

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 5.5V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18f14k50-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

FIGURE 2: 20-PIN QFN (5X5)

4.3 Reading the Flash Program Memory

The TBLRD instruction retrieves data from program memory and places it into data RAM. Table reads from program memory are performed one byte at a time.

TBLPTR points to a byte address in program space. Executing TBLRD places the byte pointed to into TABLAT. In addition, TBLPTR can be modified automatically for the next table read operation. The internal program memory is typically organized by words. The Least Significant bit of the address selects between the high and low bytes of the word. Figure 4-4 shows the interface between the internal program memory and the TABLAT.

FIGURE 4-4: READS FROM FLASH PROGRAM MEMORY

EXAMPLE 4-1: READING A FLASH PROGRAM MEMORY WORD

	MOVLW	CODE_ADDR_UPPER	;	Load TBLPTR with the base
	MOVIE	CODE ADDD UIGU	'	address of the word
	MOVLW	CODE_ADDR_HIGH		
	MOVWF	TBLPTRH		
	MOVLW	CODE_ADDR_LOW		
	MOVWF	TBLPTRL		
READ_WORD				
	TBLRD*+		;	read into TABLAT and increment
	MOVF	TABLAT, W	;	get data
	MOVWF	WORD_EVEN		
	TBLRD*+		;	read into TABLAT and increment
	MOVFW	TABLAT, W	;	get data
	MOVF	WORD_ODD		

REGISTER /	-/. FIEZ.I	FERIFIERA			(FLAG) KEGI	SIER Z	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
OSCFIE	C1IE	C2IE	EEIE	BCLIE	USBIE	TMR3IE	—
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
bit 7	OSCFIE: Osc 1 = Enabled 0 = Disabled	illator Fail Inte	rrupt Enable b	bit			
bit 6	C1IE: Compa 1 = Enabled 0 = Disabled	rator C1 Interro	upt Enable bit				
bit 5	C2IE: Compa 1 = Enabled 0 = Disabled	rator C2 Interro	upt Enable bit				
bit 4	EEIE: Data E 1 = Enabled 0 = Disabled	EPROM/Flash	Write Operati	on Interrupt Er	nable bit		
bit 3	BCLIE: Bus C 1 = Enabled 0 = Disabled	Collision Interru	pt Enable bit				
bit 2	USBIE: USB 1 = Enabled 0 = Disabled	Interrupt Enabl	le bit				
bit 1	TMR3IE: TMF 1 = Enabled 0 = Disabled	R3 Overflow Int	terrupt Enable	e bit			
bit 0	Unimplemen	ted: Read as '	0'				

REGISTER 7-7: PIE2: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 2

7.7 IPR Registers

The IPR registers contain the individual priority bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Priority registers (IPR1 and IPR2). Using the priority bits requires that the Interrupt Priority Enable (IPEN) bit be set.

REGISTER 7-8: IPR1: PERIPHERAL INTERRUPT PRIORITY REGISTER 1

U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIP: A/D Converter Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 5	RCIP: EUSART Receive Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 4	TXIP: EUSART Transmit Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 3	SSPIP: Master Synchronous Serial Port Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 2	CCP1IP: CCP1 Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 1	TMR2IP: TMR2 to PR2 Match Interrupt Priority bit
	1 = High priority
	0 = Low priority
bit 0	TMR1IP: TMR1 Overflow Interrupt Priority bit
	1 = High priority
	0 = Low priority

9.4 Port Analog Control

Some port pins are multiplexed with analog functions such as the Analog-to-Digital Converter and comparators. When these I/O pins are to be used as analog inputs it is necessary to disable the digital input buffer to avoid excessive current caused by improper biasing of the digital input. Individual control of the digital input buffers on pins which share analog functions is provided by the ANSEL and ANSELH registers. Setting an ANSx bit high will disable the associated digital input buffer and cause all reads of that pin to return '0' while allowing analog functions of that pin to operate correctly.

The state of the ANSx bits has no affect on digital output functions. A pin with the associated TRISx bit clear and ANSx bit set will still operate as a digital output but the Input mode will be analog.

REGISTER 9-15: ANSEL: ANALOG SELECT REGISTER 1

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0
ANS7	ANS6	ANS5	ANS4	ANS3	—	—	—
bit 7							bit 0

Legend:								
R = Reada	ble bit	W = Writable bit	U = Unimplemented bit,	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	ANS7: F	RC3 Analog Select Control bit						
	1 = Digit 0 = Digit	al input buffer of RC3 is disab al input buffer of RC3 is enabl	led led					
bit 6	ANS6: F	C2 Analog Select Control bit						
	1 = Digit 0 = Digit	al input buffer of RC2 is disab al input buffer of RC2 is enabl	led led					
bit 5	ANS5: F	RC1 Analog Select Control bit						
	1 = Digit 0 = Digit	al input buffer of RC1 is disab al input buffer of RC1 is enabl	led led					
bit 4	ANS4: F	C0 Analog Select Control bit						
	1 = Digit 0 = Digit	al input buffer of RC0 is disab al input buffer of RC0 is enabl	led led					
bit 3	ANS3: F	RA4 Analog Select Control bit						
	1 = Digit 0 = Digit	al input buffer of RA4 is disab al input buffer of RA4 is enabl	led led					
bit 2-0	Unimple	emented: Read as '0'						

U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1
	—	—		ANS11	ANS10	ANS9	ANS8
bit 7					•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7-4	Unimplemen	ted: Read as '	0'				
bit 3	ANS11: RB5	Analog Select	Control bit				
	1 = Digital inp	out buffer of RB	5 is disabled				
	0 = Digital inp	out buffer of RB	5 is enabled				
bit 2	ANS10: RB4	Analog Select	Control bit				
	1 = Digital inp	out buffer of RB	4 is disabled				
	0 = Digital inp	out buffer of RB	4 is enabled				
bit 1	ANS9: RC7 A	Analog Select C	Control bit				
	1 = Digital inp	out buffer of RC	7 is disabled				
	0 = Digital inp	out buffer of RC	7 is enabled				
bit 0	ANS8: RC6 A	Analog Select C	Control bit				
	1 = Digital inp	out buffer of RC	6 is disabled				
	0 = Digital inp	out buffer of RC	6 is enabled				

REGISTER 9-16: ANSELH: ANALOG SELECT REGISTER 2

13.0 TIMER3 MODULE

The Timer3 module timer/counter incorporates these features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR3H and TMR3L)
- Selectable clock source (internal or external) with device clock or Timer1 oscillator internal options
- Interrupt-on-overflow
- Module Reset on CCP Special Event Trigger

A simplified block diagram of the Timer3 module is shown in Figure 13-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 13-2.

The Timer3 module is controlled through the T3CON register (Register 13-1). It also selects the clock source options for the CCP modules (see **Section 14.1.1** "**CCP Module and Timer Resources**" for more information).

REGISTER 13-1: T3CON: TIMER3 CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	—	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON
bit 7							bit 0

Legend:								
R = Readable I	bit	W = Writable bit	U = Unimplemented bit	, read as '0'				
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown				
bit 7	RD16: 16-bit F	Read/Write Mode Enab	ole bit					
	 1 = Enables register read/write of Timer3 in one 16-bit operation 0 = Enables register read/write of Timer3 in two 8-bit operations 							
bit 6	Unimplement	ed: Read as '0'						
bit 5-4	T3CKPS<1:0	: Timer3 Input Clock F	Prescale Select bits					
	11 = 1:8 Prese 10 = 1:4 Prese 01 = 1:2 Prese 00 = 1:1 Prese	cale value cale value cale value cale value						
bit 3	T3CCP1: Time	er3 and Timer1 to CCP	P1 Enable bits					
	$1 = \text{Timer3 is} \\ 0 = \text{Timer1 is}$	s the clock source for c s the clock source for c	compare/capture of ECCP1 compare/capture of ECCP1					
bit 2	T3SYNC: Tim (Not usable if	er3 External Clock Input	ut Synchronization Control bit s from Timer1/Timer3.)					
	When TMR3C	<u>S = 1:</u>						
	1 = Do not syr 0 = Synchroni	nchronize external cloc ze external clock input	k input					
	When TMR3C	<u>S = 0:</u>		_				
1.5.4		ored. Timer3 uses the ii	nternal clock when TMR3CS =	= 0.				
bit 1	TMR3CS: Im	er3 Clock Source Sele	ect bit	ining other the first				
	$\perp = External of falling educed$	ne)	oscillator or 113CKI (on the r	ising edge after the first				
	0 = Internal c	lock (Fosc/4)						
bit 0	TMR3ON: Tim	ner3 On bit						
	1 = Enables T	imer3						
	0 = Stops Tim	er3						

13.5 Resetting Timer3 Using the CCP Special Event Trigger

If CCP1 module is configured to use Timer3 and to generate a Special Event Trigger in Compare mode (CCP1M<3:0>), this signal will reset Timer3. It will also start an A/D conversion if the A/D module is enabled (see **Section 17.2.8 "Special Event Trigger**" for more information).

The module must be configured as either a timer or synchronous counter to take advantage of this feature. When used this way, the CCPR1H:CCPR1L register pair effectively becomes a period register for Timer3.

If Timer3 is running in Asynchronous Counter mode, the Reset operation may not work.

In the event that a write to Timer3 coincides with a Special Event Trigger from a CCP module, the write will take precedence.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	275
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCLIF	USBIF	TMR3IF	CCP2IF	278
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE	USBIE	TMR3IE	CCP2IE	278
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCLIP	USBIP	TMR3IP	CCP2IP	278
TMR3L	Timer3 Reg	gister, Low B	yte						277
TMR3H	Timer3 Reg	gister, High E	Byte						277
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	276
T3CON	RD16	—	T3CKPS1	T3CKPS0	T3CCP1	T3SYNC	TMR3CS	TMR3ON	277
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	278
ANSELH	_			_	ANS11	ANS10	ANS9	ANS8	278

TABLE 13-1:	REGISTERS ASSOCIATED WITH TIMER3 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer3 module.

14.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 14-14 for illustration. The lower seven bits of the associated PWM1CON register (Register 14-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 14-14: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 14-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

14.4.7 PULSE STEERING MODE

In Single Output mode, pulse steering allows any of the PWM pins to be the modulated signal. Additionally, the same PWM signal can be simultaneously available on multiple pins.

Once the Single Output mode is selected (CCP1M<3:2> = 11 and P1M<1:0> = 00 of the CCP1CON register), the user firmware can bring out the same PWM signal to one, two, three or four output pins by setting the appropriate STR<D:A> bits of the PSTRCON register, as shown in Table 14-2.

Note:	The associated TRIS bits must be set to
	output ('0') to enable the pin output driver
	in order to see the PWM signal on the pin.

While the PWM Steering mode is active, CCP1M<1:0> bits of the CCP1CON register select the PWM output polarity for the P1<D:A> pins.

The PWM auto-shutdown operation also applies to PWM Steering mode as described in **Section 14.4.4 "Enhanced PWM Auto-Shutdown mode"**. An auto-shutdown event will only affect pins that have PWM outputs enabled.

REGISTER 14-4: PSTRCON: PULSE STEERING CONTROL REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1
_		—	STRSYNC	STRD	STRC	STRB	STRA
bit 7			•		•		bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	Iown
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4	STRSYNC: S	Steering Sync b	it				
	1 = Output ste	eering update	occurs on next	PWM period			
	0 = Output st	eering update	occurs at the b	eginning of the	e instruction cyo	cle boundary	
bit 3	STRD: Steeri	ng Enable bit [)				
	1 = P1D pin h	nas the PWM w	vaveform with p	oolarity control	from CCP1M<	1:0>	
	0 = P1D pin i	s assigned to p	ort pin				
bit 2	STRC: Steeri	ng Enable bit (2				
	1 = P1C pin h	nas the PWM w	vaveform with p	polarity control	from CCP1M<	1:0>	
	0 = P1C pin is	s assigned to p	ort pin				
bit 1	STRB: Steeri	ng Enable bit E	3				
	1 = P1B pin h	has the PWM w	aveform with p	olarity control	from CCP1M<	1:0>	
	0 = P1B pin is	s assigned to p	ort pin				
bit 0	STRA: Steeri	ng Enable bit A	A				
	1 = P1A pin h	has the PWM w	aveform with p	olarity control	from CCP1M<	1:0>	
	0 = P1A pin is	s assigned to p	ort pin				
					NI 1 1 1 1	000444 0.0	

Note 1: The PWM Steering mode is available only when the CCP1CON register bits CCP1M<3:2> = 11 and P1M<1:0> = 00.

R/W-0) R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7		•		-			bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 7	WCOL: Write 1 = The SSP (must be 0 = No collisi	Collision Deter BUF register is cleared by soft on	ct bit (Transm written while ware)	it mode only) it is still transm	itting the previo	ous word	
bit 6	SSPOV: Rec <u>SPI Slave mo</u> 1 = A new by flow, the SSPBUF 0 = No overfl	eive Overflow In ode: te is received w data in SSPSR , even if only tra ow	ndicator bit ⁽¹⁾ hile the SSPB is lost. Overf ansmitting dat	UF register is s low can only oc a, to avoid setti	till holding the p ccur in Slave m ng overflow (m	previous data. In node. The user nust be cleared	n case of over- must read the by software).
bit 5	SSPEN: Synd 1 = Enables s 0 = Disables	chronous Seria serial port and c serial port and	l Port Enable configures SC configures the	bit ⁽²⁾ K, SDO, SDI ai ese pins as I/O	nd <mark>SS</mark> as seria port pins	l port pins	
bit 4	CKP: Clock F 1 = Idle state 0 = Idle state	Polarity Select b for clock is a h for clock is a lo	oit igh level ow level				
bit 3-0	SSPM<3:0>: 0101 = SPI S 0100 = SPI S 0011 = SPI N 0010 = SPI N 0001 = SPI N	Synchronous S Slave mode, clo Slave mode, clo Aaster mode, cl Aaster mode, cl Aaster mode, cl Aaster mode, cl	Serial Port Mo ck = SCK pin, ck = SCK pin, ock = TMR2 c ock = FOSC/6 ock = FOSC/1 ock = FOSC/4	de Select bits ⁽³ SS pin control SS pin control putput/2 4 6) disabled, SS (enabled	can be used as	i I/O pin
Note 1:	In Master mode, th writing to the SSP	he overflow bit i BUF register.	is not set sinc	e each new rec	eption (and tra	ansmission) is i	nitiated by
2:	When enabled, the	ese pins must b	e properly co	nfigured as inp	ut or output.	0	
3:	Bit combinations r	not specifically I	isted here are	either reserve	d or implement	ted in I ² C mode	e only.

REGISTER 15-2: SSPCON1: MSSP CONTROL 1 REGISTER (SPI MODE)

16.3.1 AUTO-BAUD DETECT

The EUSART module supports automatic detection and calibration of the baud rate.

In the Auto-Baud Detect (ABD) mode, the clock to the BRG is reversed. Rather than the BRG clocking the incoming RX signal, the RX signal is timing the BRG. The Baud Rate Generator is used to time the period of a received 55h (ASCII "U") which is the Sync character for the LIN bus. The unique feature of this character is that it has five rising edges including the Stop bit edge.

Setting the ABDEN bit of the BAUDCON register starts the auto-baud calibration sequence (Figure 16-6). While the ABD sequence takes place, the EUSART state machine is held in Idle. On the first rising edge of the receive line, after the Start bit, the SPBRG begins counting up using the BRG counter clock as shown in Table 16-6. The fifth rising edge will occur on the RX pin at the end of the eighth bit period. At that time, an accumulated value totaling the proper BRG period is left in the SPBRGH:SPBRG register pair, the ABDEN bit is automatically cleared, and the RCIF interrupt flag is set. A read operation on the RCREG needs to be performed to clear the RCIF interrupt. RCREG content should be discarded. When calibrating for modes that do not use the SPBRGH register the user can verify that the SPBRG register did not overflow by checking for 00h in the SPBRGH register.

The BRG auto-baud clock is determined by the BRG16 and BRGH bits as shown in Table 16-6. During ABD, both the SPBRGH and SPBRG registers are used as a 16-bit counter, independent of the BRG16 bit setting. While calibrating the baud rate period, the SPBRGH and SPBRG registers are clocked at 1/8th the BRG base clock rate. The resulting byte measurement is the average bit time when clocked at full speed.

- Note 1: If the WUE bit is set with the ABDEN bit, auto-baud detection will occur on the byte following the Break character (see Section 16.3.3 "Auto-Wake-up on Break").
 - It is up to the user to determine that the incoming character baud rate is within the range of the selected BRG clock source. Some combinations of oscillator frequency and EUSART baud rates are not possible.
 - 3: During the auto-baud process, the auto-baud counter starts counting at 1. Upon completion of the auto-baud sequence, to achieve maximum accuracy, subtract 1 from the SPBRGH:SPBRG register pair.

TABLE 16-6: BRG COUNTER CLOCK RATES

BRG16	Clock BRGH BRG Base Clock		BRG ABD Clock
0	0	Fosc/64	Fosc/512
0	1	Fosc/16	Fosc/128
1	0	Fosc/16	Fosc/128
1	1	Fosc/4	Fosc/32

Note: During the ABD sequence, SPBRG and SPBRGH registers are both used as a 16-bit counter, independent of BRG16 setting.

FIGURE 16-6: AUTOMATIC BAUD RATE CALIBRATION

BRG Value	XXXXh	0000h		001Ch
RX pin		Start	Edge #1 Edge #2 Edge #3 Edge #4	- Edge #5 Stop bit
BRG Clock		Muuuuuu		
ABDEN bit	Set by User —	, , 		Auto Cleared
RCIDL				· · ·
RCIF bit (Interrupt)		,		
Read RCREG		1 1 1		
SPBRG		- - - -	XXh	1Ch
SPBRGH		•	XXh	00h

18.4 Comparator Interrupt Operation

The comparator interrupt flag can be set whenever there is a change in the output value of the comparator. Changes are recognized by means of a mismatch circuit which consists of two latches and an exclusiveor gate (see Figure 18-2 and Figure 18-3). One latch is updated with the comparator output level when the CMxCON0 register is read. This latch retains the value until the next read of the CMxCON0 register or the occurrence of a Reset. The other latch of the mismatch circuit is updated on every Q1 system clock. A mismatch condition will occur when a comparator output change is clocked through the second latch on the Q1 clock cycle. At this point the two mismatch latches have opposite output levels which is detected by the exclusive-or gate and fed to the interrupt circuitry. The mismatch condition persists until either the CMxCON0 register is read or the comparator output returns to the previous state.

- Note 1: A write operation to the CMxCON0 register will also clear the mismatch condition because all writes include a read operation at the beginning of the write cycle.
 - **2:** Comparator interrupts will operate correctly regardless of the state of CxOE.

The comparator interrupt is set by the mismatch edge and not the mismatch level. This means that the interrupt flag can be reset without the additional step of reading or writing the CMxCON0 register to clear the mismatch registers. When the mismatch registers are cleared, an interrupt will occur upon the comparator's return to the previous state, otherwise no interrupt will be generated.

Software will need to maintain information about the status of the comparator output, as read from the CMxCON0 register, or CM2CON1 register, to determine the actual change that has occurred. See Figures 18-4 and 18-5.

The CxIF bit of the PIR2 register is the comparator interrupt flag. This bit must be reset by software by clearing it to '0'. Since it is also possible to write a '1' to this register, an interrupt can be generated.

In mid-range Compatibility mode the CxIE bit of the PIE2 register and the PEIE and GIE bits of the INTCON register must all be set to enable comparator interrupts. If any of these bits are cleared, the interrupt is not enabled, although the CxIF bit of the PIR2 register will still be set if an interrupt condition occurs.

18.4.1 PRESETTING THE MISMATCH LATCHES

The comparator mismatch latches can be preset to the desired state before the comparators are enabled. When the comparator is off the CxPOL bit controls the CxOUT level. Set the CxPOL bit to the desired CxOUT non-interrupt level while the CxON bit is cleared. Then, configure the desired CxPOL level in the same instruction that the CxON bit is set. Since all register writes are performed as a Read-Modify-Write, the mismatch latches will be cleared during the instruction Read phase and the actual configuration of the CxON and CxPOL bits will be occur in the final Write phase.

FIGURE 18-4:

COMPARATOR INTERRUPT TIMING WITHOUT CMxCON0 READ

FIGURE 18-5: COMPARATOR INTERRUPT TIMING WITH CMxCON0 READ

Note 1: If a change in the CMxCON0 register (CxOUT) should occur when a read operation is being executed (start of the Q2 cycle), then the CxIF interrupt flag of the PIR2 register may not get set.

2: When either comparator is first enabled, bias circuitry in the Comparator module may cause an invalid output from the comparator until the bias circuitry is stable. Allow about 1 μ s for bias settling then clear the mismatch condition and interrupt flags before enabling comparator interrupts.

TABLE 25-2: PIC18FXXXX INSTRUCTION SET (CONTINUED)

Mnem	onic,	Description	Qualas	16	-Bit Inst	truction	Word	Status	Natas
Opera	ands	Description	Cycles	MSb			LSb	Affected	Notes
LITERAL	OPERAT	IONS							
ADDLW	k	Add literal and WREG	1	0000	1111	kkkk	kkkk	C, DC, Z, OV, N	
ANDLW	k	AND literal with WREG	1	0000	1011	kkkk	kkkk	Z, N	
IORLW	k	Inclusive OR literal with WREG	1	0000	1001	kkkk	kkkk	Z, N	
LFSR	f, k	Move literal (12-bit) 2nd word	2	1110	1110	00ff	kkkk	None	
		to FSR(f) 1st word		1111	0000	kkkk	kkkk		
MOVLB	k	Move literal to BSR<3:0>	1	0000	0001	0000	kkkk	None	
MOVLW	k	Move literal to WREG	1	0000	1110	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	0000	1101	kkkk	kkkk	None	
RETLW	k	Return with literal in WREG	2	0000	1100	kkkk	kkkk	None	
SUBLW	k	Subtract WREG from literal	1	0000	1000	kkkk	kkkk	C, DC, Z, OV, N	
XORLW	k	Exclusive OR literal with WREG	1	0000	1010	kkkk	kkkk	Z, N	
DATA MEN	MORY ↔	PROGRAM MEMORY OPERATION	1S						
TBLRD*		Table Read	2	0000	0000	0000	1000	None	
TBLRD*+		Table Read with post-increment		0000	0000	0000	1001	None	
TBLRD*-		Table Read with post-decrement		0000	0000	0000	1010	None	
TBLRD+*		Table Read with pre-increment		0000	0000	0000	1011	None	
TBLWT*		Table Write	2	0000	0000	0000	1100	None	
TBLWT*+		Table Write with post-increment		0000	0000	0000	1101	None	
TBLWT*-		Table Write with post-decrement		0000	0000	0000	1110	None	
TBLWT+*		Table Write with pre-increment		0000	0000	0000	1111	None	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTB, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

BNC	;	Branch if	Not Carry		BNN	I	Branch if	Not Negativ	'e
Synt	ax:	BNC n			Synta	ax:	BNN n		
Oper	ands:	-128 ≤ n ≤ 1	27		Oper	ands:	-128 ≤ n ≤ ′	127	
Oper	ation:	if CARRY b (PC) + 2 + 2	it is '0' 2n → PC		Oper	ation:	if NEGATIV (PC) + 2 + ∶	′E bit is '0' 2n → PC	
Statu	is Affected:	None			Statu	s Affected:	None		
Enco	odina:	1110	0011 nni	nn nnnn	Enco	dina:	1110	0111 nnr	nn
Desc	ription:	If the CARR will branch. The 2's con added to the incrementer instruction, PC + 2 + 2r 2-cycle inst	Y bit is '0', the nplement num e PC. Since th d to fetch the r the new addre n. This instruct ruction.	n the program ber '2n' is e PC will have next iss will be ion is then a	Desc	ription:	If the NEG/ program wi The 2's cor added to th incremente instruction, PC + 2 + 2t 2-cycle inst	ATIVE bit is '0', Il branch. nplement numl e PC. Since the d to fetch the r the new addre n. This instruct ruction.	tl be e l ne:
Word	ls:	1			Word	ls:	1		
Cvcl	es:	1(2)			Cvcle	es:	1(2)		
Q C If Ju	ycle Activity: imp:	.(_)			Q C If Ju	ycle Activity: mp:	-(-)		
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	
	Decode	Read literal 'n'	Process Data	Write to PC		Decode	Read literal 'n'	Process Data	١
	No operation	No operation	No operation	No operation		No operation	No operation	No operation	
If No	o Jump:	•	•		lf No	o Jump:	•	•	-
	Q1	Q2	Q3	Q4		Q1	Q2	Q3	
	Decode	Read literal 'n'	Process Data	No operation		Decode	Read literal 'n'	Process Data	
<u>Exar</u>	nple:	HERE	BNC Jump		Exam	<u>nple</u> :	HERE	BNN Jump	
	Before Instruc	ction				Before Instruc	ction		
	PC After Instructio If CARR PC	= adv on Y = 0; = adv	dress (HERE)		PC After Instructio If NEGA PC	= ad on TIVE = 0; = ad	dress (HERE))
	If CARR PC	Y = 1; = ad	dress (HERE	+ 2)		If NEGA PC	TIVE = 1; = ad	dress (HERE	+

	(PC) + 2 +	$2n \rightarrow PC$;	
is Affected:	None			
oding:	1110	0111	nnnn	nnnn
pription:	If the NEG/ program wi The 2's cor added to th incremente instruction, PC + 2 + 2t 2-cycle inst	ATIVE bit Il branch nplemen e PC. Sir d to fetch the new n. This in ruction.	is '0', then t number ' nce the PC n the next address w struction is	n the 2n' is ; will have /ill be s then a
ls:	1			
es:	1(2)			
ycle Activity: Imp:				
Q1	Q2	Q3	3	Q4
Decode	Read literal 'n'	Proce Dat	ess Wr a	ite to PC
No operation	No operation	No opera	tion or	No peration
o Jump:				
Q1	Q2	Q3	3	Q4
Decode	Read literal 'n'	Proce Dat	ess a op	No peration

Example: H	ERE	BNN	Jump	
Before Instruction				
PC	=	address	(HERE)	
After Instruction				
If NEGATIVE	=	0;		
PC	=	address	(Jump)	
If NEGATIVE	=	1;		
PC	=	address	(HERE +	2)

RLN	CF	Rotate Le	eft f (No C	arry)	
Synta	ax:	RLNCF	f {,d {,a}}		
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$			
Oper	ation:	$(f < n >) \rightarrow d$ $(f < 7 >) \rightarrow d$	est <n +="" 1="">, est<0></n>		
Statu	s Affected:	N, Z			
Enco	ding:	0100	01da f	fff	ffff
Desc	ription:	The conter one bit to the is placed in stored back If 'a' is '0', the GPR bank If 'a' is '0' and set is enab in Indexed mode when Section 25 Bit-Oriented Literal Offer	the of register the left. If 'd' the W. If 'd' is k in register the Access E the BSR is u (default). and the exter led, this inst Literal Offser the ver f \leq 95 5.2.3 "Byte- ded Instruction set Mode" register	er fr are is '0', ti '1', the 'f' (defa Bank is sed to s nded ir ruction et Addr (5Fh). Orient for deta er f	Fotated the result result is ault). selected. select the astruction operates essing See ed and Indexed ails.
Word	le:	1]
Cycle		1			
	vole Activity:	I			
QU	Q1	Q2	Q3		Q4
	Decode	Read register 'f'	Process Data	V de:	Vrite to stination
<u>Exan</u>	nple: Before Instruc REG After Instructic	RLNCF tion = 1010 1 on	REG, 1 011	, 0	
	REG	= 0101 0	TTT		

RRCF	Rotate Ri	ght f throug	h Carry
Syntax:	RRCF f{,	d {,a}}	
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \\ a \in [0,1] \end{array}$		
Operation:	$(f < n >) \rightarrow de$ $(f < 0 >) \rightarrow C$ $(C) \rightarrow destermined$	est <n 1="" –="">, , <7></n>	
Status Affected:	C, N, Z		
Encoding:	0011	00da fff	f ffff
	If 'd' is '1', t register 'f' (If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enabl	he result is pla default). he Access Bar he BSR is use (default). nd the extende led, this instruct	nk is selected to select the ed instruction
	mode when Section 25 Bit-Oriente Literal Offs	Literal Offset A never $f \le 95$ (5F .2.3 "Byte-Ori ed Instruction set Mode" for	ddressing Th). See iented and s in Indexee details.
	mode when Section 25 Bit-Oriente Literal Offs	Literal Offset A hever f ≤ 95 (5F 2.3 "Byte-Ori d Instruction set Mode" for register	Addressing Fh). See iented and s in Indexed details.
Words:	n indexed wher Section 25 Bit-Oriente Literal Offs	Literal Offset A hever f ≤ 95 (5f .2.3 "Byte-Ori ed Instruction set Mode" for register	Addressing Fh). See Sented and S in Indexed details.
Words: Cycles:	n indexed mode when Section 25 Bit-Oriente Literal Offs 1	Literal Onset A never f ≤ 95 (5f .2.3 "Byte-Ori ad Instruction set Mode" for register	Addressing Fh). See iented and s in Indexed details.
Words: Cycles: Q Cycle Activity:	n indexed mode when Section 25 Bit-Oriente Literal Offs C 1	Literal Onset A never f ≤ 95 (5f .2.3 "Byte-Ori ed Instruction set Mode" for register	Addressing Fh). See iented and s in Indexed details. f
Words: Cycles: Q Cycle Activity: Q1	n indexed when Section 25 Bit-Oriente Literal Offs C 1 1 2 22	Literal Offset A lever f ≤ 95 (5f .2.3 "Byte-Ori del Instruction set Mode" for register	Addressing Fh). See Sented and s in Indexed details. f
Words: Cycles: Q Cycle Activity: Q1 Decode	n indexed mode wher Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f'	Clieral Offset A lever f ≤ 95 (5f .2.3 "Byte-Ori ed Instruction set Mode" for register Q3 Process Data	Addressing Th). See iented and s in Indexed details. f Q4 Write to destination
Words: Cycles: Q Cycle Activity: Q1 Decode Example:	n indexed mode wher Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Read register 'f'	Q3 Process Data REG. 0. 0	Addressing Th). See iented and s in Indexed details. f Q4 Write to destination
Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct	n indexed when section 25 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f' RRCF	Q3 Process Data REG, 0, 0	Addressing Fh). See iented and s in Indexed details. f Q4 Write to destination
Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG	n indexed mode wher Section 25 Bit-Oriente Literal Offs C 1 1 1 2 Q2 Read register 'f' RRCF ction = 1110 0	Q3 Process Data REG, 0, 0 0110	Addressing Th). See iented and s in Indexed details. f Q4 Write to destination
Words: Cycles: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instruction	mode when Section 25 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f' RRCF ction = 1110 C = 0	Q3 Process Data REG, 0, 0 0110	Addressing Fh). See iented and s in Indexed details. f Q4 Write to destination
Words: Q Cycle Activity: Q1 Decode Example: Before Instruct REG C After Instructi REG	n indexed when section 25 Bit-Oriente Literal Offs C 1 1 1 Q2 Read register 'f' RRCF ction = 1110 C on = 1110 C	Literal Onset A lever $f \le 95$ (5f .2.3 "Byte-Oried instruction set Mode" for register Q3 Process Data REG, 0, 0 0110	Addressing Fh). See iented and s in Indexed details. f Q4 Write to destination

XORWF		Exclusive OR W with f						
Syntax:		XORWF	XORWF f {,d {,a}}					
Operands:		$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ d $\in [0,1]$ a $\in [0,1]$					
Oper	ation:	(W) .XOR.	(W) .XOR. (f) \rightarrow dest					
Statu	is Affected:	N, Z						
Enco	oding:	0001	10da	ffff	ffff			
Description:		Exclusive (register 'f'. in W. If 'd' i in the regis If 'a' is '0', If 'a' is '1', GPR bank If 'a' is '0' a set is enab in Indexed mode whe Section 25 Bit-Orient Literal Off	Exclusive OR the contents of W with register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.					
Word	ds:	1	1					
Cycles:		1						
Q Cycle Activity:								
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Proce Dat	ess V a de	Vrite to stination			
Exan	nple: Before Instruc REG W After Instructic REG W	XORWF tion = AFh = B5h on = 1Ah = B5h	REG, 1,	0				

CALLW		Subroutine Call Using WREG						
Syntax:		CALLW	CALLW					
Operands:		None	None					
Operation:		$(PC + 2) \rightarrow$ $(W) \rightarrow PCL$ (PCLATH) - (PCLATU) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$					
Statu	is Affected:	None	None					
Enco	oding:	0000	0000	0001	0100			
Description		First, the re pushed onto contents of existing value contents of latched into respectively executed as new next in Unlike CAL update W, S	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, Status or BSR.					
Word	ls:	1						
Cvcles:		2	2					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read WREG	PUSH PC stack	to or	No peration			
	No	No	No		No			
	operation	operation	operatio	n op	peration			
Example:HERECALLWBefore Instruction $PC =$ $PCLATH =$ $PCLATU =$ $O0h$ $PCLATU =$ $O0h$ $W =$ $O6h$ After Instruction $PC =$ $PCLATH =$ $PC =$ $O01006h$ $TOS =$ $address (HERE + 2)$ $PCLATH =$ $PCLATH =$ $PCLATU =$ $O0h$ $W =$ $O6h$								

MOVSF		Move Indexed to f							
Syntax:		MOVSF [MOVSF [z _s], f _d						
Operands:		$0 \le z_s \le 12$ $0 \le f_d \le 409$	$0 \le z_s \le 127$ $0 \le f_d \le 4095$						
Operation:		((FSR2) + 2	$((FSR2) + z_s) \rightarrow f_d$						
Statu	s Affected:	None	None						
Encoding: 1st word (source) 2nd word (destin.)		1110 1111	1011 ffff	0zz fff	z zzzz _s f ffff _d				
Description:		The conter moved to d actual add determined offset 'z _s ' ir FSR2. The register is s 'f _d ' in the su can be any space (000 The MOVSE PCL, TOSU destination If the result an indirect value retur	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset 'z _s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the value returned will be 00h.						
Words:		2	2						
Cycle	es:	2	2						
Q C	vcle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Determine source addr	Determ source a	iine addr	Read source reg				
	Decode	No	No		Write				
		operation No dummy read	operat	ion	register 'f' (dest)				
Example: MOVSF [05h], REG2									
	Before Instruc FSR2 Contents of 85h REG2 After Instructio FSR2 Contents of 85h PEC2	tion = 80 = 33 = 11 on = 80 = 33	bh Sh h Dh						

Unless otherwise noted, V_{IN} = 5V, F_{OSC} = 300 kHz, C_{IN} = 0.1 μ F, T_A = 25°C.

FIGURE 28-7: IDD Typical, EC Oscillator, Medium-Power Mode, PIC18LF1XK50 Only.

FIGURE 28-8: IDD Maximum, EC Oscillator, Medium-Power Mode, PIC18LF1XK50 Only.

FIGURE 28-9: IDD Typical, EC Oscillator, Medium-Power Mode, PIC18F1XK50 Only.

FIGURE 28-10: IDD Maximum, EC Oscillator, Medium-Power Mode, PIC18F1XK50 Only.

FIGURE 28-11: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC18LF1XK50 Only.

FIGURE 28-12: IDD, LFINTOSC Mode, Fosc = 31 kHz, PIC18F1XK50 Only.