

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf13k50-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

PIC18(L)F1XK50 Family Types

idex		Prog Men	gram nory	Data M	lemory				MS	SP				
Device	Data Sheet In	Flash (bytes)	# Single-Word Instructions	SRAM (bytes)	EEPROM (bytes)	(₁)0/I	10-bit A/D (ch) ⁽²⁾	10-bit A/D (ch) ⁽² ECCP (PWM)	IdS	Master I²C™	EUSART	Comp.	Timers 8/16-bit	USB
PIC18F13K50/ PIC18LF13K50	(A)	8K	4096	512 ⁽³⁾	256	15	11	1	Y	Y	1	2	1/3	Y
PIC18F14K50/ PIC18LF14K50	(A)	16K	8192	768 ⁽³⁾	256	15	11	1	Y	Y	1	2	1/3	Y

Note 1: One pin is input only.

2: Channel count includes internal Fixed Voltage Reference (FVR) and Programmable Voltage Reference (CVREF) channels.

3: Includes the dual port RAM used by the USB module which is shared with the data memory.

Data Sheet Index: (Unshaded devices are described in this document)

A. DS40001350 PIC18(L)F1XK50 Data Sheet, 20-Pin USB Flash Microcontrollers with XLP Technology.

Note: For other small form-factor package availability and marking information, please visit http://www.microchip.com/packaging or contact your local sales office.

Pin Name	Pin Number	Pin Type	Buffer Type	Description
RA0/D+/PGD	19			
RAO		I	TTL	Digital input
D+		1/0	XCVR	USB differential plus line (input/output)
PGD		1/0	SI	ICSP [™] programming data pin
RA1/D-/PGC	18			
RA1		I	TTL	Digital input
D-		1/0	XCVR	USB differential minus line (input/output)
		1/0	51	
RA3/MCLR/Vpp	4			Master Clear (input) or programming voltage (input)
RA3		I	ST	Digital input
MCLR			ST	Active-low Master Clear with internal pull-up
VPP		Р	—	High voltage programming input
RA4/AN3/OSC2/CLKOUT	3			
RA4		I/O	TTL	Digital I/O
AN3		I	Analog	ADC channel 3
OSC2		0	XIAL	Oscillator crystal output. Connect to crystal or resonator
CLKOUT		0	CMOS	In Crystal Oscillator mode
CEROOT		0	CIVIOS	has 1/4 the frequency of OSC1 and denotes
				the instruction cycle rate
	2			
RA5/OSCI/CLRIN	2	1/0	тті	
OSC1		1/0	XTAI	Oscillator crystal input or external clock input
			XIXE	ST buffer when configured in RC mode: analog other
				wise
CLKIN		I	CMOS	External clock source input. Always associated with the
				pin function OSC1 (See related OSC1/CLKIN, OSC2,
				CLKOUT pins
RB4/AN10/SDI/SDA	13			
RB4		I/O	TTL	Digital I/O
AN10		I	Analog	ADC channel 10
SDI		I	ST	SPI data in
SDA		I/O	ST	I ² C™ data I/O
RB5/AN11/RX/DT	12			
RB5		I/O	TLL	Digital I/O
AN11		I	Analog	ADC channel 11
RX		I	ST	EUSART asynchronous receive
		I/O	SI	EUSART synchronous data (see related RX/TX)
RB6/SCK/SCI	11			
RB6		I/O	TLL	Digital I/O
SCK		1/0	ST	Synchronous serial clock input/output for SPI mode
		1/0	51	Synchronous serial clock input/output for I ⁺ C ⁺ mode
RB7/TX/CK	10			
RB7		I/O	TLL	Digital I/O
		0	CMOS	EUSART asynchronous transmit
		1/0	SI	EUSARI synchronous clock (see related RX/DT)
Legend: TTL = TTL compatible inp	out			CMOS = CMOS compatible input or output
SI = Schmitt Irigger inp	ut			i = input
XTAL= Crystal Oscillator				XCVR = USB Differential Transceiver

TABLE 1-2: PIC18(L)F1XK50 PINOUT I/O DESCRIPTIONS

© 2008-2015 Microchip Technology Inc.

3.0 MEMORY ORGANIZATION

There are three types of memory in PIC18 Enhanced microcontroller devices:

- Program Memory
- Data RAM
- Data EEPROM

As Harvard architecture devices, the data and program memories use separate busses; this allows for concurrent access of the two memory spaces. The data EEPROM, for practical purposes, can be regarded as a peripheral device, since it is addressed and accessed through a set of control registers.

Additional detailed information on the operation of the Flash program memory is provided in **Section 4.0 "Flash Program Memory"**. Data EEPROM is discussed separately in **Section 5.0 "Data EEPROM Memory"**.

3.1 Program Memory Organization

PIC18 microcontrollers implement a 21-bit program counter, which is capable of addressing a 2-Mbyte program memory space. Accessing a location between the upper boundary of the physically implemented memory and the 2-Mbyte address will return all '0's (a NOP instruction).

This family of devices contain the following:

- PIC18F13K50: 8 Kbytes of Flash memory, up to 4,096 single-word instructions
- PIC18F14K50: 16 Kbytes of Flash memory, up to 8,192 single-word instructions

PIC18 devices have two interrupt vectors and one Reset vector. The Reset vector address is at 0000h and the interrupt vector addresses are at 0008h and 0018h.

The program memory map for PIC18(L)F1XK50 devices is shown in Figure 3-1. Memory block details are shown in Figure 24-2.

FIGURE 3-1: PROGRAM MEMORY MAP AND STACK FOR PIC18(L)F1XK50 DEVICES

	PC<	20:0>	
CALL, RCALL, RET	TURN	21	
RETFIE,RETLW	Stack I		
	Stack I	• evel 31	
	Reset	Vector	0000h
	High Priority Ir	nterrupt Vector	0008h
	Low Priority In	nterrupt Vector	0018h
On-Chip Program Memory 1FFFh 2000h PIC18F13K50	On-Chip Program Memory 3FFFh 4000h PIC18F14K50		User Memory Space
Read 'o'	Read '0'		1FFFFh

3.2.3 INSTRUCTIONS IN PROGRAM MEMORY

The program memory is addressed in bytes. Instructions are stored as either two bytes or four bytes in program memory. The Least Significant Byte (LSB) of an instruction word is always stored in a program memory location with an even address (LSb = 0). To maintain alignment with instruction boundaries, the PC increments in steps of 2 and the LSb will always read '0' (see Section 3.1.1 "Program Counter").

Figure 3-4 shows an example of how instruction words are stored in the program memory.

The CALL and GOTO instructions have the absolute program memory address embedded into the instruction. Since instructions are always stored on word boundaries, the data contained in the instruction is a word address. The word address is written to PC<20:1>, which accesses the desired byte address in program memory. Instruction #2 in Figure 3-4 shows how the instruction GOTO 0006h is encoded in the program memory. Program branch instructions, which encode a relative address offset, operate in the same manner. The offset value stored in a branch instruction represents the number of single-word instructions that the PC will be offset by. Section 25.0 "Instruction Set Summary" provides further details of the instruction set.

100KE 3-4.						
				LSB = 1	LSB = 0	Word Address \downarrow
		Program M	lemory			000000h
		Byte Locat	ions \rightarrow			000002h
						000004h
						000006h
Ins	truction 1:	MOVLW	055h	0Fh	55h	000008h
Ins	truction 2:	GOTO	0006h	EFh	03h	00000Ah
				F0h	00h	00000Ch
Ins	truction 3:	MOVFF	123h, 456h	C1h	23h	00000Eh
				F4h	56h	000010h
						000012h
						000014h

FIGURE 3-4: INSTRUCTIONS IN PROGRAM MEMORY

3.2.4 TWO-WORD INSTRUCTIONS

The standard PIC18 instruction set has four two-word instructions: CALL, MOVFF, GOTO and LSFR. In all cases, the second word of the instruction always has '1111' as its four Most Significant bits (MSb); the other 12 bits are literal data, usually a data memory address.

The use of '1111' in the 4 MSbs of an instruction specifies a special form of NOP. If the instruction is executed in proper sequence – immediately after the first word – the data in the second word is accessed

and used by the instruction sequence. If the first word is skipped for some reason and the second word is executed by itself, a NOP is executed instead. This is necessary for cases when the two-word instruction is preceded by a conditional instruction that changes the PC. Example 3-4 shows how this works.

Note: See Section 3.6 "PIC18 Instruction Execution and the Extended Instruction Set" for information on two-word instructions in the extended instruction set.

EXAMPLE 3-4:	TWO-WORD INSTRUCTIONS
01054	

CASE 1:	
Object Code	Source Code
0110 0110 0000 0000	TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2 ; No, skip this word
1111 0100 0101 0110	; Execute this word as a NOP
0010 0100 0000 0000	ADDWF REG3 ; continue code
CASE 2:	
Object Code	Source Code
0110 0110 0000 0000	TSTFSZ REG1 ; is RAM location 0?
1100 0001 0010 0011	MOVFF REG1, REG2 ; Yes, execute this word
1111 0100 0101 0110	; 2nd word of instruction
0010 0100 0000 0000	ADDWF REG3 ; continue code

File Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	, Bit 1	Bit 0	Value on POR, BOR	Details on
CDDDCU		d Data Canar	otor Degister	Llich Dute						paye.
SPBRGH	EUSART BAL	Id Rate Gener	ator Register,							277 175
RCREG	EUSART Receive Register									277 176
TXREG	EUSART Transmit Register									277 175
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	0000 0010	277, 184
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	0000 000x	277, 185
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	0000 0000	277, 50, 58
EEDATA	EEPROM Da	0000 0000	277, 50, 58							
EECON2	EEPROM Control Register 2 (not a physical register)									277, 50, 58
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	xx-0 x000	277, 51, 58
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCLIP	USBIP	TMR3IP	-	1111 111-	278, 74
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCLIF	USBIF	TMR3IF	-	0000 000-	278, 70
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE	USBIE	TMR3IE	-	0000 000-	278, 72
IPR1	-	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	-111 1111	278, 73
PIR1	-	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	-000 0000	278, 69
PIE1	-	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	-000 0000	278, 71
OSCTUNE	INTSRC	SPLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0	0000 0000	20, 278
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	278, 89
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	-	-	-	1111	278, 84
TRISA	-	-	TRISA5	TRISA4	-	-	-	-	11	278, 78
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	xxxx xxxx	278, 89
LATB	LATB7	LATB6	LATB5	LATB4	-	-	-	-	xxxx	278, 84
LATA	-	-	LATA5	LATA4	-	-	-	-	xx	278, 78
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	278, 89
PORTB	RB7	RB6	RB5	RB4	-	-	-	-	xxxx	278, 84
PORTA	_	_	RA5	RA4	RA3(2)	_	RA1(3)	RA0(3)	xx x-xx	278, 78
ANSELH	_	_	_	_	ANS11	ANS10	ANS9	ANS8	1111	278, 94
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	_	_	_	1111 1	278, 93
IOCB	IOCB7	IOCB6	IOCB5	IOCB4	_	—	—	—	0000	278, 84
IOCA	—	—	IOCA5	IOCA4	IOCA3	—	IOCA1	IOCA0	00 0-00	278, 78
WPUB	WPUB7	WPUB6	WPUB5	WPUB4		_	-	-	1111	278, 84
WPUA	—	—	WPUA5	WPUA4	WPUA3	—	—	—	11 1	275, 84
SLRCON	—	-		-		SLRC	SLRB	SLRA	111	278, 95
SSPMSK	MSK7	MSK6	MSK5	MSK4	MSK3	MSK2	MSK1	MSK0	1111 1111	278, 154
CM1CON0	C10N	C1OUT	C10E	C1POL	C1SP	C1R	C1CH1	C1CH0	0000 1000	278, 221
CM2CON1	MC1OUT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC	0000 0000	278, 222
CM2CON0	C2ON	C2OUT	C2OE	C2POL	C2SP	C2R	C2CH1	C2CH0	0000 1000	278, 222
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	0000 0000	278, 235
SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	0000 0000	278, 234
UCON	—	PPBRST	SE0	PKTDIS	USBEN	RESUME	SUSPND	—	-0x0 000-	278, 242

TABLE 3-2: REGISTER FILE SUMMARY (PIC18(L)F1XK50) (CONTINUED)

Legend: x = unknown, u = unchanged, - = unimplemented, q = value depends on condition**Note 1:**The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; of the second secon

1: The SBOREN bit is only available when the BOREN<1:0> Configuration bits = 01; otherwise it is disabled and reads as '0'. See Section 23.4 "Brown-out Reset (BOR)".

2: The RA3 bit is only available when Master Clear Reset is disabled (MCLRE Configuration bit = 0). Otherwise, RA3 reads as '0'. This bit is read-only.

3: Bits RA0 and RA1 are available only when USB is disabled.

Operations on the FSRs with POSTDEC, POSTINC and PREINC affect the entire register pair; that is, rollovers of the FSRnL register from FFh to 00h carry over to the FSRnH register. On the other hand, results of these operations do not change the value of any flags in the STATUS register (e.g., Z, N, OV, etc.).

The PLUSW register can be used to implement a form of indexed addressing in the data memory space. By manipulating the value in the W register, users can reach addresses that are fixed offsets from pointer addresses. In some applications, this can be used to implement some powerful program control structure, such as software stacks, inside of data memory.

3.4.3.3 Operations by FSRs on FSRs

Indirect addressing operations that target other FSRs or virtual registers represent special cases. For example, using an FSR to point to one of the virtual registers will not result in successful operations. As a specific case, assume that FSR0H:FSR0L contains FE7h, the address of INDF1. Attempts to read the value of the INDF1 using INDF0 as an operand will return 00h. Attempts to write to INDF1 using INDF0 as the operand will result in a NOP.

On the other hand, using the virtual registers to write to an FSR pair may not occur as planned. In these cases, the value will be written to the FSR pair but without any incrementing or decrementing. Thus, writing to either the INDF2 or POSTDEC2 register will write the same value to the FSR2H:FSR2L.

Since the FSRs are physical registers mapped in the SFR space, they can be manipulated through all direct operations. Users should proceed cautiously when working on these registers, particularly if their code uses indirect addressing.

Similarly, operations by indirect addressing are generally permitted on all other SFRs. Users should exercise the appropriate caution that they do not inadvertently change settings that might affect the operation of the device.

3.5 Data Memory and the Extended Instruction Set

Enabling the PIC18 extended instruction set (XINST Configuration bit = 1) significantly changes certain aspects of data memory and its addressing. Specifically, the use of the Access Bank for many of the core PIC18 instructions is different; this is due to the introduction of a new addressing mode for the data memory space.

What does not change is just as important. The size of the data memory space is unchanged, as well as its linear addressing. The SFR map remains the same. Core PIC18 instructions can still operate in both Direct and Indirect Addressing mode; inherent and literal instructions do not change at all. Indirect addressing with FSR0 and FSR1 also remain unchanged.

3.5.1 INDEXED ADDRESSING WITH LITERAL OFFSET

Enabling the PIC18 extended instruction set changes the behavior of indirect addressing using the FSR2 register pair within Access RAM. Under the proper conditions, instructions that use the Access Bank – that is, most bit-oriented and byte-oriented instructions – can invoke a form of indexed addressing using an offset specified in the instruction. This special addressing mode is known as Indexed Addressing with Literal Offset, or Indexed Literal Offset mode.

When using the extended instruction set, this addressing mode requires the following:

- The use of the Access Bank is forced ('a' = 0) and
- The file address argument is less than or equal to 5Fh.

Under these conditions, the file address of the instruction is not interpreted as the lower byte of an address (used with the BSR in direct addressing), or as an 8-bit address in the Access Bank. Instead, the value is interpreted as an offset value to an Address Pointer, specified by FSR2. The offset and the contents of FSR2 are added to obtain the target address of the operation.

3.5.2 INSTRUCTIONS AFFECTED BY INDEXED LITERAL OFFSET MODE

Any of the core PIC18 instructions that can use direct addressing are potentially affected by the Indexed Literal Offset Addressing mode. This includes all byte-oriented and bit-oriented instructions, or almost one-half of the standard PIC18 instruction set. Instructions that only use Inherent or Literal Addressing modes are unaffected.

Additionally, byte-oriented and bit-oriented instructions are not affected if they do not use the Access Bank (Access RAM bit is '1'), or include a file address of 60h or above. Instructions meeting these criteria will continue to execute as before. A comparison of the different possible addressing modes when the extended instruction set is enabled is shown in Figure 3-9.

Those who desire to use byte-oriented or bit-oriented instructions in the Indexed Literal Offset mode should note the changes to assembler syntax for this mode. This is described in more detail in **Section 25.2.1** "Extended Instruction Syntax".

7.4 INTCON Registers

The INTCON registers are readable and writable registers, which contain various enable, priority and flag bits.

Note: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the global enable bit. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt. This feature allows for software polling.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-x
GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INTOIF	RABIF
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	GIE/GIEH: Global Interrupt Enable bit <u>When IPEN = 0:</u> 1 = Enables all unmasked interrupts 0 = Disables all interrupts including peripherals <u>When IPEN = 1:</u> 1 = Enables all high priority interrupts 0 = Disables all interrupts including low priority.
bit 6	PEIE/GIEL: Peripheral Interrupt Enable bit When IPEN = 0: 1 = Enables all unmasked peripheral interrupts 0 = Disables all peripheral interrupts When IPEN = 1: 1 = Enables all low priority interrupts 0 = Disables all low priority interrupts
bit 5	TMR0IE: TMR0 Overflow Interrupt Enable bit 1 = Enables the TMR0 overflow interrupt 0 = Disables the TMR0 overflow interrupt
bit 4	INTOIE: INTO External Interrupt Enable bit 1 = Enables the INTO external interrupt 0 = Disables the INTO external interrupt
bit 3	RABIE: RA and RB Port Change Interrupt Enable bit ⁽²⁾ 1 = Enables the RA and RB port change interrupt 0 = Disables the RA and RB port change interrupt
bit 2	TMR0IF: TMR0 Overflow Interrupt Flag bit 1 = TMR0 register has overflowed (must be cleared by software) 0 = TMR0 register did not overflow
bit 1	INT0IF: INT0 External Interrupt Flag bit 1 = The INT0 external interrupt occurred (must be cleared by software) 0 = The INT0 external interrupt did not occur
bit 0	RABIF: RA and RB Port Change Interrupt Flag bit ⁽¹⁾ 1 = At least one of the RA <5:3> or RB<7:4> pins changed state (must be cleared by software) 0 = None of the RA<5:3> or RB<7:4> pins have changed state
Note 1:	A mismatch condition will continue to set the RABIF bit. Reading PORTA and PORTB will end the

- mismatch condition and allow the bit to be cleared.
- 2: RA and RB port change interrupts also require the individual pin IOCA and IOCB enable.

0.0	(Single Output)	P1A Modulated	— — İ			<u> </u>
00	(engle eutput)		F			
		P1A Modulated				
10	(Half-Bridge)	P1B Modulated	Dela	ay(")		¦
		P1A Active	— ¦			
01	(Full-Bridge, Forward)	P1B Inactive	; ;			<u> </u>
	, en la la la	P1C Inactive				
		P1D Modulated				
		P1A Inactive	! !		 	
11	(Full-Bridge,	P1B Modulated				
	ivevelse)	P1C Active			1 	
		P1D Inactive	<u> </u>		 	 I I

EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE) FIGURE 14-5:

mode").

14.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 14-14 for illustration. The lower seven bits of the associated PWM1CON register (Register 14-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 14-14: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 14-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
MC1OUT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 7	MC1OUT: Min	rror Copy of C1	OUT bit						
bit 6	MC2OUT: Min	rror Copy of C2	2OUT bit						
bit 5	C1RSEL: Co	mparator C1 R	eference Seleo	ct bit					
	1 = FVR routed to C1VREF input								
	0 = CVREF ro	uted to C1VRE	= input						
bit 4	C2RSEL: Co	mparator C2 R	eference Selec	ct bit					
	1 = FVR route	ed to C2VREF i	nput						
	0 = CVREF ro	uted to C2VRE	= input						
bit 3	C1HYS: Com	parator C1 Hy	steresis Enable	e bit					
	1 = Compar	ator C1 hyster	esis enabled						
1.11.0		ator C1 nystere							
bit 2	C2HYS: Com	parator C2 Hy	steresis Enable	e dit					
	1 = Compare 0 = Compare 1	ator C2 hyster ator C2 hyster	esis enabled						
bit 1	C1SYNC: C1	Output Synch	ronous Mode h	bit					
	1 = C1 outp	ut is synchrono	ous to risina ed	ae to TMR1 cl	ock				
	0 = C1 outp	ut is asynchror	nous	ge 12 1111 1					
bit 0	C2SYNC: C2	Output Synch	ronous Mode b	oit					
	1 = C2 outp	ut is synchrond	ous to rising ed	lge to TMR1 cl	ock				
	0 = C2 outp	ut is asynchror	nous						

REGISTER 18-3: CM2CON1: COMPARATOR 2 CONTROL REGISTER 1

20.0 SR LATCH

The module consists of a single SR Latch with multiple Set and Reset inputs as well as selectable latch output. The SR Latch module includes the following features:

- Programmable input selection
- SR Latch output is available internally/externally
- Selectable Q and \overline{Q} output
- Firmware Set and Reset

20.1 Latch Operation

The latch is a Set-Reset latch that does not depend on a clock source. Each of the Set and Reset inputs are active-high. The latch can be Set or Reset by CxOUT, INT1 pin, or variable clock. Additionally the SRPS and the SRPR bits of the SRCON0 register may be used to Set or Reset the SR Latch, respectively. The latch is reset-dominant, therefore, if both Set and Reset inputs are high the latch will go to the Reset state. Both the SRPS and SRPR bits are self resetting which means that a single write to either of the bits is all that is necessary to complete a latch Set or Reset operation.

20.2 Latch Output

The SRQEN and SRNQEN bits of the SRCON0 register control the latch output selection. Only one of the SR latch's outputs may be directly output to an I/O pin at a time. Priority is determined by the state of bits SRQEN and SRNQEN in registers SRCON0.

TABLE 20-1:	SR LATCH OUTPUT
	CONTROL

SRLEN	SRQEN	SRNQEN	SR Latch Output to Port I/O
0	Х	Х	I/O
1	0	0	I/O
1	0	1	Q
1	1	0	Q
1	1	1	Q

The applicable TRIS bit of the corresponding port must be cleared to enable the port pin output driver.

20.3 Effects of a Reset

Upon any device Reset, the SR latch is not initialized. The user's firmware is responsible to initialize the latch output before enabling it to the output pins.

FIGURE 20-1: SR LATCH SIMPLIFIED BLOCK DIAGRAM

File	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
300008h	CONFIG5L	_		_	_	_		CP1	CP0
300009h	CONFIG5H	CPD	CPB	—	-	_	—	—	_
30000Ah	CONFIG6L	-	—		-		_	WRT1	WRT0
30000Bh	CONFIG6H	WRTD	WRTB	WRTC	-	_	—	—	_
30000Ch	CONFIG7L	-	—		_	-	_	EBTR1	EBTR0
30000Dh	CONFIG7H	_	EBTRB	_	_	_	—	—	_

TABLE 24-3: SUMMARY OF CODE PROTECTION REGISTERS

Legend: Shaded cells are unimplemented.

24.3.1 PROGRAM MEMORY CODE PROTECTION

The program memory may be read to or written from any location using the table read and table write instructions. The device ID may be read with table reads. The Configuration registers may be read and written with the table read and table write instructions.

In normal execution mode, the CPn bits have no direct effect. CPn bits inhibit external reads and writes. A block of user memory may be protected from table writes if the WRTn Configuration bit is '0'. The EBTRn bits control table reads. For a block of user memory with the EBTRn bit cleared to '0', a table READ instruction that executes from within that block is allowed to read. A table read instruction that executes from a location outside of that block is not allowed to read and will result in reading '0's. Figures 24-3 through 24-5 illustrate table write and table read protection.

Note: Code protection bits may only be written to a '0' from a '1' state. It is not possible to write a '1' to a bit in the '0' state. Code protection bits are only set to '1' by a full chip erase or block erase function. The full chip erase and block erase functions can only be initiated via ICSP or an external programmer.

FIGURE 24-3: TABLE WRITE (WRTn) DISALLOWED

BTG		Bit Toggle	Bit Toggle f		BOV	,	Branch if	Overflow			
Syntax	K:	BTG f, b {,a	}		Synta	ax:	BOV n				
Opera	nds:	$0 \le f \le 255$			Oper	ands:	-128 ≤ n ≤	$-128 \le n \le 127$			
	0 ≤ b < 7 a ∈ [0,1]		Oper	ation:	if OVERFL (PC) + 2 +	OW bit is '1' $2n \rightarrow PC$					
Opera	tion:	$(\overline{f} < b >) \to f <$	b>		Statu	s Affected:	None				
Status	Affected:	None			Enco	dina:	1110	0100 nr	nn nnn		
Encod	ling:	0111	bbba ff	ff ffff		rintion:	lf the O\/E	PELOW/ bit is	1 ¹ then the		
Descri	ption:	Bit 'b' in dat inverted. If 'a' is '0', ti If 'a' is '1', ti GPR bank If 'a' is '0' a set is enabl in Indexed mode when Section 25 Bit-Oriente Literal Offs	ta memory loc the Access Bar the BSR is use (default). Ind the extended ed, this instruct Literal Offset A tever $f \le 95$ (51 .2.3 "Byte-Or the Instruction set Mode" for	ation 'f' is hk is selected. d to select the ed instruction ction operates Addressing Fh). See iented and s in Indexed details.	Word Cycle Q C If Ju	ls: es: ycle Activity: mp:	 program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 1 1(2) 				
Words	:	1				Q1	Q2	Q3	Q4		
Cycles	S:	1				Decode	Read literal 'n'	Process Data	Write to PC		
Q Cy	cie Activity:	00	02	04		No	No	No	No		
Г	Decode	Q2 Read	Process	Q4 Write		operation	operation	operation	operation		
	Decode	register 'f'	Data	register 'f'	If No	o Jump:			.		
_						Q1	Q2	Q3	Q4		
<u>Exam</u>	ole:	BTG P	ORTC, 4, 0)		Decode	read literal	Data	operation		
A	Before Instruc PORTC Ifter Instructic PORTC	tion: = 0111 (on: = 0110 (0101 [75h] 0101 [65h]		<u>Exan</u>	nple: PC After Instruction If OVER If OVER PC PC	HERE ction = ad on FLOW = 1; = ad FLOW = 0; = ad	BOV Jump dress (HERE dress (Jump dress (HERE	2 2) 2) 2 + 2)		

Syntax:DAWOperands:NoneOperantis:If $[W<3.0> > 9]$ or $[DC = 1]$ then $(W<3.0>) + 6 \rightarrow W<3.0>;else(W<3.0>) \rightarrow W<3.0>;else(W<3.0>) \rightarrow W<3.0>;if [W(V<7.4>) + C> 9] or [C = 1] then(W<7.4>) + 6 + DC \rightarrow W<7.4>;else(W<7.4>) + C \rightarrow W<7.4>;else(W<7.4>) + C \rightarrow W<7.4>;else(W<7.4>) + DC \rightarrow W<7.4>;else(W<7.4>) + DC \rightarrow W<7.4>;else(W<7.4>) + DC \rightarrow W<7.4>;status Affected:CEncoding:\boxed{0.000 \ 0.000 \ 0.0111}Description:DAW adjusts the 8-bit value in W, resulting from the earlier addition of two variables (each in packed BCD format) and produces a correct packed BCD result.Words:1Cycles:1Q cycle Activity:Q \ Q \ Q \ Q \ Q \ Q \ Q \ Q \ Q \ Q \$	DAV	v	Decimal A	Adjust W Re	gister	DE	CF	Decremer	nt f	
Operands:NoneOperands:Operands: $0 \neq radio:$ $0 \neq radi$	Synta	ax:	DAW			Syn	tax:	DECF f{,c	{,a}}	
Operation:If $[W3:30> + 6 \rightarrow W(2:30>; else(W:3:0>) + 6 \rightarrow W(2:30>;else(W:3:0>) \rightarrow W(2:30>;d = [0,1]a = [0,1]Beter interval inter$	Oper	ands:	None			Ope	erands:	$0 \leq f \leq 255$		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Oper	ation:	lf [W<3:0> : (W<3:0>) +	> 9] or [DC = 1 $6 \rightarrow W < 3:0>;$] then			d ∈ [0,1] a ∈ [0,1]		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			else			Ope	eration:	$(f) - 1 \rightarrow de$	st	
$\begin{array}{rcl} \text{If } [W<7:4> + DC > 9] \text{ or } [C = 1] \text{ then} \\ (W<7:4>) + 6 + DC \rightarrow W<7:4>; \\ \text{else} \\ (W<7:4>) + 6 + DC \rightarrow W<7:4>; \\ \text{else} \\ (W<7:4>) + DC \rightarrow W<7:4>; \\ \text{else} \\ (W<7:4>) + DC \rightarrow W<7:4>; \\ \text{Status Affected:} & C \\ \hline \text{Encoding:} & 0000 & 0000 & 0111 \\ \hline \text{Description:} & DAW adjusts the 8-bit value in W, result- ing from the earlier addition of two variables (each in packed BCD format) and produces a correct packed BCD result. \\ \hline \text{Words:} & 1 \\ \hline \text{Cycles:} & 1 \\ \hline \text{Qcycle Activity:} \\ \hline \begin{array}{c} Q1 & Q2 & Q3 & Q4 \\ \hline \hline \text{Decode} & Read \\ Decode & Read \\ Decode & Read \\ DC & = & 0 \\ After Instruction \\ \hline W & = & CEh \\ CD & C & = & 0 \\ DC & = & 0 \\ After Instruction \\ \hline W & = & CEh \\ CD & C & = & 0 \\ DC & = & 0 \\ After Instruction \\ \hline W & = & CEh \\ CD & C & = & 0 \\ DC & = & 0 \\ After Instruction \\ \hline W & = & CEh \\ CD & C & = & 0 \\ DC & = &$			(W<3:0>) -	→ W<3:0>;		Stat	us Affected:	C, DC, N, C	V, Z	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			If [W<7:4>	+ DC > 9] or [(C = 1] then	Enc	oding:	0000	01da ffi	ff ffff
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			(W<7:4>) +	$-6 + DC \rightarrow W$	<7:4> ;	Des	cription:	Decrement	register 'f'. If '	d' is '0', the
Status Affected: Encoding: $D = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0$			else (\//<7·4>) +	$DC \rightarrow W < 7.4$	`			result is sto	red in W. If 'd'	is '1', the
Called AnterlationCEncoding:00000000111Description:Daw adjusts the 8-bit value in W, resulting from the earlier addition of two variables (each in packed BCD format) and produces a correct packed BCD result.If 'a' is 'o', the Access Bank is selected.Words:1GPR bank (default).GPR bank (default).Q Cycles Activity:1Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). SeeSection 25.2.3 "Byte-Oriented Instruction in Indexed Literal Offset Mode" for details.Words:Q1Q2Q3Q4DecodeRead register WWrite DataDawBefore InstructionWAfter InstructionW= 05h C= 0DC= 0CNT= 01h ZAfter InstructionW= 05h C= 0W= CEh C= 0Oh After InstructionW= CEh C= 0DC= 0After InstructionW= 0CNTW= 0After InstructionCW= 0DC= 0After InstructionCW= 0DC= 0After InstructionCW= 0After InstructionCW= 0After InstructionCW= 0After InstructionCW= 0DC= 0After InstructionW= 34h	Statu	e Affected:	(11 str. 12) t	50 / 11311				(default).	red back in reg	gister i
Litteral OffsetUsedUsedUsedUsedUsedIf "a is to ", the BSR is used to select the GPR bank (default).Description:DAW adjusts the 8-bit value in W, result- ing from the earlier addition of two vari- ables (each in packed BCD format) and produces a correct packed BCD result.If "a is to ", the BSR is used to select the GPR bank (default).Words:1GPR bank (default).If "a is to ", and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever 1 s 95 (SFh). SeeWords:1Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Q Cycle Activity:DawExample1:DAWW= A5h C= 0DC= 0After InstructionWW= 05h DCC= 1 DCDC= 0After InstructionCW= CEh CDC= 0After InstructionCNTW= CEh CDC= 0After InstructionCNTW= 0After InstructionCW= 0After InstructionW= 0DC= 0After InstructionW= 0After InstructionW= 0DC= 0After InstructionW= 34hC= 0After InstructionW= 34h	Enco	dina:		0000 000	0 0111			lf 'a' is '0', tl	ne Access Bar	nk is selected.
Description.Data adjusts in e-out value in w, result- ing from the earlier addition of two vari- ables (each in packed BCD format) and produces a correct packed BCD result.GPR balk (default).Words:1Cycles:1Cycles:1Q Cycle Activity: Q_2 Q Cycle Activity: Q_2 Daw Q_2 Ca Q_2 Daw Q_2 Daw Q_2 Daw Q	Door	vintion:	Date edited					lf 'a' is '1', th	ne BSR is use	d to select the
ables (each in packed BCD format) and produces a correct packed BCD result. set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Words: 1 section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details. Q1 Q2 Q3 Q4 Decode Read Process Write Write Daw Daw Words: 1 Cycles 1 Qycle Activity: Q1 Q2 Q3 Q4 Decode Read Process Write Write Q Q2 Q3 Q4 Example1: DAW DAW Q Q2 Q3 Q4 W = A5h C 0 Q Q3 Q4 Decode Read Process Write to DE 0 D Read Process Write to DE 0 D Example: DECF CNT 1, 0 Before Instruction C = 0 O After Instruction Z = 0 W = CEh C = 0 D	Dest	npuon.	ing from the	e earlier addition	on of two vari-			If 'a' is '0' a	nd the extende	ed instruction
produces a correct packed BCD result.in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.23 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Words:1Section 25.23 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Q1Q2Q3Q4DecodeRead register WProcess DataDAWDataWExample1:DAWDAWDataBefore InstructionQW= A5h CC= 0DC= 0After InstructionBefore InstructionW= 05h CC= 1DC= 0After InstructionCNTW= CEh CC= 0After InstructionCNTW= 34hC= 1W= 34hC= 1W= 34hC= 1C= 0After InstructionW= 34hC= 1W= 34hC= 1DC= 1C= 1W= 34hC= 1W= 34hC= 1D= 1D= 1D= 1D= 1D= 1D= 1D= 1D= 1D= 1D			ables (each	in packed BC	D format) and			set is enabl	ed, this instruc	ction operates
Words:1Induce with event 15 95 (5/17). SeeCycles:1Section 25.23 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Q1Q2Q3Q4 Q_1 Q2Q3Q4 Q_2 Q_3 Q4 Q_3 </td <td></td> <td></td> <td>produces a</td> <td>correct packe</td> <td>d BCD result.</td> <td></td> <td></td> <td>in Indexed I</td> <td>Literal Offset A</td> <td>Addressing</td>			produces a	correct packe	d BCD result.			in Indexed I	Literal Offset A	Addressing
Cycles:1Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.Q1Q2Q3Q4 $Q1$ Q2Q3Q4 $Q1$ $Q2$ Q3Q4 $Q1$ $Q2$ Q3Q4 $Q2$ $Q3$ Q4 $Q3$ $Q4$ $Q2$ $Q3$ $Q4$ $Q3$ $Q4$ $Q2$ <	Word	ls:	1					Section 25	2.3 "Byte-Ori	iented and
Q Cycle Activity:Literal Offset Mode" for details.Q1Q2Q3Q4 $\boxed{\text{Decode}}$ $\boxed{\text{Read}}$ $\boxed{\text{Process}}$ W rite $\boxed{\text{Example1:}}$ DAW W $Q2$ Q3Q4 $\boxed{\text{Decode}}$ $\boxed{\text{Read}}$ $\boxed{\text{Process}}$ W rite to $\boxed{\text{Dec}}$ $\boxed{\text{C}}$ $\boxed{\text{Decode}}$ $\boxed{\text{Read}}$ $\boxed{\text{Process}}$ $\boxed{\text{Dec}}$ $\boxed{\text{O}}$ $\boxed{\text{Decode}}$ $\boxed{\text{Read}}$ $\boxed{\text{Process}}$ $\boxed{\text{M}}$ $\boxed{\text{Dec}}$ $\boxed{\text{Decode}}$ $\boxed{\text{Read}}$ $\boxed{\text{Process}}$ $\boxed{\text{M}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{Decode}}$ $\boxed{\text{Read}}$ $\boxed{\text{Process}}$ $\boxed{\text{M}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{Decode}}$ $\boxed{\text{Read}}$ $\boxed{\text{Process}}$ $\boxed{\text{M}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{Decode}}$ $\boxed{\text{Read}}$ $\boxed{\text{Process}}$ $\boxed{\text{M}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{M}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{CNT}}$ $\boxed{\text{OC}}$ $\boxed{\text{M}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{DC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\boxed{\text{OC}}$ $\text{O$	Cycle	es:	1					Bit-Oriente	d Instruction	s in Indexed
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	QC	ycle Activity:						Literal Offs	et Mode" for	details.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		Q1	Q2	Q3	Q4	Woi	rds:	1		
LTegister WDataWExample1:DAWDAWBefore Instruction $W = A5h$ $C = 0$ DC = 0DC = 0After Instruction $W = 05h$ $C = 1$ DC = 0Example 2:Before Instruction $W = CEh$ $C = 0$ DC = 0After Instruction $W = CEh$ $C = 0$ DC = 0After Instruction $W = CEh$ $C = 0$ $DC = 0$ After Instruction $W = 34h$ $C = -1$		Decode	Read	Process	Write	Сус	les:	1		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Exan	nple1:	register w	Dala	vv	Q	Cycle Activity:			
Before Instruction $W = A5h$ C = 0 $DecodeReadregister 'f'ProcessDataWrite todestinationW = A5hC = 0Dc = 0Example:DECFCNT, 1, 0DECFCNT, 1, 0DECFCNT, 1, 0W = 05hC = 1CNT = 01hZ = 0CNT = 01hZ = 0DC = 0After InstructionCNT = 00hZ = 1W = CEhC = 0CNT = 00hZ = 1W = CEhC = 0CNT = 00hZ = 1W = 34hC = 1CNT = 00hZ = 1$	<u>Exan</u>	<u>ipio i</u> .	DAW				Q1	Q2	Q3	Q4
W = A5h $C = 0$ $DC = 0$ After Instruction $W = 05h$ $C = 1$ $DC = 0$ $Example: DECF CNT, 1, 0$ Before Instruction $CNT = 01h$ $Z = 0$ $After Instruction$ $W = CEh$ $C = 0$ $DC = 0$ $After Instruction$ $W = CEh$ $C = 0$ $After Instruction$ $W = 34h$ $C = 34h$		Before Instruc	tion				Decode	Read	Process	Write to
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		W	= A5h					register i	Data	destination
DC=0InterpretAfter InstructionBefore Instruction $W = 05h$ $CNT = 01h$ $C = 1$ $Z = 0$ DC = 0After InstructionExample 2: $CNT = 00h$ Before Instruction $Z = 1$ $W = CEh$ $Z = 1$ $C = 0$ $DC = 0$ After Instruction $Z = 1$		C	= 0			Exa	mple:	DECF (NT. 1.0	
W = 05h $C = 1$ $DC = 0$ $Example 2:$ $W = CEh$ $C = 0$ $W = CEh$ $C = 0$ $CNT = 00h$ $Z = 1$ $W = 1$ $W = 34h$ $C = 34h$ $C = 1$		After Instructio	= U Dn				Before Instruc	ction	, , .	
C = 1 $DC = 0$ $Example 2:$ $C = 0$ $CNT = 00h$ $Z = 1$ $W = CEh$ $C = 0$ $DC = 0$ $After Instruction$ $W = 34h$ $C = 1$		W	= 05h				CNT	= 01h		
Example 2:CNT = 00hBefore Instruction $Z = 1$ W = CEh $Z = 1$ O DC = 00After Instruction $W = 34h$ C = 1 $Z = 1$		C	= 1				Z After Instructi	= 0		
Before Instruction $Z = 1$ W = CEh C = 0 DC = 0 After Instruction W = 34h C = 1	<u>Exan</u>	nple 2:	= 0				CNT	= 00h		
W = CEh $C = 0$ $DC = 0$ After Instruction $W = 34h$ $C = 1$		Before Instruc	tion				Z	= 1		
C = 0 DC = 0 After Instruction W = 34h C = -1		W	= CEh							
After Instruction W = 34h C = -1		C DC	= 0 = 0							
W = 34h		After Instruction	on							
		W	= 34h							
DC = 0		DC	= 0							

LFS	R	Load FSF	र		MO	VF	Move f			
Synta	ax:	LFSR f, k			Synt	ax:	MOVF f{,	d {,a}}		
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	5		Oper	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$			
Oper	ation:	$k\toFSRf$					a ∈ [0,1]			
Statu	s Affected:	None			Oper	ration:	$f \rightarrow dest$			
Enco	ding:	1110 1111	1110 00 0000 k ₇ 2	ff k ₁₁ kkk kkk kkkk	Statu Enco	us Affected: oding:	N, Z	N, Z		
Desc	ription:	The 12-bit File Select	The 12-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.			Description: The contents of register 'f' a destination dependent u				
Word	ls:	2					status of 'd'	. If 'd' is '0', 1	the rest	ultis ultic
Cycle	es:	2					placed in w	. in uns⊥, ∢in register '	f' (defa	ult).
QC	ycle Activity:						Location 'f'	can be anyw	vhere ir	n the
	Q1	Q2	Q3	Q4			256-byte ba	ank. he Access B	ank ie i	soloctod
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH			If 'a' is '0', the ACCESS Bank is select If 'a' is '1', the BSR is used to select GPR bank (default). If 'a' is '0' and the extended instructi			
Decode Read literal Process 'k' LSB Data		Write literal 'k' to FSRfL			in Indexed Literal Offset Addressing mode whenever f ≤ 95 (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed					
Exan	nple:	LFSR 2,	3ABh				Literal Offs	set Mode" fo	or detai	ls.
	After Instructio	n	h		Word	ds:	1			
	FSR2L	= 03 = AE	3h		Cvcl	es:	1			
					QC	vcle Activity:				
						Q1	Q2	Q3		Q4
						Decode	Read register 'f'	Process Data	W	/rite W
					Exar	nple:	MOVF RI	EG, 0, 0		
						Before Instruc REG W	tion = 22 = FF	h h		
						REG W	on = 22 = 22	h h		

TABLE 27-6: USB MODULE SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$

	0 1						
Param. No.	Sym.	Characteristic	Min.	Тур.	Max.	Units	Conditions
D313	VUSB	USB Voltage	3.0	—	3.6	V	Voltage on VUSB pin must be in this range for proper USB operation
D314	lı∟	Input Leakage on pin	—	—	± 1	μA	Vss \leq VPIN \leq VDD pin at high impedance
D315	VILUSB	Input Low Voltage for USB Buffer	—	—	0.8	V	For VUSB range
D316	VIHUSB	Input High Voltage for USB Buffer	2.0	—	—	V	For VUSB range
D318	VDIFS	Differential Input Sensitivity	_	_	0.2	V	The difference between D+ and D- must exceed this value while Vcм is met
D319	Vсм	Differential Common Mode Range	0.8	—	2.5	V	
D320	Ζουτ	Driver Output Impedance ⁽¹⁾	28	—	44	Ω	
D321	Vol	Voltage Output Low	0.0		0.3	V	1.5 k Ω load connected to 3.6V
D322	Voн	Voltage Output High	2.8		3.6	V	1.5 k Ω load connected to ground

Note 1: The D+ and D- signal lines have been built-in impedance matching resistors. No external resistors, capacitors or magnetic components are necessary on the D+/D- signal paths between the PIC18(L)F1XK50 family device and USB cable.

TABLE 27-7: THERMAL CONSIDERATIONS

Standar Operatir	Standard Operating Conditions (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$									
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions					
TH01	θЈΑ	Thermal Resistance Junction to	62.2	°C/W	20-pin PDIP package					
		Ambient	77.7	°C/W	20-pin SOIC package					
			87.3	°C/W	20-pin SSOP package					
			36.1	°C/W	20-pin QFN 5x5mm package					
TH02 ØJC The		Thermal Resistance Junction to	27.5	°C/W	20-pin PDIP package					
		Case	23.1	°C/W	20-pin SOIC package					
			31.1	°C/W	20-pin SSOP package					
			12.2	°C/W	20-pin QFN 5x5mm package					
TH03	TJMAX	Maximum Junction Temperature	150	°C						
TH04	PD	Power Dissipation		W	PD = PINTERNAL + PI/O					
TH05	PINTERNAL	Internal Power Dissipation		W	PINTERNAL = IDD x VDD ⁽¹⁾					
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$					
TH07	PDER	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾					

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature, TJ = Junction Temperature

TABLE 27-22:	SPI MODE	REQUIREMENTS
--------------	----------	--------------

Param. No.	Symbol	Characteristic	Min.	Typ.†	Max.	Units	Conditions	
SP70*	TssL2scH, TssL2scL	\overline{SS} ↓ to SCK↓ or SCK↑ input	Тсү	—	—	ns		
SP71*	TscH	SCK input high time (Slave mod	e)	TCY + 20	_	_	ns	
SP72*	TscL	SCK input low time (Slave mode)	TCY + 20	—	—	ns	
SP73*	TDIV2scH, TDIV2scL	Setup time of SDI data input to S	SCK edge	100	—	—	ns	
SP74*	TscH2diL, TscL2diL	Hold time of SDI data input to SO	d time of SDI data input to SCK edge		—	—	ns	
SP75*	TDOR	SDO data output rise time	3.0-5.5V	—	10	25	ns	
		1.8-5.5V	—	25	50	ns		
SP76*	TDOF	SDO data output fall time		—	10	25	ns	
SP77*	TssH2doZ	SS↑ to SDO output high-impeda	nce	10	—	50	ns	
SP78*	TscR	SCK output rise time	3.0-5.5V	—	10	25	ns	
		(Master mode)	1.8-5.5V	—	25	50	ns	
SP79*	TscF	SCK output fall time (Master mo	de)	—	10	25	ns	
SP80*	TscH2doV,	SDO data output valid after	3.0-5.5V	—	—	50	ns	
	TscL2doV	SCK edge	1.8-5.5V	—	—	145	ns	
SP81*	TDOV2scH, TDOV2scL	SDO data output setup to SCK edge		Тсу	—	—	ns	
SP82*	TssL2doV	SDO data output valid after $\overline{SS}\downarrow$	edge		_	50	ns	
SP83*	TscH2ssH, TscL2ssH	SS ↑ after SCK edge		1.5Tcy + 40	—	—	ns	

* These parameters are characterized but not tested.

FIGURE 27-19: I²C[™] BUS START/STOP BITS TIMING

[†] Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Unless otherwise noted, V_{IN} = 5V, F_{OSC} = 300 kHz, C_{IN} = 0.1 $\mu F,$ T_A = 25°C.

FIGURE 28-1: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC18LF1XK50 Only.

FIGURE 28-2: IDD, LP Oscillator Mode, Fosc = 32 kHz, PIC18F1XK50 Only.

FIGURE 28-3: IDD Typical, XT and EXTRC Oscillator, PIC18LF1XK50 Only.

FIGURE 28-4: IDD Maximum, XT and EXTRC Oscillator, PIC18LF1XK50 Only.

FIGURE 28-5: IDD Typical, XT and EXTRC Oscillator, PIC18F1XK50 Only.

FIGURE 28-6: IDD Maximum, XT and EXTRC Oscillator, PIC18F1XK50 Only.

29.2 Package Details

The following sections give the technical details of the packages.

20-Lead Plastic Dual In-Line (P) - 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES				
Dimensior	Dimension Limits			MAX		
Number of Pins	Ν	20				
Pitch	е		.100 BSC			
Top to Seating Plane	Α	-	-	.210		
Molded Package Thickness	A2	.115	.130	.195		
Base to Seating Plane	A1	.015	-	-		
Shoulder to Shoulder Width	E	.300	.310	.325		
Molded Package Width	E1	.240	.250	.280		
Overall Length	D	.980	1.030	1.060		
Tip to Seating Plane	L	.115	.130	.150		
Lead Thickness	С	.008	.010	.015		
Upper Lead Width	b1	.045	.060	.070		
Lower Lead Width	b	.014	.018	.022		
Overall Row Spacing §	eB	_	-	.430		

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-019B