

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-VQFN Exposed Pad
Supplier Device Package	20-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf13k50-i-mq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 Other Special Features

- **Memory Endurance:** The Flash cells for both program memory and data EEPROM are rated to last for many thousands of erase/write cycles – up to 1K for program memory and 100K for EEPROM. Data retention without refresh is conservatively estimated to be greater than 40 years.
- Self-programmability: These devices can write to their own program memory spaces under internal software control. Using a bootloader routine located in the code protected Boot Block, it is possible to create an application that can update itself in the field.
- Extended Instruction Set: The PIC18(L)F1XK50 family introduces an optional extension to the PIC18 instruction set, which adds eight new instructions and an Indexed Addressing mode. This extension has been specifically designed to optimize re-entrant application code originally developed in high-level languages, such as C.
- Enhanced CCP module: In PWM mode, this module provides 1, 2 or 4 modulated outputs for controlling half-bridge and full-bridge drivers. Other features include:
 - Auto-Shutdown, for disabling PWM outputs on interrupt or other select conditions
 - Auto-Restart, to reactivate outputs once the condition has cleared
 - Output steering to selectively enable one or more of four outputs to provide the PWM signal.
- Enhanced Addressable USART: This serial communication module is capable of standard RS-232 operation and provides support for the LIN bus protocol. Other enhancements include automatic baud rate detection and a 16-bit Baud Rate Generator for improved resolution.
- 10-bit A/D Converter: This module incorporates programmable acquisition time, allowing for a channel to be selected and a conversion to be initiated without waiting for a sampling period and thus, reduce code overhead.
- Extended Watchdog Timer (WDT): This enhanced version incorporates a 16-bit postscaler, allowing an extended time-out range that is stable across operating voltage and temperature. See Section 27.0 "Electrical Specifications" for time-out periods.

1.3 Details on Individual Family Members

Devices in the PIC18(L)F1XK50 family are available in 20-pin packages. Block diagrams for the two groups are shown in Figure 1-1.

The devices are differentiated from each other in the following ways:

- 1. Flash program memory:
 - 8 Kbytes for PIC18F13K50/PIC18LF13K50
 - 16 Kbytes for PIC18F14K50/PIC18LF14K50
- 2. On-chip 3.2V LDO regulator for PIC18F13K50 and PIC18F14K50.

All other features for devices in this family are identical. These are summarized in Table 1-1.

The pinouts for all devices are listed in Table 1 and I/O description are in Table 1-2.

2.6 Oscillator Control

The Oscillator Control (OSCCON) (Register 2-1) and the Oscillator Control 2 (OSCCON2) (Register 2-2) registers control the system clock and frequency selection options.

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R-q	R-0	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HFIOFS	SCS1	SCS0
bit 7		1			•		bit (
Lonondi							
Legend:		Muitable bit				a denometo o	n eenditien
R = Readab		Writable bit	•	emented bit, re		q = depends o	
-n = Value a	at POR 1'=	Bit is set	'0' = Bit is c	lieared		x = Bit is unkn	own
bit 7		nters Idle mod	e on SLEEP ins				
bit 6-4	IRCF<2:0>: I 111 = 16 MHz 110 = 8 MHz 101 = 4 MHz 100 = 2 MHz 011 = 1 MHz 010 = 500 kH 001 = 250 kH 000 = 31 kHz	z (3) Iz Iz	tor Frequency \$	Select bits			
bit 3	1 = Device is	running from		ed by FOSC<2	::0> of the CON OSC or LFINTC		
bit 2	1 = HFINTOS	NTOSC Frequ SC frequency i SC frequency i					
bit 1-0	SCS<1:0>: S 1x = Internal 01 = Seconda	ystem Clock S oscillator block ary (Timer1) os	elect bits	G1H[FOSC<3:	0>]).		
2 : S	Reset state depen Source selected b	y the INTSRC	bit of the OSC	TUNE register,	see text.		

3: Default output frequency of HFINTOSC on Reset.

3.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

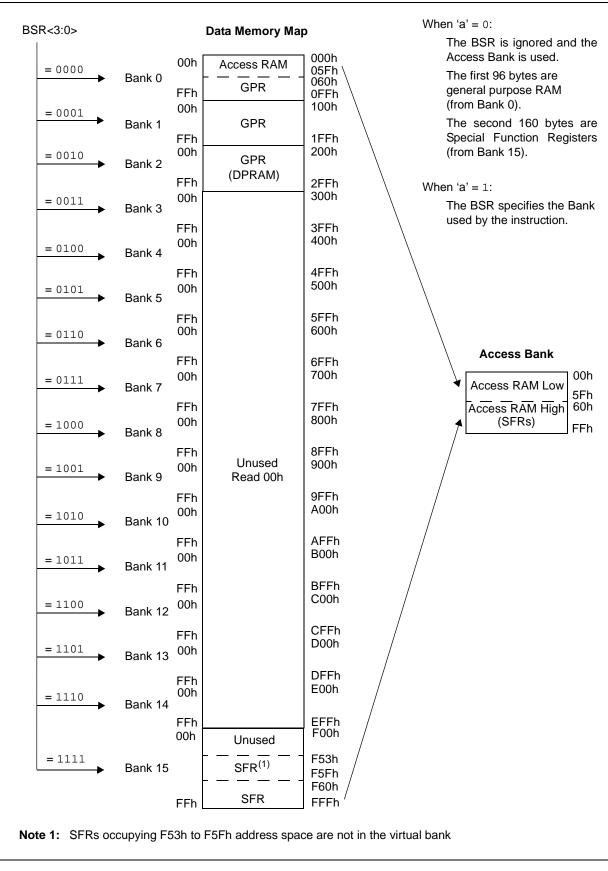
Additional detailed information on the operation of the Flash program memory is provided in **Section 4.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 5.0 "Data EEPROM Memory"**.

3.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

This family of devices contain the following:

- PIC18F13K50: 8 Kbytes of Flash memory, up to 4,096 single-word instructions
- PIC18F14K50: 16 Kbytes of Flash memory, up to 8,192 single-word instructions


PIC18 devices have two interrupt vectors and one Reset vector. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory map for PIC18(L)F1XK50 devices is shown in Figure 3-1. Memory block details are shown in Figure 24-2.

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC18(L)F1XK50 DEVICES

	PC<	:20:0>		
CALL, RCALL, RET		21 <u></u>		
RETFIE, RETLW	01			
	Stack	Level 1		
	<u> </u>	•		
	Stack L	_evel 31		
	Reset	Vector	0000h	.
	High Priority I	nterrupt Vector	0008h	
	Low Priority Ir	nterrupt Vector	0018h	
On-Chip Program Memory 1FFFh 2000h	On-Chip Program Memory 3FFFh			
PIC18F13K50	4000h			
	PIC18F14K50			User Memory Space
Read '0'	Read '0'			
			1FFFFFh 200000h	<u> </u>

FIGURE 3-6: DATA MEMORY MAP FOR PIC18F14K50/PIC18LF14K50 DEVICES

EXAMPLE 4-3:	WRITI	NG TO FLASH PROGR	AM MEMORY (CONTINUED)
	DECFSZ BRA	COUNTER WRITE_WORD_TO_HREGS	; loop until holding registers are full
PROGRAM_MEMORY			
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE_BYTE_TO_HREGS	;
	BSF	INTCON, GIE	; re-enable interrupts
	BCF	EECON1, WREN	; disable write to memory
			-

WRITING TO FLACU BROODAM MEMORY (CONTINUED)

4.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

4.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed <u>if needed</u>. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

4.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See Section 24.0 "Special Features of the CPU" for more detail.

4.6 Flash Program Operation During Code Protection

See Section 24.3 "Program Verification and Code Protection" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TBLPTRU	—	—	bit 21	Program Me	emory Table F	Pointer Uppe	r Byte (TBLP	TR<20:16>)	275
TBPLTRH	Program Me	emory Table	Pointer H	ligh Byte (TE	BLPTR<15:8	S>)			275
TBLPTRL	Program Memory Table Pointer Low Byte (TBLPTR<7:0>)							275	
TABLAT	Program Memory Table Latch							275	
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	275
EECON2	EEPROM Control Register 2 (not a physical register)							277	
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	277
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCLIP	USBIP	TMR3IP	_	278
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCLIF	USBIF	TMR3IF	—	278
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE	USBIE	TMR3IE		278

 TABLE 4-3:
 REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

Pin	Function	TRIS Setting	I/O	I/O Type	Description
RC0/AN4/	RC0	0	0	DIG	LATC<0> data output.
C12IN+/VREF+/		1	1	ST	PORTC<0> data input.
INT0	AN4	1	Ι	ANA	A/D input channel 4.
	C12IN+	1	Ι	ANA	Comparators C1 and C2 non-inverting input. Analog select is shared with ADC.
	Vref+	1	Ι	ANA	ADC and comparator voltage reference high input.
	INT0	1		ST	External Interrupt 0 input.
RC1/AN5/	RC1	0	0	DIG	LATC<1> data output.
C12IN1-/VREF-/		1		ST	PORTC<1> data input.
INT1	AN5	1		ANA	A/D input channel 5.
	C12IN1-	1	Ι	ANA	Comparators C1 and C2 inverting input. Analog select is shared with ADC.
	VREF-	1	I	ANA	ADC and comparator voltage reference low input.
	INT1	1		ST	External Interrupt 1 input.
RC2/AN6/	RC2	0	0	DIG	LATC<2> data output.
C12IN2-/CVREF/		1		ST	PORTC<2> data input.
P1D/INT2	AN6	1	Ι	ANA	A/D input channel 6.
	C12IN2-	1	Ι	ANA	Comparators C1 and C2 inverting input, channel 2. Analog select is shared with ADC.
	CVREF	х	0	ANA	Voltage reference output. Enabling this feature disables digital I/O.
	P1D	0	0	DIG	ECCP1 Enhanced PWM output, channel D. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
	INT2	1	Ι	ST	External Interrupt 2 input.
RC3/AN7/	RC3	0	0	DIG	LATC<3> data output.
C12IN3-/P1C/		1	Ι	ST	PORTC<3> data input.
PGM	AN7	1	Ι	ANA	A/D input channel 7.
	C12IN3-	1	I	ANA	Comparators C1 and C2 inverting input, channel 3. Analog select is shared with ADC.
	P1C	0	0	DIG	ECCP1 Enhanced PWM output, channel C. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.
	PGM	x	Ι	ST	Single-Supply Programming mode entry (ICSP [™]). Enabled by LVP Configuration bit; all other pin functions disabled.
RC4/C12OUT/	RC4	0	0	DIG	LATC<4> data output.
P1B		1	Ι	ST	PORTC<4> data input.
	C12OUT	0	0	DIG	Comparator 1 and 2 output; takes priority over port data.
	P1B	0	0	DIG	ECCP1 Enhanced PWM output, channel B. May be configured for tri-state during Enhanced PWM shutdown events. Takes priority over port data.

 TABLE 9-14:
 PORTC I/O SUMMARY

Legend: DIG = Digital level output; TTL = TTL input buffer; ST = Schmitt Trigger input buffer; ANA = Analog level input/output; $I^2C/SMB = I^2C/SMB$ input buffer; x = Don't care (TRIS bit does not affect port direction or is overridden for this option).

9.5 Port Slew Rate Control

The output slew rate of each port is programmable to select either the standard transition rate or a reduced transition rate of 0.1 times the standard to minimize EMI. The reduced transition time is the default slew rate for all ports.

REGISTER 9-17: SLRCON: SLEW RATE CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
—			—	—	SLRC	SLRB	SLRA
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-3	Unimplemented: Read as '0'
bit 2	SLRC: PORTC Slew Rate Control bit
	1 = All outputs on PORTC slew at 0.1 times the standard rate0 = All outputs on PORTC slew at the standard rate
bit 1	SLRB: PORTB Slew Rate Control bit
	1 = All outputs on PORTB slew at 0.1 times the standard rate0 = All outputs on PORTB slew at the standard rate
bit 0	SLRA: PORTA Slew Rate Control bit
	1 = All outputs on PORTA slew at 0.1 times the standard rate ⁽¹⁾ 0 = All outputs on PORTA slew at the standard rate

Note 1: The slew rate of RA4 defaults to standard rate when the pin is used as CLKOUT.

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0
bit 7							bit C
Legend:							
R = Readable		W = Writable	bit	-	mented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unk	nown
bit 7	WCOL: Writ	e Collision Dete	ct bit				
		ansmit mode:					
	mission	to the SSPBUF i to be started (m			the I ² C conditi	ons were not va	alid for a trans
	0 = No collis						
	software	PBUF register is e)	written while	it is still transn	nitting the previ	ous word (must	be cleared b
	0 = No collis <u>In Receive n</u> This is a "do	node (Master or	Slave modes)	<u>::</u>			
bit 6		ceive Overflow I	ndicator bit				
	In Receive n 1 = A byte i	<u>node:</u> s received while		register is stil	I holding the pr	evious byte (m	ust be cleare
	by softw 0 = No over						
	<u>In Transmit r</u> This is a "do	<u>mode:</u> n't care" bit in Ti	ansmit mode.				
bit 5	SSPEN: Syr	nchronous Seria	I Port Enable	bit			
	0 = Disables	the serial port a serial port and ed, the SDA and	configures the	ese pins as I/O	port pins		S
h:+ 1	When enabled, the SDA and SCL pins must be properly configured as inputs. CKP: SCK Release Control bit						
bit 4		Release Control	bit				
DIT 4	<u>In Slave mod</u> 1 = Release	<u>de:</u> clock					
DIT 4	1 = Release 0 = Holds clo	<u>de:</u> clock ock low (clock st			setup time		
DIT 4	1 = Release	<u>de:</u> clock ock low (clock st ode:			setup time		
bit 3-0	1 = Release 0 = Holds clo <u>In Master mo</u> Unused in th	<u>de:</u> clock ock low (clock st ode:	retch), used to	o ensure data	setup time		
	1 = Release 0 = Holds clo In Master modulused in the SSPM<3:0> 1111 = I^2C S 1110 = I^2C S 1011 = I^2C H 1000 = I^2C H 0111 = I^2C S	<u>de:</u> clock ock low (clock st ode: nis mode.	retch), used to Serial Port Mo bit address wit olled Master m ock = Fosc/(4 bit address	o ensure data de Select bits th Start and Sto o Start and Sto ode (Slave Idl	top bit interrupt op bit interrupts e)		

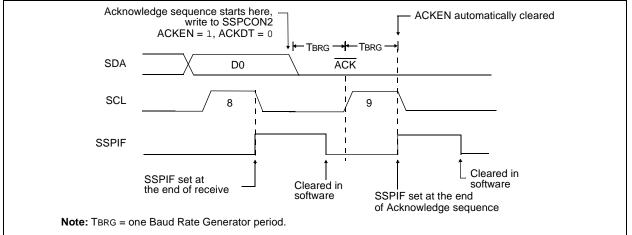
REGISTER 15-4: SSPCON1: MSSP CONTROL 1 REGISTER (I²C[™] MODE)

15.3.12 ACKNOWLEDGE SEQUENCE TIMING

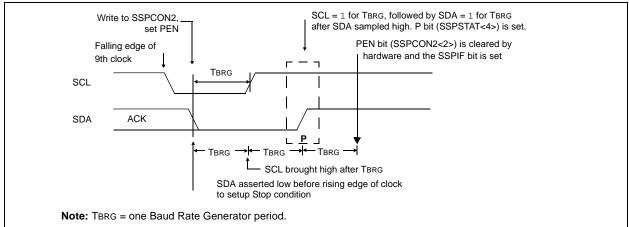
An Acknowledge sequence is enabled by setting the Acknowledge Sequence Enable bit, ACKEN bit of the SSPCON2 register. When this bit is set, the SCL pin is pulled low and the contents of the Acknowledge data bit are presented on the SDA pin. If the user wishes to generate an Acknowledge, then the ACKDT bit should be cleared. If not, the user should set the ACKDT bit before starting an Acknowledge sequence. The Baud Rate Generator then counts for one rollover period (TBRG) and the SCL pin is deasserted (pulled high). When the SCL pin is sampled high (clock arbitration), the Baud Rate Generator counts for TBRG. The SCL pin is then pulled low. Following this, the ACKEN bit is automatically cleared, the Baud Rate Generator is turned off and the MSSP module then goes into Idle mode (Figure 15-23).

15.3.12.1 WCOL Status Flag

If the user writes the SSPBUF when an Acknowledge sequence is in progress, then WCOL is set and the contents of the buffer are unchanged (the write does not occur).


15.3.13 STOP CONDITION TIMING

A Stop bit is asserted on the SDA pin at the end of a receive/transmit by setting the Stop Sequence Enable bit, PEN bit of the SSPCON2 register. At the end of a receive/transmit, the SCL line is held low after the falling edge of the ninth clock. When the PEN bit is set, the master will assert the SDA line low. When the SDA line is sampled low, the Baud Rate Generator is reloaded and counts down to '0'. When the Baud Rate Generator times out, the SCL pin will be brought high and one TBRG (Baud Rate Generator rollover count) later, the SDA pin will be deasserted. When the SDA pin is sampled high while SCL is high, the P bit of the SSPSTAT register is set. A TBRG later, the PEN bit is cleared and the SSPIF bit is set (Figure 15-24).


15.3.13.1 WCOL Status Flag

If the user writes the SSPBUF when a Stop sequence is in progress, then the WCOL bit is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-23: ACKNOWLEDGE SEQUENCE WAVEFORM

FIGURE 15-24: STOP CONDITION RECEIVE OR TRANSMIT MODE

16.3.2 AUTO-BAUD OVERFLOW

During the course of automatic baud detection, the ABDOVF bit of the BAUDCON register will be set if the baud rate counter overflows before the fifth rising edge is detected on the RX pin. The ABDOVF bit indicates that the counter has exceeded the maximum count that can fit in the 16 bits of the SPBRGH:SPBRG register pair. After the ABDOVF has been set, the counter continues to count until the fifth rising edge is detected on the RX pin. Upon detecting the fifth RX edge, the hardware will set the RCIF Interrupt Flag and clear the ABDEN bit of the BAUDCON register. The RCIF flag can be subsequently cleared by reading the RCREG register. The ABDOVF flag of the BAUDCON register can be cleared by software directly.

To terminate the auto-baud process before the RCIF flag is set, clear the ABDEN bit then clear the ABDOVF bit of the BAUDCON register. The ABDOVF bit will remain set if the ABDEN bit is not cleared first.

16.3.3 AUTO-WAKE-UP ON BREAK

During Sleep mode, all clocks to the EUSART are suspended. Because of this, the Baud Rate Generator is inactive and a proper character reception cannot be performed. The Auto-Wake-up feature allows the controller to wake-up due to activity on the RX/DT line. This feature is available only in Asynchronous mode.

The Auto-Wake-up feature is enabled by setting the WUE bit of the BAUDCON register. Once set, the normal receive sequence on RX/DT is disabled, and the EUSART remains in an Idle state, monitoring for a wake-up event independent of the CPU mode. A wake-up event consists of a high-to-low transition on the RX/DT line. (This coincides with the start of a Sync Break or a wake-up signal character for the LIN protocol.)

The EUSART module generates an RCIF interrupt coincident with the wake-up event. The interrupt is generated synchronously to the Q clocks in normal CPU operating modes (Figure 16-7), and asynchronously if the device is in Sleep mode (Figure 16-8). The interrupt condition is cleared by reading the RCREG register.

The WUE bit is automatically cleared by the low-to-high transition on the RX line at the end of the Break. This signals to the user that the Break event is over. At this point, the EUSART module is in Idle mode waiting to receive the next character.

16.3.3.1 Special Considerations

Break Character

To avoid character errors or character fragments during a wake-up event, the wake-up character must be all zeros.

When the wake-up is enabled the function works independent of the low time on the data stream. If the WUE bit is set and a valid non-zero character is received, the low time from the Start bit to the first rising edge will be interpreted as the wake-up event. The remaining bits in the character will be received as a fragmented character and subsequent characters can result in framing or overrun errors.

Therefore, the initial character in the transmission must be all '0's. This must be ten or more bit times, 13-bit times recommended for LIN bus, or any number of bit times for standard RS-232 devices.

Oscillator Startup Time

Oscillator start-up time must be considered, especially in applications using oscillators with longer start-up intervals (i.e., LP, XT or HS/PLL mode). The Sync Break (or wake-up signal) character must be of sufficient length, and be followed by a sufficient interval, to allow enough time for the selected oscillator to start and provide proper initialization of the EUSART.

WUE Bit

The wake-up event causes a receive interrupt by setting the RCIF bit. The WUE bit is cleared by hardware by a rising edge on RX/DT. The interrupt condition is then cleared by software by reading the RCREG register and discarding its contents.

To ensure that no actual data is lost, check the RCIDL bit to verify that a receive operation is not in process before setting the WUE bit. If a receive operation is not occurring, the WUE bit may then be set just prior to entering the Sleep mode.

17.3 A/D Acquisition Requirements

For the ADC to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The Analog Input model is shown in Figure 17-5. The source impedance (Rs) and the internal sampling switch (Rss) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (Rss) impedance varies over the device voltage (VDD), see Figure 17-5. The maximum recommended impedance for analog sources is 10 k Ω . As the source impedance is decreased, the acquisition time may be decreased. After the analog input channel is selected (or changed),

an A/D acquisition must be done before the conversion can be started. To calculate the minimum acquisition time, Equation 17-1 may be used. This equation assumes that 1/2 LSb error is used (1024 steps for the ADC). The 1/2 LSb error is the maximum error allowed for the ADC to meet its specified resolution.

EQUATION 17-1: ACQUISITION TIME EXAMPLE

Assumptions: Temperature =
$$50^{\circ}C$$
 and external impedance of $10k\Omega 3.0V$ VDD
 $TACQ = Amplifier Settling Time + Hold Capacitor Charging Time + Temperature Coefficient$
 $= TAMP + TC + TCOFF$

=
$$5\mu s + TC + [(Temperature - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

The value for TC can be approximated with the following equations:

$$V_{APPLIED}\left(1 - \frac{1}{2047}\right) = V_{CHOLD} \qquad ;[1] V_{CHOLD} \ charged \ to \ within \ 1/2 \ lsb$$

$$V_{APPLIED}\left(1 - e^{\frac{-Tc}{RC}}\right) = V_{CHOLD} \qquad ;[2] \ V_{CHOLD} \ charge \ response \ to \ V_{APPLIED}$$

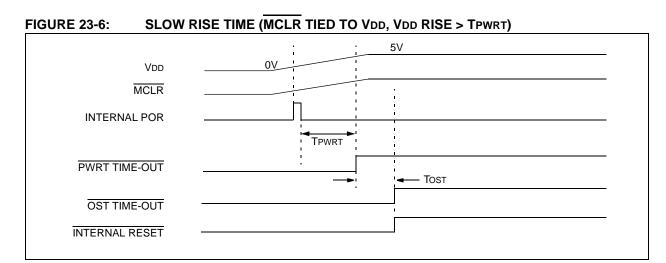
$$V_{APPLIED}\left(1-e^{\frac{-1}{RC}}\right) = V_{APPLIED}\left(1-\frac{1}{2047}\right) \quad (combining [1] and [2])$$

Solving for TC:

$$T_{C} = -C_{HOLD}(R_{IC} + R_{SS} + R_{S}) \ln(1/2047)$$

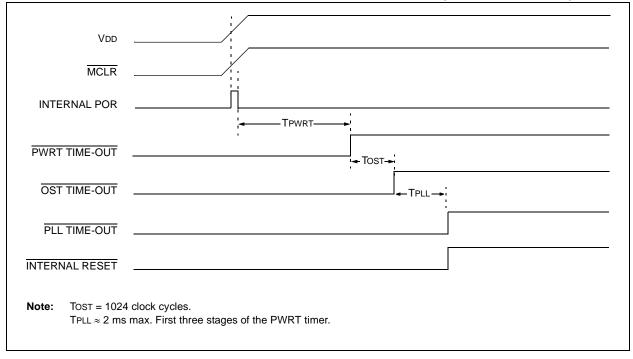
= -13.5pF(1k\Omega + 700\Omega + 10k\Omega) \ln(0.0004885)
= 1.20\u03c0s

Therefore:


$$TACQ = 5\mu s + 1.20\mu s + [(50^{\circ}C - 25^{\circ}C)(0.05\mu s/^{\circ}C)]$$

= 7.45\mu s

Note 1: The reference voltage (VREF) has no effect on the equation, since it cancels itself out.


- 2: The charge holding capacitor (CHOLD) is discharged after each conversion.
- 3: The maximum recommended impedance for analog sources is 10 k Ω . This is required to meet the pin leakage specification.

1/2 lsb

PIC18(L)F1XK50

FIGURE 23-7: TIME-OUT SEQUENCE ON POR W/PLL ENABLED (MCLR TIED TO VDD)

24.3.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits internal and external writes to data EEPROM. The CPU can always read data EEPROM under normal operation, regardless of the protection bit settings.

24.3.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

24.4 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

24.5 In-Circuit Serial Programming

PIC18(L)F1XK50 devices can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

24.6 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 24-4 shows which resources are required by the background debugger.

TABLE 24-4 :	DEBUGGER RESOURCES

I/O pins:	RA0, RA1
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to the following pins:

- MCLR/VPP/RA3
- VDD
- Vss
- RA0
- RA1

This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

24.7 Single-Supply ICSP Programming

The LVP Configuration bit enables Single-Supply ICSP Programming (formerly known as Low-Voltage ICSP Programming or LVP). When Single-Supply Programmed <u>without</u> requiring high voltage being applied to the MCLR/VPP/RA3 pin, but the RC3/PGM pin is then dedicated to controlling Program mode entry and is not available as a general purpose I/O pin.

While programming, using Single-Supply Programming mode, VDD is applied to the MCLR/VPP/RA3 pin as in normal execution mode. To enter Programming mode, VDD is applied to the PGM pin.

- Note 1: High-voltage programming is always available, regardless of the state of the LVP bit or the PGM pin, by applying VIHH to the MCLR pin.
 - 2: By default, Single-Supply ICSP is enabled in unprogrammed devices (as supplied from Microchip) and erased devices.
 - **3:** When Single-Supply Programming is enabled, the RC3 pin can no longer be used as a general purpose I/O pin.
 - 4: When LVP is enabled, externally pull the PGM pin to Vss to allow normal program execution.

If Single-Supply ICSP Programming mode will not be used, the LVP bit can be cleared. RC3/PGM then becomes available as the digital I/O pin, RC3. The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the MCLR/ VPP/RA3 pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device.

Memory that is not code-protected can be erased using either a block erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a block erase is required.

25.2.5 SPECIAL CONSIDERATIONS WITH MICROCHIP MPLAB[®] IDE TOOLS

The latest versions of Microchip's software tools have been designed to fully support the extended instruction set of the PIC18(L)F1XK50 family of devices. This includes the MPLAB[®] C18 C compiler, MPASM assembly language and MPLAB Integrated Development Environment (IDE).

When selecting a target device for software development, MPLAB IDE will automatically set default Configuration bits for that device. The default setting for the XINST Configuration bit is '0', disabling the extended instruction set and Indexed Literal Offset Addressing mode. For proper execution of applications developed to take advantage of the extended instruction set, XINST must be set during programming.

To develop software for the extended instruction set, the user must enable support for the instructions and the Indexed Addressing mode in their language tool(s). Depending on the environment being used, this may be done in several ways:

- A menu option, or dialog box within the environment, that allows the user to configure the language tool and its settings for the project
- · A command line option
- A directive in the source code

These options vary between different compilers, assemblers and development environments. Users are encouraged to review the documentation accompanying their development systems for the appropriate information.

27.3 DC Characteristics

TABLE 27-1: SUPPLY VOLTAGE, PIC18(L)F1XK50-I/E (INDUSTRIAL, EXTENDED)

PIC18LF1XK50			Standard Operating Conditions (unless otherwise stated)							
PIC18F1	XK50		Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Sym. Characteristic Min. Typ.† Max. Units Conditions								
D001	Vdd	Supply Voltage								
		PIC18LF1XK50	2.0 3.0 1.8		3.6 3.6 3.6	V V V	$\begin{array}{l} \mbox{Fosc} \leq 20 \mbox{ MHz} \\ \mbox{Fosc} \leq 48 \mbox{ MHz} \\ \mbox{Fosc} \leq 16 \mbox{ MHz} \end{array}$			
D001		PIC18F1XK50	2.0 3.0 1.8		5.5 5.5 5.5	V V ≤	$\begin{array}{l} Fosc \leq 20 \; MHz \\ Fosc \leq 48 \; MHz \\ Fosc \leq 16 \; MHz \end{array}$			
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾								
		PIC18LF1XK50	1.5	—	—	V	Device in Sleep mode			
D002*		PIC18F1XK50	1.7	—	_	V	Device in Sleep mode			
	VPOR*	Power-on Reset Release Voltage		1.6		V				
	VPORR*	Power-on Reset Rearm Voltage		1.4		V				
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	—	—	V/ms				

* These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

DC CHA	RACTER	ISTICS	Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param. No.	Sym.	Characteristic	Min.	Typ.† Max. U		Units	Conditions	
		Internal Program Memory Programming Specifications ⁽¹⁾						
D110	VPP	Voltage on MCLR/VPP/RA3 pin	8	_	9	V	(Note 3, Note 4)	
D113	IDDP	Supply Current during Programming	_	_	10	mA		
		Data EEPROM Memory ⁽²⁾						
D120	ED	Byte Endurance	100K	_	_	E/W	-40°C to +85°C	
D121	Vdrw	VDD for Read/Write	VDDMIN	_	VDDMAX	V	Using EECON to read/write	
D122	TDEW	Erase/Write Cycle Time	_	3	4	ms		
D123	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
D130		Program Flash Memory						
	Eр	Cell Endurance	10k	—	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131	Vpr	VDD for Read	Vddmin	_	VDDMAX	V		
D131A		Voltage on MCLR/VPP during Erase/Program	8.0	—	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131B	VBE	VDD for Bulk Erase	2.7	—	VDDMAX	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132	Vpew	VDD for Write or Row Erase	2.2 Vddmin	_	Vddmax Vddmax	V	PIC18LF1XK50 PIC18F1XK50	
D132A	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132B	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D133	TPEW	Erase/Write cycle time	_	2.0	2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D134	TRETD	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated	

TABLE 27-5: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 5.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

TABLE 27-6: USB MODULE SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$

Param. No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
D313	VUSB	USB Voltage	3.0	_	3.6	V	Voltage on VUSB pin must be in this range for proper USB operation
D314	lı∟	Input Leakage on pin	—	_	±1	μA	Vss \leq VPIN \leq VDD pin at high impedance
D315	VILUSB	Input Low Voltage for USB Buffer	—	_	0.8	V	For VUSB range
D316	VIHUSB	Input High Voltage for USB Buffer	2.0	_	_	V	For VUSB range
D318	VDIFS	Differential Input Sensitivity	_	_	0.2	V	The difference between D+ and D- must exceed this value while VCM is met
D319	Vсм	Differential Common Mode Range	0.8	_	2.5	V	
D320	Zout	Driver Output Impedance ⁽¹⁾	28	—	44	Ω	
D321	Vol	Voltage Output Low	0.0	—	0.3	V	1.5 k Ω load connected to 3.6V
D322	Voн	Voltage Output High	2.8	—	3.6	V	1.5 k Ω load connected to ground

Note 1: The D+ and D- signal lines have been built-in impedance matching resistors. No external resistors, capacitors or magnetic components are necessary on the D+/D- signal paths between the PIC18(L)F1XK50 family device and USB cable.

TABLE 27-7: THERMAL CONSIDERATIONS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$							
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	62.2	°C/W	20-pin PDIP package		
			77.7	°C/W	20-pin SOIC package		
			87.3	°C/W	20-pin SSOP package		
			36.1	°C/W	20-pin QFN 5x5mm package		
TH02	θJC	θJC Thermal Resistance Junction to Case	27.5	°C/W	20-pin PDIP package		
			23.1	°C/W	20-pin SOIC package		
			31.1	°C/W	20-pin SSOP package		
			12.2	°C/W	20-pin QFN 5x5mm package		
TH03	TJMAX	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation		W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾		

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

TABLE 27-9: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур.†	Max.	Units	Conditions
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2% ±3%	_	16.0 16.0		MHz MHz	$0^{\circ}C \le TA \le +60^{\circ}C$ $60^{\circ}C \le TA \le +85^{\circ}C$
			±5%	—	16.0	—	MHz	$\text{-40°C} \leq \text{TA} \leq \text{+125°C}$
OS10*	TIOSC ST	HFINTOSC	—	_	5	8	μS	VDD = 2.0V, -40°C to +85°C
		Wake-up from Sleep Start-up Time	—	—	5	8	μS	VDD = 3.0V, -40°C to +85°C
			—	_	5	8	μS	$VDD = 5.0V, -40^{\circ}C \text{ to } +85^{\circ}C$

These parameters are characterized but not tested.

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

Param. No.	Sym.	Characteristic	Min.	Typ.†	Max.	Units	Conditions
F10	Fosc	Oscillator Frequency Range	4	_	16	MHz	VDD = 1.8 - VDDMAX
F11	Fsys	On-Chip VCO System Frequency	20		48	MHz	VDD = 3.0 - VDDMAX
F12	t _{rc}	PLL Start-up Time (Lock Time)	_	_	2	ms	

TABLE 27-10: PLL CLOCK TIMING SPECIFICATIONS (VDD = 1.8V TO 5.5V)

These parameters are characterized but not tested.

△CLK CLKOUT Stability (Jitter)

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

+0.25%

%

-0.25%

F13*

*

PIC18(L)F1XK50

Unless otherwise noted, V_{IN} = 5V, F_{OSC} = 300 kHz, C_{IN} = 0.1 μ F, T_A = 25°C.

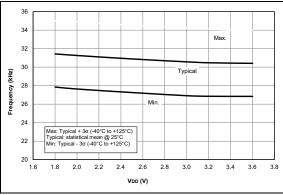


FIGURE 28-61: LFINTOSC Frequency, Over VDD and Temperature, PIC18LF1XK50 Only.

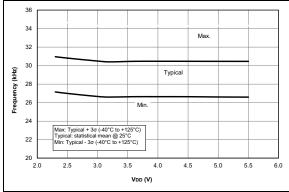


FIGURE 28-62: LFINTOSC Frequency, Over VDD and Temperature, PIC18F1XK50 Only.

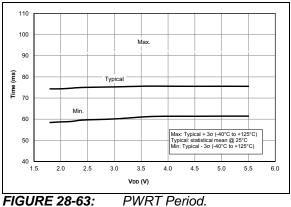


FIGURE 28-63:

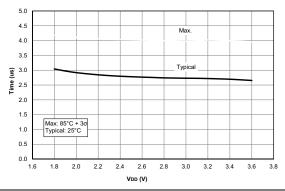


FIGURE 28-64: Sleep Mode, Wake Period with HFINTOSC Source, PIC18LF1XK50 Only.

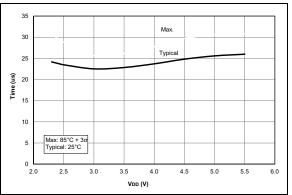
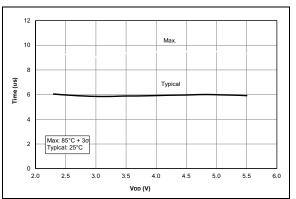
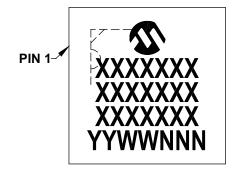
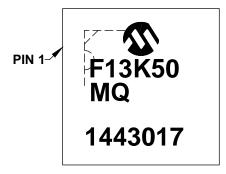


FIGURE 28-65: Low-Power Sleep Mode, Wake Period with HFINTOSC Source, VREGPM = 1, PIC18F1XK50 Only.


FIGURE 28-66: Sleep Mode, Wake Period with HFINTOSC Source, VREGPM = 0, PIC18F1XK50 Only.

Package Marking Information (Continued)

20-Lead QFN (5x5x0.9 mm)

Example

Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.			
Note:	e: In the event the full Microchip part number cannot be marked on one line, it v be carried over to the next line, thus limiting the number of availab characters for customer-specific information.				