit 1 = RTCC Clock is actively running 0 = RTCC Clock is not running bit 5-4 Unimplemented: Read as '0' bit 3 **RTCWREN:** Real-Time Clock Value Registers Write Enable bit⁽³⁾ 1 = Real-Time Clock Value registers can be written to by the user 0 = Real-Time Clock Value registers are locked out from being written to by the user RTCSYNC: Real-Time Clock Value Registers Read Synchronization bit bit 2 1 = Real-time clock value registers can change while reading (due to a rollover ripple that results in an invalid data read). If the register is read twice and results in the same data, the data can be assumed to be valid. 0 = Real-time clock value registers can be read without concern about a rollover ripple
- 0 = Real-time clock value registers can be read

RTCCLKSEL<1:0>: RTCC Clock Select bits

bit 1 HALFSEC: Half-Second Status bit⁽⁴⁾

bit 10-9

- 1 = Second half period of a second
- 0 = First half period of a second
- bit 0 **RTCOE:** RTCC Output Enable bit
 - 1 = RTCC output is enabled
 - 0 = RTCC output is not enabled
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - 2: Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
04.04	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
31:24	—	—	— HR10<1:0>			HR01<3:0>				
00.40	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
23:16	—		MIN10<2:0>		MIN01<3:0>					
45.0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x		
15:8	—		SEC10<2:0>		SEC01<3:0>					
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
7:0	—	—	—	—	—	_	—	—		
Legend:										
R = Read	able bit		W = Writable	e bit	U = Unimplemented bit. read as '0'					

REGISTER 23-5: ALRMTIME: ALARM TIME VALUE REGISTER

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-30 Unimplemented: Read as '0'

bit 29-28 HR10<1:0>: Binary Coded Decimal value of hours bits, 10s place digit; contains a value from 0 to 2

bit 27-24 **HR01<3:0>:** Binary Coded Decimal value of hours bits, 1s place digit; contains a value from 0 to 9 bit 23 **Unimplemented:** Read as '0'

bit 22-20 MIN10<2:0>: Binary Coded Decimal value of minutes bits, 10s place digit; contains a value from 0 to 5

bit 19-16 **MIN01<3:0>:** Binary Coded Decimal value of minutes bits, 1s place digit; contains a value from 0 to 9 bit 15 **Unimplemented:** Read as '0'

bit 14-12 SEC10<2:0>: Binary Coded Decimal value of seconds bits, 10s place digit; contains a value from 0 to 5

bit 11-8 SEC01<3:0>: Binary Coded Decimal value of seconds bits, 1s place digit; contains a value from 0 to 9

bit 7-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
23:16	—	—	—	MONTH10		MONTH	01<3:0>	
45.0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
15:8	—	—	DAY1	0<1:0>		DAY01	<3:0>	
7.0	U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
7:0			_		_	V	VDAY01<2:0:	>

REGISTER 23-6: ALRMDATE: ALARM DATE VALUE REGISTER

Legend:

- 5			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-21 Unimplemented: Read as '0'

bit 20 MONTH10: Binary Coded Decimal value of months bits, 10s place digit; contains a value of 0 or 1

bit 19-16 **MONTH01<3:0>:** Binary Coded Decimal value of months bits, 1s place digit; contains a value from 0 to 9 bit 15-14 **Unimplemented:** Read as '0'

bit 13-12 DAY10<1:0>: Binary Coded Decimal value of days bits, 10s place digit; contains a value from 0 to 3

bit 11-8 **DAY01<3:0>:** Binary Coded Decimal value of days bits, 1s place digit; contains a value from 0 to 9

bit 7-3 Unimplemented: Read as '0'

bit 2-0 WDAY01<2:0>: Binary Coded Decimal value of weekdays bits; contains a value from 0 to 6

NOTES:

Bit Range	it Bit Bit Ige 31/23/15/7 30/22/14/6 29		Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0	
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
31.24	—	—	—	—	—	—	—	—	
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
23:16	—	—	—	—	—	—	—	—	
45.0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
15:8	ON ⁽¹⁾	—	SIDL	—	—				
7:0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0, HSC	R/C-0, HSC	
		SSRC<2:0>		CLRASAM		ASAM	SAMP ⁽²⁾	DONE ⁽³⁾	

REGISTER 24-1: AD1CON1: ADC CONTROL REGISTER 1

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** ADC Operating Mode bit⁽¹⁾
 - 1 = ADC module is operating
 - 0 = ADC module is not operating
- bit 14 **Unimplemented:** Read as '0'
- bit 13 **SIDL:** Stop in Idle Mode bit
 - 1 = Discontinue module operation when device enters Idle mode
 - 0 = Continue module operation when the device enters Idle mode

bit 12-11 Unimplemented: Read as '0'

- bit 10-8 **FORM<2:0>:** Data Output Format bits
 - 111 = Signed Fractional 32-bit (DOUT = sddd dddd dd00 0000 0000 0000 0000)

 - 101 = Signed Integer 32-bit (DOUT = ssss ssss ssss ssss ssss sssd dddd dddd)
 - 100 = Integer 32-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)
 - 011 = Signed Fractional 16-bit (DOUT = 0000 0000 0000 0000 sddd dddd dd00 0000)
 - 010 = Fractional 16-bit (DOUT = 0000 0000 0000 0000 dddd dddd dd00 0000)

 - 000 =Integer 16-bit (DOUT = 0000 0000 0000 0000 0000 00dd dddd dddd)

bit 7-5 SSRC<2:0>: Conversion Trigger Source Select bits

- 111 = Internal counter ends sampling and starts conversion (auto convert)
- 110 = Reserved
- 101 = Reserved
- 100 = Reserved
- 011 = CTMU ends sampling and starts conversion
- 010 = Timer 3 period match ends sampling and starts conversion
- 001 = Active transition on INT0 pin ends sampling and starts conversion
- 000 = Clearing SAMP bit ends sampling and starts conversion
- **Note 1:** When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral's SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.
 - 2: If ASAM = 0, software can write a '1' to start sampling. This bit is automatically set by hardware if ASAM = 1. If SSRC = 0, software can write a '0' to end sampling and start conversion. If SSRC ≠ '0', this bit is automatically cleared by hardware to end sampling and start conversion.
 - **3:** This bit is automatically set by hardware when analog-to-digital conversion is complete. Software can write a '0' to clear this bit (a write of '1' is not allowed). Clearing this bit does not affect any operation already in progress. This bit is automatically cleared by hardware at the start of a new conversion.

28.1 CTMU Control Registers

TABLE 28-1: CTMU REGISTER MAP

Virtual Address (BF80_#)	Register Name ⁽¹⁾	Bit Range		Bits															
			31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
A200	CTMUCON	31:16	EDG1MOD	EDG1POL		EDG1S	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL	EDG2SEL<3:0>				—	—	0000
		15:0	ON	_	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	ITRIM<5:0>			IRNG	<1:0>	0000			

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: All registers in this table have corresponding CLR, SET and INV registers at its virtual address, plus an offset of 0x4, 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

DS60001404A-page 258

NOTES:

APPENDIX A: REVISION HISTORY

Revision A (May 2016)

This is the initial released version of this document.