

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	MIPS32® M4K™
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	I ² C, IrDA, LINbus, PMP, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, DMA, HLVD, I ² S, POR, PWM, WDT
Number of I/O	17
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	64K x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 3.6V
Data Converters	A/D 9x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic32mx274f256b-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

TABLE 8: PIN NAMES FOR 28-PIN GENERAL PURPOSE DEVICES WITHOUT VBAT

28-PIN QFN (TOP VIEW)^(1,2,3,4)

PIC32MX154F128B PIC32MX174F256B

28

1

Pin #	Full Pin Name	Pin #	Full Pin Name
1	PGED2/AN2/C1IND/C2INB/C3IND/RPB0/RB0	15	TDO/RPB9/SDA1/CTED4/PMD3/RB9
2	PGEC2/AN3/C1INC/C2INA/LVDIN/RPB1/CTED12/RB1	16	Vss
3	AN4/C1INB/C2IND/RPB2/SDA2/CTED13/RB2	17	VCAP
4	AN5/C1INA/C2INC/RTCC/RPB3/SCL2/RB3	18	PGED1/RPB10/CTED11/PMD2/RB10
5	Vss	19	PGEC1/TMS/RPB11/PMD1/RB11
6	OSC1/CLKI/RPA2/RA2	20	AN12/PMD0/RB12
7	OSC2/CLKO/RPA3/PMA0/RA3	21	AN11/RPB13/CTPLS/PMRD/RB13
8	SOSCI/RPB4/RB4 ⁽⁵⁾	22	CVREFOUT/AN10/C3INB/RPB14/SCK1/CTED5/PMWR/RB14
9	SOSCO/RPA4/T1CK/CTED9/RA4	23	AN9/C3INA/RPB15/SCK2/CTED6/PMCS1/RB15
10	Vdd	24	AVss
11	PGED3/RPB5/ASDA2/PMD7/RB5	25	AVdd
12	PGEC3/RPB6/ASCL2/PMD6/RB6	26	MCLR
13	TDI/RPB7/CTED3/PMD5/INT0/RB7	27	VREF+/AN0/C3INC/RPA0/ASDA1/CTED1/PMA1/RA0
14	TCK/RPB8/SCL1/CTED10/PMD4/RB8	28	VREF-/AN1/RPA1/ASCL1/CTED2/RA1

Note 1: The RPn pins can be used by remappable peripherals. See Table 1 for the available peripherals and 12.3 "Peripheral Pin Select" for restrictions.

2: Every I/O port pin (RAx-RBx) can be used as a change notification pin (CNAx-CNBx). See 12.0 "I/O Ports" for more information.

3: The metal plane at the bottom of the device is not connected to any pins and is recommended to be connected to Vss externally.

4: Shaded pins are 5V tolerant.

5: This is an input-only pin.

	P	in Number	(1)								
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description					
	Analog-to-Digital Converter										
AN0	27	2	19	Ι	Analog	Analog input channels.					
AN1	28	3	20	I	Analog						
AN2	1	4	21	I	Analog						
AN3	2	5	22	I	Analog						
AN4	3	6	23	I	Analog						
AN5	4	7	24	I	Analog						
AN6	—	—	25	I	Analog						
AN7	—	—	26	I	Analog						
AN8	_	—	27	I	Analog						
AN9	23	26	15	I	Analog						
AN10	22	25	14	I	Analog						
AN11 ⁽³⁾	21	24	11	I	Analog						
AN12	20 ⁽²⁾	23 ⁽²⁾	10	I	Analog						
Legend:	CMOS = C	MOS compa	atible input	or outpu	ıt	Analog = Analog input	P = Power				
	ST = Schmitt Trigger input with CMOS levels			els	O = Output	I = Input					
	TTL = TTL i	nput buffer				PPS = Peripheral Pin Select	— = N/A				

TABLE 1-1: ADC PINOUT I/O DESCRIPTIONS

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

2: Pin number for General Purpose devices only.

3: This pin is not available on VBAT devices.

	Pi	in Number	(1)							
Pin Name	9 28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description				
Serial Peripheral Interface 1										
SCK1	22	25	14	I/O	ST	Synchronous Serial Clock Input/	Output for SPI1			
SDI1	PPS	PPS	PPS	I	ST	SPI1 Data In				
SDO1	PPS	PPS	PPS	0	_	SPI1 Data Out				
SS1	PPS	PPS	PPS	I/O	ST	SPI1 Slave Synchronization or Frame Pulse I/O				
			s	erial Pe	ripheral In	iterface 2				
SCK2	23	26	15	I/O	ST	Synchronous Serial Clock Input/	Output for SPI2			
SDI2	PPS	PPS	PPS	I	ST	SPI2 Data In				
SDO2	PPS	PPS	PPS	0		SPI2 Data Out				
SS2	PPS	PPS	PPS	I/O	ST	SPI2 Slave Synchronization or Frame Pulse I/O				
Legend:	CMOS = CM ST = Schmi	MOS compa tt Trigger in	atible input put with CN	or outpu ⁄IOS lev	t els	Analog = Analog inputP = PowerO = OutputI = Input				

TABLE 1-9: SPI1 AND SPI2 PINOUT I/O DESCRIPTIONS

Note 1: Pin numbers are provided for reference only. See the "Pin Diagrams" section for device pin availability.

TABLE 1-10:I2C1 AND I2C2 PINOUT I/O DESCRIPTIONS

	Pi	in Number	(1)							
Pin Name	28-pin QFN	28-pin SOIC	44-pin QFN/ TQFP	Pin Type	Buffer Type	Description				
	Inter-Integrated Circuit 1									
SCL1	14	17	44	I/O	ST	Synchronous Serial Clock Input/Output for I2C1				
SDA1	15	18	1	I/O	ST	Synchronous Serial Data Input/Output for I2C1				
ASCL1	28	3	20	I/O	ST	Alternative Synchronous Serial Clock Input/Outpu for I2C1				
ASDA1	27	2	19	I/O	ST	Alternative Synchronous Serial Data Input/Output for I2C1				
				Inter-In	tegrated C	ircuit 2				
SCL2	4	7	24	I/O	ST	Synchronous Serial Clock Input/Output for I2C2				
SDA2	3	6	23	I/O	ST	Synchronous Serial Data Input/Output for I2C2				
ASCL2	12 ⁽²⁾	15 ⁽²⁾	42(2)	I/O	ST	Alternative Synchronous Serial Clock Input/Output	ut			
ASDA2	11 ⁽²⁾	14 (2)	41 ⁽²⁾	I/O	ST	Alternative Synchronous Serial Data Input/Output for I2C2				
Legend:	CMOS = CM ST = Schmi TTL = TTL i	MOS compart tt Trigger in nput buffer	atible input put with Cl	or outpu MOS lev	it els	Analog = Analog input $P = Power$ $O = Output$ $I = Input$ $PPS = Peripheral Pin Select$ $- = N/A$				
Note 1:	1: Pin numbers are provided for reference only. See the " Pin Diagrams " section for device pin availability.					v.				

2: This pin is not available for devices with USB.

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

2.8.1 CRYSTAL OSCILLATOR DESIGN CONSIDERATION

The following example assumptions are used to calculate the Primary Oscillator loading capacitor values:

- CIN = PIC32_OSC2_Pin Capacitance = ~4-5 pF
- COUT = PIC32_OSC1_Pin Capacitance = ~4-5 pF
- C1 and C2 = XTAL manufacturing recommended loading capacitance
- Estimated PCB stray capacitance, (i.e.,12 mm length) = 2.5 pF

EXAMPLE 2-1: CRYSTAL LOAD CAPACITOR CALCULATION

Crystal manufacturer recommended: $C1 = C2 = 15 pF$
Therefore:
$CLOAD = \{ ([CIN + C1] * [COUT + C2]) / [CIN + C1 + C2 + COUT] \} $ + estimated oscillator PCB stray capacitance
$= \{ ([5 + 15][5 + 15]) / [5 + 15 + 15 + 5] \} + 2.5 pF$
= {([20][20]) / [40] } + 2.5
= 10 + 2.5 = 12.5 pF
Rounded to the nearest standard value or 13 pF in this example fo Primary Oscillator crystals "C1" and "C2".

The following tips are used to increase oscillator gain, (i.e., to increase peak-to-peak oscillator signal):

- Select a crystal with a lower "minimum" power drive rating
- Select an crystal oscillator with a lower XTAL manufacturing "ESR" rating.
- Add a parallel resistor across the crystal. The smaller the resistor value the greater the gain. It is recommended to stay in the range of 600k to 1M
- C1 and C2 values also affect the gain of the oscillator. The lower the values, the higher the gain.
- C2/C1 ratio also affects gain. To increase the gain, make C1 slightly smaller than C2, which will also help start-up performance.
 - Note: Do not add excessive gain such that the oscillator signal is clipped, flat on top of the sine wave. If so, you need to reduce the gain or add a series resistor, RS, as shown in circuit "C" in Figure 2-4. Failure to do so will stress and age the crystal, which can result in an early failure. Adjust the gain to trim the max peak-to-peak to ~VDD-0.6V. When measuring the oscillator signal you must use a FET scope probe or a probe with ≤ 1.5 pF or the scope probe itself will unduly change the gain and peak-to-peak levels.

2.8.1.1 Additional Microchip References

- AN588 "PICmicro[®] Microcontroller Oscillator Design Guide"
- AN826 "Crystal Oscillator Basics and Crystal Selection for rfPIC[™] and PICmicro[®] Devices"
- AN849 "Basic PICmicro® Oscillator Design"

TABLE 7-2: INTERRUPT REGISTER MAP (CONTINUED)

ess		e	Bits																
Virtual Addr (BF88_#)	Register Name ⁽¹⁾	Bit Range	31/15	30/14	29/13	28/12	27/11	26/10	25/9	24/8	23/7	22/6	21/5	20/4	19/3	18/2	17/1	16/0	All Resets
1100		31:16	—	—	—	SPI1IP<2:0>		SPI1IS	<1:0>	—	—	—	USBIP<2:0>(2)		USBIS.	<1:0> (2)	0000		
1100	IPC7	15:0	-	_	—	(CMP3IP<2:0>	>	CMP3IS	S<1:0>	—	—	_	CN	/IP2IP<2:0>	•	CMP2I	S<1:0>	0000
1110		31:16		-	_		PMPIP<2:0>		PMPIS	<1:0>	_	_	_	C	NIP<2:0>		CNIS	<1:0>	0000
1110	IPCo	15:0	-	_	—		I2C1IP<2:0>		I2C1IS	<1:0>	—	—	_	ι	J1IP<2:0>		U1IS-	<1:0>	0000
11.00		31:16		-	_	(CTMUIP<2:0:	>	CTMUIS<1:0>		_	_	_	I2C2IP<2:0>		12C215	6<1:0>	0000	
1120	IPC9	15:0	_	—	—		U2IP<2:0>		U2IS<	U2IS<1:0>		—	_	S	PI2IP<2:0>		SPI2IS	6<1:0>	0000
1120		31:16	—	—	—	[DMA3IP<2:0>	>	DMA3IS	S<1:0>	_	—	—	DN	/A2IP<2:0>	`	DMA2I	S<1:0>	0000
1130	IPC10	15:0			_	ſ	DMA1IP<2:0>	>	DMA1IS	S<1:0>	_		_	DN	/A0IP<2:0>	•	DMA0	S<1:0>	0000

Legend: x = unknown value on Reset; - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: With the exception of those noted, all registers in this table have corresponding CLR, SET and INV registers at their virtual addresses, plus offsets of 0x4 0x8 and 0xC, respectively. See 12.2 "CLR, SET and INV Registers" for more information.

2: These bits are not available on PIC32MX1XX devices.

3: This register does not have associated CLR, SET, INV registers.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
04.04	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
00.40	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	U-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—	—	—	—	—
	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7:0	_	_			TUN<	5:0> ⁽¹⁾		

REGISTER 8-2: OSCTUN: FRC TUNING REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-6 Unimplemented: Read as '0'

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation, and is neither characterized, nor tested.

Note:	Writes to this register require an unlock sequence. Refer to Section 42. "Oscillators with Enhanced
	PLL" (DS60001250) in the "PIC32 Family Reference Manual" for details.

9.0 DIRECT MEMORY ACCESS (DMA) CONTROLLER

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 31. "Direct Memory Access (DMA) Controller" (DS60001117), which is available from the Documentation > Reference Manual section of the Microchip PIC32 web site (www.microchip.com/pic32).

The PIC32 Direct Memory Access (DMA) controller is a bus master module useful for data transfers between different devices without CPU intervention. The source and destination of a DMA transfer can be any of the memory mapped modules existent in the PIC32, such as Peripheral Bus devices: SPI, UART, PMP, etc., or memory itself. Figure 9-1 show a block diagram of the DMA Controller module.

The DMA Controller module has the following key features:

- Four identical channels, each featuring:
 - Auto-increment source and destination address registers
 - Source and destination pointers
 - Memory to memory and memory to peripheral transfers
- Automatic word-size detection:
 - Transfer granularity, down to byte level
 - Bytes need not be word-aligned at source and destination

FIGURE 9-1: DMA BLOCK DIAGRAM

- Fixed priority channel arbitration
- Flexible DMA channel operating modes:
 - Manual (software) or automatic (interrupt) DMA requests
 - One-Shot or Auto-Repeat Block Transfer modes
 - Channel-to-channel chaining
- Flexible DMA requests:
 - A DMA request can be selected from any of the peripheral interrupt sources
 - Each channel can select any (appropriate) observable interrupt as its DMA request source
 - A DMA transfer abort can be selected from any of the peripheral interrupt sources
 - Pattern (data) match transfer termination
- Multiple DMA channel status interrupts:
 - DMA channel block transfer complete
 - Source empty or half empty
 - Destination full or half full
 - DMA transfer aborted due to an external event
 - Invalid DMA address generated
- DMA debug support features:
 - Most recent address accessed by a DMA channel
 - Most recent DMA channel to transfer data
- · CRC Generation module:
 - CRC module can be assigned to any of the available channels
 - CRC module is highly configurable

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

REGISTE	(EGISTER 9-6: DCHXECON: DMA CHANNEL X EVENT CONTROL REGISTER										
Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0			
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
31.24		—	—		—	_	—	—			
00.40	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
23.10	CHAIRQ<7:0> ⁽¹⁾										
15.0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
10.0	CHSIRQ<7:0> ⁽¹⁾										
7:0	S-0	S-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0			
7.0	CFORCE	CABORT	PATEN	SIRQEN	AIRQEN		_	_			

REGISTER 9-8: DCHxECON: DMA CHANNEL 'x' EVENT CONTROL REGISTER

Legend:	S = Settable bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, r	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-24 Unimplemented: Read as '0'

bit 23-16	CHAIRQ<7:0>: Channel Transfer Abort IRQ bits ⁽¹⁾
	11111111 = Interrupt 255 will abort any transfers in progress and set CHAIF flag
	•
	•
	•
	00000001 = Interrupt 1 will abort any transfers in progress and set CHAIF flag
1.1.45.0	OUCOUDE = Interrupt 0 will abort any transfers in progress and set CHAIF flag
bit 15-8	CHSIRQ<7:0>: Channel Transfer Start IRQ bits ^{1/2}
	11111111 = Interrupt 255 will initiate a DMA transfer
	•
	•
	00000001 = Interrupt 1 will initiate a DMA transfer
	0000000 = Interrupt 0 will initiate a DMA transfer
bit 7	CFORCE: DMA Forced Transfer bit
	1 = A DMA transfer is forced to begin when this bit is written to a '1'
	0 = This bit always reads '0'
bit 6	CABORT: DMA Abort Transfer bit
	1 = A DMA transfer is aborted when this bit is written to a '1'
	0 = This bit always reads '0'
bit 5	PATEN: Channel Pattern Match Abort Enable bit
	1 = Abort transfer and clear CHEN on pattern match
	0 = Pattern match is disabled
bit 4	SIRQEN: Channel Start IRQ Enable bit
	1 = Start channel cell transfer if an interrupt matching CHSIRQ occurs
	0 = Interrupt number CHSIRQ is ignored and does not start a transfer
bit 3	AIRQEN: Channel Abort IRQ Enable bit
	1 = Channel transfer is aborted if an interrupt matching CHAIRQ occurs
	0 = Interrupt number CHAIRQ is ignored and does not terminate a transfer
bit 2-0	Unimplemented: Read as '0'

Note 1: See Table 7-1: "Interrupt IRQ, Vector and Bit Location" for the list of available interrupt IRQ sources.

10.0 PREFETCH CACHE

Note: This data sheet summarizes the features of the PIC32MX1XX/2XX 28/44-pin XLP Family family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 4.** "**Prefetch Cache**" (DS60001119), which is available from the *Documentation* > *Reference Manual* section of the Microchip PIC32 web site (www.microchip.com/pic32).

Prefetch cache increases performance for applications executing out of the cacheable program Flash memory regions by implementing instruction caching, constant data caching and instruction prefetching. The following are key features of the Prefetch Cache module:

- 16 fully associative lockable cache lines
- 16-byte cache lines
- Up to four cache lines allocated to data
- Two cache lines with address mask to hold repeated instructions
- Pseudo LRU replacement policy
- All cache lines are software writable
- 16-byte parallel memory fetch
- Predictive instruction prefetch

A simplified block diagram of the Prefetch Cache module is illustrated in Figure 10-1.

FIGURE 10-1: PREFETCH CACHE MODULE BLOCK DIAGRAM

PIC32MX1XX/2XX 28/44-PIN XLP FAMILY

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0						
31.24	—	—	—	—	_	—	—	
23:16	U-0	U-0						
	—	—	—	—	_	—	—	_
15.0	U-0	U-0						
15.6	—	—	—	—	_	—	—	
7:0	R/W-0	R/W-0						
	BTSEE	BTSEE BMXEE	DMAEE	BTOEE		CRC16EE	CRC5EE ⁽¹⁾	DIDEE
	DIGEL			DIULL	DINOLL	ONOTOLL	EOFEE ⁽²⁾	, DEE

REGISTER 11-9: U1EIE: USB ERROR INTERRUPT ENABLE REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

bit 7	BTSEE: Bit Stuff Error Interrupt Enable bit
	1 = BTSEF interrupt is enabled0 = BTSEF interrupt is disabled
bit 6	BMXEE: Bus Matrix Error Interrupt Enable bit
	1 = BMXEF interrupt is enabled0 = BMXEF interrupt is disabled
bit 5	DMAEE: DMA Error Interrupt Enable bit
	1 = DMAEF interrupt is enabled0 = DMAEF interrupt is disabled
bit 4	BTOEE: Bus Turnaround Time-out Error Interrupt Enable bit
	1 = BTOEF interrupt is enabled0 = BTOEF interrupt is disabled
bit 3	DFN8EE: Data Field Size Error Interrupt Enable bit
	1 = DFN8EF interrupt is enabled0 = DFN8EF interrupt is disabled
bit 2	CRC16EE: CRC16 Failure Interrupt Enable bit
	1 = CRC16EF interrupt is enabled0 = CRC16EF interrupt is disabled
bit 1	CRC5EE: CRC5 Host Error Interrupt Enable bit ⁽¹⁾
	 1 = CRC5EF interrupt is enabled 0 = CRC5EF interrupt is disabled
	EDEEL FOF Franklaterrunt Frankla hit(2)

- **EOFEE:** EOF Error Interrupt Enable bit⁽²⁾ 1 = EOF interrupt is enabled
- 0 = EOF interrupt is disabled
- bit 0 **PIDEE:** PID Check Failure Interrupt Enable bit 1 = PIDEF interrupt is enabled
 - 0 = PIDEF interrupt is disabled
- Note 1: Device mode.
 - 2: Host mode.

Note: For an interrupt to propagate the USBIF register, the UERRIE (U1IE<1>) bit must be set.

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	—	—	—	—		—	—	—
00.40	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10	—	—	—	—		—	—	—
15.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
15:8	—	—	—	—		—	—	—
7.0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
7.0	LSPD	RETRYDIS	—	EPCONDIS	EPRXEN	EPTXEN	EPSTALL	EPHSHK

REGISTER 11-21: U1EP0-U1EP15: USB ENDPOINT CONTROL REGISTER

Legend:

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-8 Unimplemented: Read as '0'

- bit 7 LSPD: Low-Speed Direct Connection Enable bit (Host mode and U1EP0 only)
 - 1 = Direct connection to a Low-Speed device enabled
 - 0 = Direct connection to a Low-Speed device disabled; hub required with PRE_PID
- bit 6 **RETRYDIS:** Retry Disable bit (Host mode and U1EP0 only)
 - 1 = Retry NAKed transactions disabled
 - 0 = Retry NAKed transactions enabled; retry done in hardware

bit 5 Unimplemented: Read as '0'

bit 4 **EPCONDIS:** Bidirectional Endpoint Control bit

If EPTXEN = 1 and EPRXEN = 1:

1 = Disable Endpoint n from Control transfers; only TX and RX transfers allowed

0 = Enable Endpoint n for Control (SETUP) transfers; TX and RX transfers also allowed Otherwise, this bit is ignored.

- bit 3 EPRXEN: Endpoint Receive Enable bit
 - 1 = Endpoint n receive is enabled
 - 0 = Endpoint n receive is disabled
- bit 2 EPTXEN: Endpoint Transmit Enable bit
 - 1 = Endpoint n transmit is enabled
 - 0 = Endpoint n transmit is disabled
- bit 1 EPSTALL: Endpoint Stall Status bit
 - 1 = Endpoint n was stalled
 - 0 = Endpoint n was not stalled
- bit 0 EPHSHK: Endpoint Handshake Enable bit
 - 1 = Endpoint Handshake is enabled
 - 0 = Endpoint Handshake is disabled (typically used for isochronous endpoints)

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
24.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31:24	—	—	—	—	—	—	—	—
	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23:16	—	—	—	—	—	—	—	—
45.0	R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
15:8	ON	—	SIDL	—	—	—	—	—
7.0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
7:0	_	_	_	_	_		_	_

REGISTER 12-3: CNCONX: CHANGE NOTICE CONTROL FOR PORTX REGISTER (X = A, B, C)

Legend:

0			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ad as '0'
n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Change Notice (CN) Control ON bit
 - 1 = CN is enabled
 - 0 = CN is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 **SIDL:** Stop in Idle Control bit
 - 1 = Idle mode halts CN operation
 - 0 = Idle does not affect CN operation
- bit 12-0 Unimplemented: Read as '0'

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0
21.24	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
31.24	-	—	—	—	—		—	—
22.16	U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
23.10		—	—	—	—		—	—
15.0	R/W-0	U-0	R/W-0	R/W-0	R-0	U-0	R/W-0	R/W-0
15:8	ON ⁽¹⁾	—	SIDL	TWDIS	TWIP		TECS<1:0>	
7:0	R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
	TGATE		TCKP	S<1:0>		TSYNC	TCS	

REGISTER 13-1: T1CON: TYPE A TIMER CONTROL REGISTER

Legend:

R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 31-16 Unimplemented: Read as '0'

- bit 15 **ON:** Timer On bit⁽¹⁾
 - 1 = Timer is enabled
 - 0 = Timer is disabled

bit 14 Unimplemented: Read as '0'

bit 13 **SIDL:** Stop in Idle Mode bit

1 = Discontinue module operation when the device enters Idle mode0 = Continue module operation when the device enters Idle mode

bit 12 **TWDIS:** Asynchronous Timer Write Disable bit

- 1 = Writes to Timer1 are ignored until pending write operation completes
- 0 = Back-to-back writes are enabled (Legacy Asynchronous Timer functionality)

bit 11 TWIP: Asynchronous Timer Write in Progress bit

In Asynchronous Timer mode:

- 1 = Asynchronous write to the Timer1 register in progress
- 0 = Asynchronous write to Timer1 register is complete
- In Synchronous Timer mode:

This bit is read as '0'.

- bit 10 **Unimplemented:** Read as '0'
- bit 9-8 TECS<1:0>: Timer1 External Clock Selection bits
 - 11 = Reserved
 - 10 = External clock comes from the LPRC
 - 01 = External clock comes from the T1CK pin
 - 00 = External clock comes from the SOSC

bit 7 **TGATE:** Timer Gated Time Accumulation Enable bit

 $\frac{\text{When TCS} = 1:}{\text{This bit is ignored.}}$ $\frac{\text{When TCS} = 0:}{1 = \text{Gated time accumulation is enabled}}$

0 = Gated time accumulation is disabled

bit 6 Unimplemented: Read as '0'

Note 1: When using 1:1 PBCLK divisor, the user's software should not read/write the peripheral SFRs in the SYSCLK cycle immediately following the instruction that clears the module's ON bit.

NOTES:

REGISTER 23-1: RTCCON: REAL-TIME CLOCK AND CALENDAR CONTROL REGISTER

Bit Range	Bit 31/23/15/7	Bit 30/22/14/6	Bit 29/21/13/5	Bit 28/20/12/4	Bit 27/19/11/3	Bit 26/18/10/2	Bit 25/17/9/1	Bit 24/16/8/0		
21.24	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
31:24	—	—	—	—	—	_	CAL	_<9:8>		
22.16	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
23.10	CAL<7:0>									
	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
15:8	ON ⁽¹⁾	—	SIDL	—	—	RTCCLKSEL<1:0> RTC OUTSEL<		RTC OUTSEL<1> ⁽²⁾		
	R/W-0	R-0	U-0	U-0	R/W-0	R-0	R-0	R/W-0		
7:0	RTC OUTSEL<0> ⁽²⁾	RTC CLKON			RTC WREN ⁽³⁾	RTC SYNC	HALFSEC ⁽⁴⁾	RTCOE		

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 31-26 Unimplemented: Read as '0'

- 0 = RTCC module is disabled
- bit 14 Unimplemented: Read as '0'
- bit 13 SIDL: Stop in Idle Mode bit
 - 1 = Disables RTCC operation when CPU enters Idle mode
 - 0 = Continue normal operation when CPU enters Idle mode
- bit 12-11 Unimplemented: Read as '0'
- **Note 1:** The ON bit is only writable when RTCWREN = 1.
 - **2:** Requires RTCOE = 1 (RTCCON<0>) for the output to be active.
 - 3: The RTCWREN bit can be set only when the write sequence is enabled.
 - 4: This bit is read-only. It is cleared to '0' on a write to the seconds bit fields (RTCTIME<14:8>).

Note: This register is reset only on a Power-on Reset (POR).

REGISTER 24-4: AD1CHS: ADC INPUT SELECT REGISTER (CONTINUED)

bit 20-16 CH0SA<4:0>: Positive Input Select bits for Sample A Multiplexer Setting

	11111 = Reserved
	•
	•
	•
	10010 = Reserved 10001 = Channel 0 positive input is VDD/2 10000 = Channel 0 positive input is VBAT 01111 = Reserved 01110 = Channel 0 positive input is IVREF ⁽¹⁾ 01101 = Channel 0 positive input is CTMU temperature sensor (CTMUT) ⁽²⁾ 01100 = Channel 0 positive input is AN12 ⁽³⁾
	•
	•
	•
	00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0
15-0	Unimplemented: Read as '0'

Note 1: See 26.0 "Comparator Voltage Reference (CVREF)" for more information.

- 2: See 28.0 "Charge Time Measurement Unit (CTMU)" for more information.
- 3: AN12 is only available on 44-pin devices. AN6-AN8 are not available on 28-pin devices.

bit

29.5.1 CONTROLLING CONFIGURATION CHANGES

Because peripherals can be disabled during run time, some restrictions on disabling peripherals are needed to prevent accidental configuration changes. PIC32 devices include two features to prevent alterations to enabled or disabled peripherals:

- Control register lock sequence
- Configuration bit select lock

29.5.1.1 Control Register Lock

Under normal operation, writes to the PMDx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the Configuration bit, PMDLOCK (CFGCON<12>). Setting PMDLOCK prevents writes to the control registers; clearing PMDLOCK allows writes.

To set or clear PMDLOCK, an unlock sequence must be executed. Refer to **Section 6.** "**Oscillator**" (DS60001112) in the "*PIC32 Family Reference Manual*" for details.

29.5.1.2 Configuration Bit Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the PMDx registers. The Configuration bit, PMDL1WAY (DEVCFG3<28>), blocks the PMDLOCK bit from being cleared after it has been set once. If PMDLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable PMD functionality is to perform a device Reset.

TABLE 33-38: PARALLEL SLAVE PORT REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Para m.No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. Max. Units Conditions					
PS1	TdtV2wr H	Data In Valid before \overline{WR} or \overline{CS} Inactive (setup time)	20	_	_	ns	_	
PS2	TwrH2dt I	WR or CS Inactive to Data-In Invalid (hold time)	40		—	ns	_	
PS3	TrdL2dt V	RD and CS Active to Data-Out Valid			60	ns		
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	0	_	10	ns	_	
PS5	Tcs	CS Active Time	Трв + 40	_	—	ns	—	
PS6	Twr	WR Active Time	Трв + 25	_	—	ns		
PS7	Trd	RD Active Time	Трв + 25		_	ns		

Note 1: These parameters are characterized, but not tested in manufacturing.

FIGURE 33-21: PARALLEL MASTER PORT READ TIMING DIAGRAM

TABLE 33-40: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min. Typ. Max. Units Conditions				
PM11	Twr	PMWR Pulse Width	—	1 Трв			_
PM12	TDVSU	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	2 Трв	_	_	_
PM13	TDVHOLD	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	1 Трв	—	_	_

Note 1: These parameters are characterized, but not tested in manufacturing.

TABLE 33-41: OTG ELECTRICAL SPECIFICATIONS

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param. No.	Symbol	Characteristics ⁽¹⁾	Min.	Тур.	Max.	Units	Conditions
USB313	VUSB3V3	USB Voltage	3.0	_	3.6	V	Voltage on VUSB3V3 must be in this range for proper USB operation
USB315	VILUSB	Input Low Voltage for USB Buffer	_	—	0.8	V	—
USB316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	_	V	—
USB318	Vdifs	Differential Input Sensitivity	—	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met
USB319	VCM	Differential Common Mode Range	0.8	—	2.5	V	—
USB320	Zout	Driver Output Impedance	28.0	—	44.0	Ω	—
USB321	Vol	Voltage Output Low	0.0	—	0.3	V	1.425 kΩ load connected to VUSB3V3
USB322	Vон	Voltage Output High	2.8	_	3.6	V	1.425 k Ω load connected to ground

Note	1:	These parameters are characterized, but not tested in manufacturing.
------	----	--

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
	Dimension Limits			MAX		
Number of Leads	N	44				
Lead Pitch	е		0.80 BSC			
Overall Height	А	-	—	1.20		
Molded Package Thickness	A2	0.95	1.00	1.05		
Standoff	A1	0.05	-	0.15		
Foot Length	L	0.45	0.60	0.75		
Footprint	L1	1.00 REF				
Foot Angle	φ	0° 3.5° 7°				
Overall Width	E	12.00 BSC				
Overall Length	D	12.00 BSC				
Molded Package Width	E1	10.00 BSC				
Molded Package Length	D1	10.00 BSC				
Lead Thickness	С	0.09 – 0.20				
Lead Width	b	0.30	0.37	0.45		
Mold Draft Angle Top	α	11° 12° 13°				
Mold Draft Angle Bottom	β	11°	12°	13°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B