

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I²C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf13k50-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Switch From	Switch To	Oscillator Delay
Sleep/POR	LFINTOSC HFINTOSC	Oscillator Warm-up Delay (Twarm)
Sleep/POR	LP, XT, HS	1024 clock cycles
Sleep/POR	EC, RC	8 clock cycles

TABLE 2-2: EXAMPLES OF DELAYS DUE TO CLOCK SWITCHING

2.9 4x Phase Lock Loop Frequency Multiplier

A Phase-Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency external oscillator or to operate at 32 MHz with the HFINTOSC. The PLL is designed for an input frequency from 4 MHz to 12 MHz. The PLL multiplies its input frequency by a factor of four when the PLL is enabled. This may be useful for customers who are concerned with EMI, due to high-frequency crystals.

Two bits control the PLL: the PLLEN bit of the CONFIG1H Configuration register and the SPLLEN bit of the OSCTUNE register. The PLL is enabled when the PLLEN bit is set and it is under software control when the PLLEN bit is cleared.

TABLE 2-3: PLL CONFIGURATION

PLLEN	SPLLEN	PLL Status
1	x	PLL enabled
0	1	PLL enabled
0	0	PLL disabled

2.9.1 32 MHZ INTERNAL OSCILLATOR FREQUENCY SELECTION

The Internal Oscillator Block can be used with the 4X PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in CONFIG1H must be set to use the INTOSC source as the device system clock (FOSC<3:0> = 1000 or 1001).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<3:0> in CONFIG1H (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<2:0> = 110).
- The SPLLEN bit in the OSCTUNE register must be set to enable the 4xPLL, or the PLLEN bit of CONFIG1H must be programmed to a '1'.

Note:	When using the PLLEN bit of CONFIG1H,
	the 4xPLL cannot be disabled by software
	and the 8 MHz HFINTOSC option will no
	longer be available.

The 4xPLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4xPLL with the internal oscillator.

2.10 CPU Clock Divider

The CPU Clock Divider allows the system clock to run at a slower speed than the Low/Full Speed USB module clock while sharing the same clock source. Only the oscillator defined by the settings of the FOSC bits of the CONFIG1H Configuration register may be used with the CPU Clock Divider. The CPU Clock Divider is controlled by the CPUDIV bits of the CONFIG1L Configuration register. Setting the CPUDIV bits will set the system clock to:

- Equal the clock speed of the USB module
- Half the clock speed of the USB module
- · One third the clock speed of the USB module
- · One fourth the clock speed of the USB module

For more information on the CPU Clock Divider, see Figure 2-1 and Register 24-1 CONFIG1L.

3.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 3-1) contains the Stack Pointer value, the STKFUL (stack full) bit and the STKUNF (Stack Underflow) bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 24.1 "Configuration Bits"** for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an underflow has the effect of vectoring the
	program to the Reset vector, where the
	stack conditions can be verified and
	appropriate actions can be taken. This is
	not the same as a Reset, as the contents
	of the SFRs are not affected.

3.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

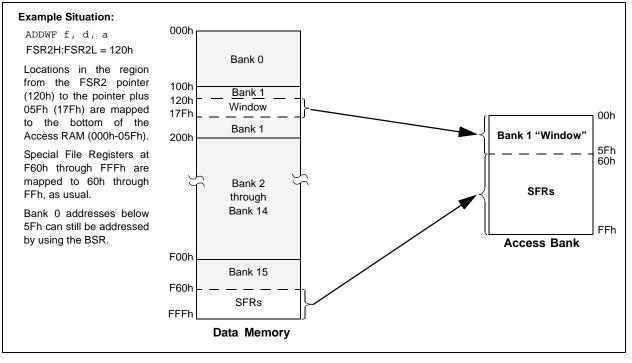
The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 3-1: STKPTR: STACK POINTER REGISTER

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—	SP4	SP3	SP2	SP1	SP0		
bit 7				·		·	bit 0		
Legend:									
R = Readable bit W = Writable bit U = Unimplemented C = Clearable only bit									
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			

bit 7	STKFUL: Stack Full Flag bit ⁽¹⁾
	 1 = Stack became full or overflowed 0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	1 = Stack underflow occurred0 = Stack underflow did not occur
bit 5	Unimplemented: Read as '0'
bit 4-0	SP<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.


3.5.3 MAPPING THE ACCESS BANK IN INDEXED LITERAL OFFSET MODE

The use of Indexed Literal Offset Addressing mode effectively changes how the first 96 locations of Access RAM (00h to 5Fh) are mapped. Rather than containing just the contents of the bottom section of Bank 0, this mode maps the contents from a user defined "window" that can be located anywhere in the data memory space. The value of FSR2 establishes the lower boundary of the addresses mapped into the window, while the upper boundary is defined by FSR2 plus 95 (5Fh). Addresses in the Access RAM above 5Fh are mapped as previously described (see **Section 3.3.3 "Access Bank"**). An example of Access Bank remapping in this addressing mode is shown in Figure 3-10. Remapping of the Access Bank applies *only* to operations using the Indexed Literal Offset mode. Operations that use the BSR (Access RAM bit is '1') will continue to use direct addressing as before.

3.6 PIC18 Instruction Execution and the Extended Instruction Set

Enabling the extended instruction set adds eight additional commands to the existing PIC18 instruction set. These instructions are executed as described in **Section 25.2 "Extended Instruction Set"**.

FIGURE 3-10: REMAPPING THE ACCESS BANK WITH INDEXED LITERAL OFFSET ADDRESSING

EXAMPLE 4-3: WRITING TO FLASH PROGRAM MEMORY

ENAIVIFLE 4-3.	WRITING	U FLASH FRUGRAM M	
	MOVLW	D'64′	; number of bytes in erase block
	MOVWF	COUNTER	
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSR0H	
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
	MOVLW	CODE_ADDR_UPPER	; Load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
READ_BLOCK			
	TBLRD*+		; read into TABLAT, and inc
	MOVF	TABLAT, W	; get data
	MOVWF	POSTINCO	; store data
	DECFSZ	COUNTER	; done?
	BRA	READ_BLOCK	; repeat
MODIFY_WORD			- F
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSR0H	
	MOVLW	BUFFER_ADDR_LOW	
	MOVER	FSR0L	
	MOVLW	NEW_DATA_LOW	; update buffer word
	MOVWF	POSTINC0	
	MOVLW	NEW_DATA_HIGH	
	MOVWF	INDF0	
ERASE_BLOCK			
	MOVLW	CODE_ADDR_UPPER	; load TBLPTR with the base
	MOVWF	TBLPTRU	; address of the memory block
	MOVLW	CODE_ADDR_HIGH	
	MOVWF	TBLPTRH	
	MOVLW	CODE_ADDR_LOW	
	MOVWF	TBLPTRL	
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BSF	EECON1, FREE	; enable Erase operation
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	-
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start erase (CPU stall)
	BSF	INTCON, GIE	; re-enable interrupts
	TBLRD*-		; dummy read decrement
	MOVLW	BUFFER_ADDR_HIGH	; point to buffer
	MOVWF	FSROH	-
	MOVLW	BUFFER_ADDR_LOW	
	MOVWF	FSROL	
WRITE_BUFFER_BAC			
·	MOVLW	BlockSize	; number of bytes in holding register
	MOVWF	COUNTER	
	MOVLW	D'64'/BlockSize	; number of write blocks in 64 bytes
	MOVWF	COUNTER2	
WRITE_BYTE_TO_HF			
	MOVF	POSTINC0, W	; get low byte of buffer data
	MOVWF	TABLAT	; present data to table latch
			_
	TBLWT+*		; write data, perform a short write
	TBLWT+*		; write data, perform a short write ; to internal TBLWT holding register.

EXAMPLE 4-3:	WRITI	NG TO FLASH PROGR	AM MEMORY (CONTINUED)
	DECFSZ BRA	COUNTER WRITE_WORD_TO_HREGS	; loop until holding registers are full
PROGRAM_MEMORY			
	BSF	EECON1, EEPGD	; point to Flash program memory
	BCF	EECON1, CFGS	; access Flash program memory
	BSF	EECON1, WREN	; enable write to memory
	BCF	INTCON, GIE	; disable interrupts
	MOVLW	55h	
Required	MOVWF	EECON2	; write 55h
Sequence	MOVLW	0AAh	
	MOVWF	EECON2	; write OAAh
	BSF	EECON1, WR	; start program (CPU stall)
	DCFSZ	COUNTER2	; repeat for remaining write blocks
	BRA	WRITE_BYTE_TO_HREGS	;
	BSF	INTCON, GIE	; re-enable interrupts
	BCF	EECON1, WREN	; disable write to memory
			-

WRITING TO FLACU BROODAM MEMORY (CONTINUED)

4.5.2 WRITE VERIFY

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

4.5.3 UNEXPECTED TERMINATION OF WRITE OPERATION

If a write is terminated by an unplanned event, such as loss of power or an unexpected Reset, the memory location just programmed should be verified and reprogrammed <u>if needed</u>. If the write operation is interrupted by a MCLR Reset or a WDT Time-out Reset during normal operation, the WRERR bit will be set which the user can check to decide whether a rewrite of the location(s) is needed.

4.5.4 PROTECTION AGAINST SPURIOUS WRITES

To protect against spurious writes to Flash program memory, the write initiate sequence must also be followed. See Section 24.0 "Special Features of the CPU" for more detail.

4.6 Flash Program Operation During Code Protection

See Section 24.3 "Program Verification and Code Protection" for details on code protection of Flash program memory.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
TBLPTRU	—	—	bit 21	Program Me	emory Table F	Pointer Uppe	r Byte (TBLP	TR<20:16>)	275
TBPLTRH	Program Me	emory Table	Pointer H	ligh Byte (TE	BLPTR<15:8	S>)			275
TBLPTRL	Program Me	emory Table	Pointer L	ow Byte (TB	LPTR<7:0>)			275
TABLAT	Program Me	emory Table	Latch						275
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	275
EECON2	EEPROM C	Control Regis	ster 2 (not	a physical r	egister)				277
EECON1	EEPGD	CFGS		FREE	WRERR	WREN	WR	RD	277
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCLIP	USBIP	TMR3IP	_	278
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCLIF	USBIF	TMR3IF	—	278
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE	USBIE	TMR3IE		278

 TABLE 4-3:
 REGISTERS ASSOCIATED WITH PROGRAM FLASH MEMORY

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

R/W-x	R/W-x	U-0	R/W-0	R/W-x	R/W-0	R/S-0	R/S-0
EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD
bit 7							bit 0
Legend:							
R = Readab		W = Writable I					
	be set by software		ed		nented bit, rea		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
hit 7	EEPCD: Elos	h Drogrom or F		Momony Solo	at hit		
bit 7		lash program r		/ Memory Selec	JUDIL		
		lata EEPROM r					
bit 6			•	Configuration S	elect bit		
	1 = Access C	Configuration re	gisters	C C			
	0 = Access F	lash program c	or data EEPR	OM memory			
bit 5	Unimplemen	ted: Read as ')'				
bit 4		Row (Block) Er					
				dressed by TBL	PTR on the ne	ext WR comman	nd
	0 = Perform	by completion of write-only	or erase opera	allon)			
bit 3		,	ta EEPROM I	Error Flag bit ⁽¹⁾			
				inated (any Res	et during self-	timed programr	ning in normal
	operation	n, or an imprope	er write attem	• •	U		0
	0 = The write	e operation com	pleted				
bit 2	WREN: Flash	n Program/Data	EEPROM W	rite Enable bit			
				data EEPROM			
		•	lash program	/data EEPROM			
bit 1	WR: Write Co						
				cycle or a progra bit is cleared by			
				ed) by software			
	0 = Write cyc	le to the EEPR	OM is comple	ete			
bit 0	RD: Read Co	ntrol bit					
				s one cycle. RD			
	•	ot cleared) by se initiate an EEF		it cannot be set	when EEPGD	= 1 or CFGS =	1.)
	Vhen a WRERR of rror condition.	occurs, the EEF	GD and CFG	S bits are not o	leared. This a	llows tracing of	the
e							

REGISTER 5-1: EECON1: DATA EEPROM CONTROL 1 REGISTER

7.0 INTERRUPTS

The PIC18(L)F1XK50 devices have multiple interrupt sources and an interrupt priority feature that allows most interrupt sources to be assigned a high priority level or a low priority level. The high priority interrupt vector is at 0008h and the low priority interrupt vector is at 0018h. A high priority interrupt event will interrupt a low priority interrupt that may be in progress.

There are ten registers which are used to control interrupt operation. These registers are:

- RCON
- INTCON
- INTCON2
- INTCON3
- PIR1, PIR2
- PIE1, PIE2
- IPR1, IPR2

It is recommended that the Microchip header files supplied with MPLAB[®] IDE be used for the symbolic bit names in these registers. This allows the assembler/ compiler to automatically take care of the placement of these bits within the specified register.

In general, interrupt sources have three bits to control their operation. They are:

- Flag bit to indicate that an interrupt event occurred
- Enable bit that allows program execution to branch to the interrupt vector address when the flag bit is set
- **Priority bit** to select high priority or low priority

7.1 Mid-Range Compatibility

When the IPEN bit is cleared (default state), the interrupt priority feature is disabled and interrupts are compatible with PIC[®] microcontroller mid-range devices. In Compatibility mode, the interrupt priority bits of the IPRx registers have no effect. The PEIE bit of the INTCON register is the global interrupt enable for the peripherals. The PEIE bit disables only the peripheral interrupt sources when the GIE bit is also set. The GIE bit of the INTCON register is the global interrupt enable which enables all non-peripheral interrupt sources and disables all interrupt sources, including the peripherals. All interrupts branch to address 0008h in Compatibility mode.

7.2 Interrupt Priority

The interrupt priority feature is enabled by setting the IPEN bit of the RCON register. When interrupt priority is enabled the GIE and PEIE global interrupt enable bits of Compatibility mode are replaced by the GIEH high priority, and GIEL low priority, global interrupt enables. When set, the GIEH bit of the INTCON register enables all interrupts that have their associated IPRx register or INTCONx register priority bit set (high priority). When clear, the GIEH bit disables all interrupt sources including those selected as low priority. When clear, the GIEL bit of the INTCON register disables only the interrupts that have their associated priority bit set (low priority). When set, the GIEL bit of the INTCON register disables only the interrupts that have their associated priority bit cleared (low priority). When set, the GIEL bit enables the low priority sources when the GIEH bit is also set.

When the interrupt flag, enable bit and appropriate global interrupt enable bit are all set, the interrupt will vector immediately to address 0008h for high priority, or 0018h for low priority, depending on level of the interrupting source's priority bit. Individual interrupts can be disabled through their corresponding interrupt enable bits.

7.3 Interrupt Response

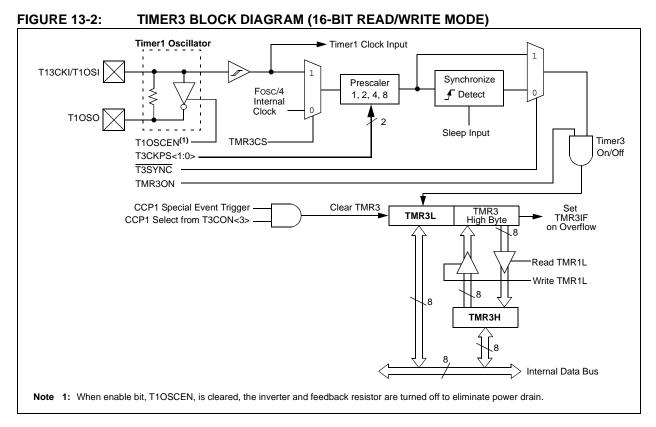
When an interrupt is responded to, the global interrupt enable bit is cleared to disable further interrupts. The GIE bit is the global interrupt enable when the IPEN bit is cleared. When the IPEN bit is set, enabling interrupt priority levels, the GIEH bit is the high priority global interrupt enable and the GIEL bit is the low priority global interrupt enable. High priority interrupt sources can interrupt a low priority interrupt. Low priority interrupts are not processed while high priority interrupts are in progress.

The return address is pushed onto the stack and the PC is loaded with the interrupt vector address (0008h or 0018h). Once in the Interrupt Service Routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits in the INTCONx and PIRx registers. The interrupt flag bits must be cleared by software before re-enabling interrupts to avoid repeating the same interrupt.

The "return from interrupt" instruction, RETFIE, exits the interrupt routine and sets the GIE bit (GIEH or GIEL if priority levels are used), which re-enables interrupts.

For external interrupt events, such as the INT pins or the PORTB interrupt-on-change, the interrupt latency will be three to four instruction cycles. The exact latency is the same for one-cycle or 2-cycle instructions. Individual interrupt flag bits are set, regardless of the status of their corresponding enable bits or the global interrupt enable bit.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
PORTA			RA5 ⁽¹⁾	RA4 ⁽¹⁾	RA3 ⁽²⁾	_	RA1 ⁽³⁾	RA0 ⁽³⁾	278
LATA	—	_	LATA5 ⁽¹⁾	LATA4 ⁽¹⁾	—	—	—	_	278
TRISA	—		TRISA5 ⁽¹⁾	TRISA4 ⁽¹⁾	_	_			278
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3				278
SLRCON	—	_	—	_	_	SLRC	SLRB	SLRA	278
IOCA	_	-	IOCA5	IOCA4	IOCA3 ⁽²⁾	_	IOCA1 ⁽³⁾	IOCA0 ⁽³⁾	278
WPUA	—	-	WPUA5	WPUA4	WPUA3 ⁽²⁾	_	_	_	275
UCON	_	PPBRST	SE0	PKTDIS	USBEN	RESUME	SUSPND	_	278
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	275
INTCON2	RABPU	INTEDG0	INTEDG1	INTEDG2		TMR0IP		RABIP	275


TABLE 9-2: \$	SUMMARY OF REGISTERS ASSOCIATED WITH PORTA
---------------	--

Legend: — = unimplemented, read as '0'. Shaded cells are not used by PORTA.

Note 1: RA<5:4> and their associated latch and data direction bits are enabled as I/O pins based on oscillator configuration; otherwise, they are read as '0'.

2: Implemented only when Master Clear functionality is disabled (MCLRE Configuration bit = 0).

3: RA1 and RA0 are only available as port pins when the USB module is disabled (UCON<3 > = 0).

13.2 Timer3 16-Bit Read/Write Mode

Timer3 can be configured for 16-bit reads and writes (see Figure 13-2). When the RD16 control bit of the T3CON register is set, the address for TMR3H is mapped to a buffer register for the high byte of Timer3. A read from TMR3L will load the contents of the high byte of Timer3 into the Timer3 High Byte Buffer register. This provides the user with the ability to accurately read all 16 bits of Timer1 without having to determine whether a read of the high byte, followed by a read of the low byte, has become invalid due to a rollover between reads.

A write to the high byte of Timer3 must also take place through the TMR3H Buffer register. The Timer3 high byte is updated with the contents of TMR3H when a write occurs to TMR3L. This allows a user to write all 16 bits to both the high and low bytes of Timer3 at once.

The high byte of Timer3 is not directly readable or writable in this mode. All reads and writes must take place through the Timer3 High Byte Buffer register.

Writes to TMR3H do not clear the Timer3 prescaler. The prescaler is only cleared on writes to TMR3L.

13.3 Using the Timer1 Oscillator as the Timer3 Clock Source

The Timer1 internal oscillator may be used as the clock source for Timer3. The Timer1 oscillator is enabled by setting the T1OSCEN bit of the T1CON register. To use it as the Timer3 clock source, the TMR3CS bit must also be set. As previously noted, this also configures Timer3 to increment on every rising edge of the oscillator source.

The Timer1 oscillator is described in **Section 11.0** "Timer1 Module".

13.4 Timer3 Interrupt

The TMR3 register pair (TMR3H:TMR3L) increments from 0000h to FFFFh and overflows to 0000h. The Timer3 interrupt, if enabled, is generated on overflow and is latched in interrupt flag bit, TMR3IF of the PIR2 register. This interrupt can be enabled or disabled by setting or clearing the Timer3 Interrupt Enable bit, TMR3IE of the PIE2 register.

14.4.2.1 Direction Change in Full-Bridge Mode

In the Full-Bridge mode, the P1M1 bit in the CCP1CON register allows users to control the forward/reverse direction. When the application firmware changes this direction control bit, the module will change to the new direction on the next PWM cycle.

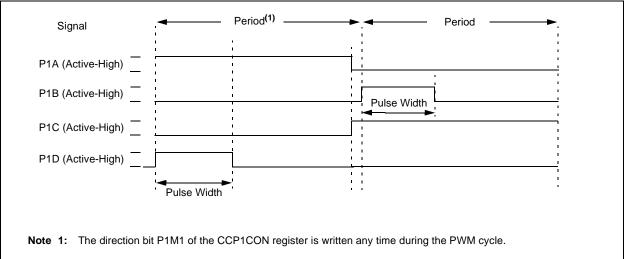
A direction change is initiated in software by changing the P1M1 bit of the CCP1CON register. The following sequence occurs prior to the end of the current PWM period:

- The modulated outputs (P1B and P1D) are placed in their inactive state.
- The associated unmodulated outputs (P1A and P1C) are switched to drive in the opposite direction.
- PWM modulation resumes at the beginning of the next period.

See Figure 14-10 for an illustration of this sequence.

The Full-Bridge mode does not provide dead-band delay. As one output is modulated at a time, dead-band delay is generally not required. There is a situation where dead-band delay is required. This situation occurs when both of the following conditions are true:

- 1. The direction of the PWM output changes when the duty cycle of the output is at or near 100%.
- 2. The turn off time of the power switch, including the power device and driver circuit, is greater than the turn on time.


Figure 14-11 shows an example of the PWM direction changing from forward to reverse, at a near 100% duty cycle. In this example, at time t1, the output P1A and P1D become inactive, while output P1C becomes active. Since the turn off time of the power devices is longer than the turn on time, a shoot-through current will flow through power devices QC and QD (see Figure 14-8) for the duration of 't'. The same phenomenon will occur to power devices QA and QB for PWM direction change from reverse to forward.

If changing PWM direction at high duty cycle is required for an application, two possible solutions for eliminating the shoot-through current are:

- 1. Reduce PWM duty cycle for one PWM period before changing directions.
- 2. Use switch drivers that can drive the switches off faster than they can drive them on.

Other options to prevent shoot-through current may exist.

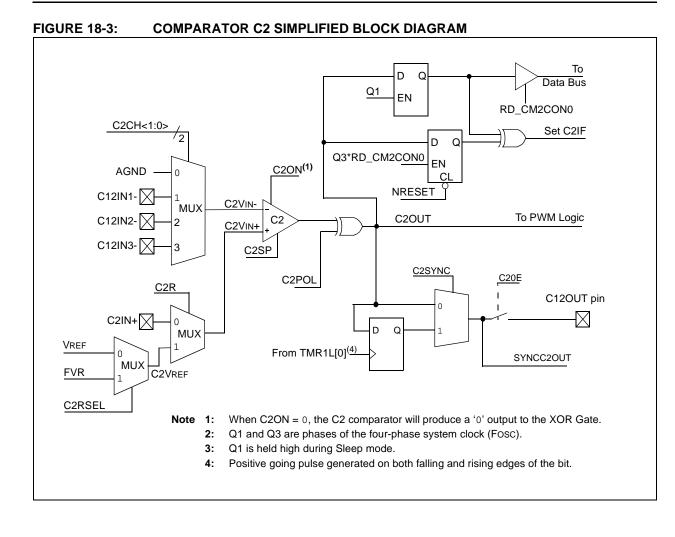
FIGURE 14-10: EXAMPLE OF PWM DIRECTION CHANGE

14.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2 will not increment and the state of the module will not change. If the ECCP pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HFINTOSC and the postscaler may not be stable immediately.

In PRI_IDLE mode, the primary clock will continue to clock the ECCP module without change. In all other power-managed modes, the selected power-managed mode clock will clock Timer2. Other power-managed mode clocks will most likely be different than the primary clock frequency.

14.4.8.1 Operation with Fail-Safe Clock Monitor


If the Fail-Safe Clock Monitor is enabled, a clock failure will force the device into the RC_RUN Power-Managed mode and the OSCFIF bit of the PIR2 register will be set. The ECCP will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

See the previous section for additional details.

14.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the CCP registers to their Reset states.

This forces the enhanced CCP module to reset to a state compatible with the standard CCP module.

REGISTER 24-13: DEVID1: DEVICE ID REGISTER 1 FOR PIC18(L)F1XK50

R	R	R	R	R	R	R	R
DEV2	DEV1	DEV0	REV4	REV3	REV2	REV1	REV0
bit 7	·				•		bit C
Legend:							
R = Readabl	e bit			U = Unimpler	nented bit, read	l as '0'	
-n = Value when device is unprogrammed C = Clearable only bit							
bit 7-5	DEV<2:0>: D	evice ID bits					
	010 = PIC18F	-13K50					
	011 = PIC18F	-14K50					
bit 4-0	REV<4:0>: R	evision ID bits					
	These bits are	e used to indic	ate the device	revision.			
REGISTER	24-14: DEVID	2: DEVICE I	D REGISTEI	R 2 FOR PIC1	8(L)F1XK50		
		D		P	D	P	

R	R	R	R	R	R	R	R
DEV10	DEV9	DEV8	DEV7	DEV6	DEV5	DEV4	DEV3
bit 7							bit 0

Legend:	
R = Readable bit	U = Unimplemented bit, read as '0'
-n = Value when device is unprogrammed	C = Clearable only bit

bit 7-0 **DEV<10:3>:** Device ID bits These bits are used with the DEV<2:0> bits in the Device ID Register 1 to identify the part number. 0010 0000 = PIC18(L)F1XK50 devices

Note 1: These values for DEV<10:3> may be shared with other devices. The specific device is always identified by using the entire DEV<10:0> bit sequence.

	Bit Clear	f			
Syntax:	BCF f, b	{,a}			
Operands:	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$				
Operation:	$0 \rightarrow f < b >$				
Status Affected:	None				
Encoding:	1001	bbba	ffff	ffff	
	Bit 'b' in register 'f' is cleared. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details				
Literal Offset Mode" for details.					
Words:	1				
Words: Cycles:	1 1				
	•				
Cycles:	•	Q3	3	Q4	
Cycles: Q Cycle Activity:	1	Q3 Proce Dat	ess	Q4 Write gister 'f'	

Syntax:	BN n	BN n						
Operands:	-128 ≤ n ≤ 1	-128 ≤ n ≤ 127						
Operation:		if NEGATIVE bit is '1' (PC) + 2 + 2n \rightarrow PC						
Status Affected:	None	None						
Encoding:	1110	0110 nn:	nn nnnn					
Description:	 If the NEGATIVE bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will hav incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction. 							
Words:	1	1						
Cycles:	1(2)	1(2)						
Q Cycle Activity: If Jump:								
Q1	Q2	Q3	Q4					
Decode	Read literal 'n'	Process Data	Write to PC					
No operation	No operation	No operation	No operation					
If No Jump:								
Q1	Q2	Q3	Q4					
Decode	Read literal	Process	No					
	'n'	Data	operation					
	Example: HERE BN Jump							

10	-	
After Instruction		
If NEGATIVE PC If NEGATIVE PC	=	1; address (Jump) 0; address (HERE + 2)

COMF	Complement f		CPFSEQ	Compare	f with W, sk	tip if f = W
Syntax:	COMF f {,d {,a}}		Syntax:	CPFSEQ	f {,a}	
Operands:	$0 \le f \le 255$		Operands:	$0 \leq f \leq 255$		
·	d ∈ [0,1]			a ∈ [0,1]		
	a ∈ [0,1]		Operation:	(f) - (W),	(1.4.1)	
Operation:	$(\overline{f}) \rightarrow dest$			skip if (f) =	(VV) comparison)	
Status Affected:	N, Z		Status Affected:	None	ionipaneen)	
Encoding:	0001 11da fff	f ffff	Encoding:	0110	001a ffi	ff ffff
Description:	The contents of register 'f'	are	Description:			f data memory
	complemented. If 'd' is '0',		Docomption	•	o the contents	
	stored in W. If 'd' is '1', the				an unsigned s	
	stored back in register 'f' (If 'a' is '0', the Access Bar	,			en the fetched	
	If 'a' is '1', the BSR is used				nd a NOP is ex king this a 2-c	
	GPR bank (default).			instruction.		yele
	If 'a' is '0' and the extende			lf 'a' is '0', t	he Access Bar	nk is selected.
	set is enabled, this instruc in Indexed Literal Offset A	•		,		d to select the
	mode whenever $f \le 95$ (5F	-		GPR bank If 'a' is '0' a	nd the extende	ed instruction
	Section 25.2.3 "Byte-Ori				ed, this instruc	
	Bit-Oriented Instructions Literal Offset Mode" for				Literal Offset A	-
		Jelans.			ever f ≤ 95 (5l	,
Words:	1				.2.3 "Byte-Ori d Instruction	
Cycles:	1			Literal Offs	set Mode" for	details.
Q Cycle Activity:			Words:	1		
Q1	Q2 Q3	Q4	Cycles:	1(2)		
Decode	Read Process register 'f' Data	Write to destination			ycles if skip an	
	Tegiotor 1 Data	destination	Q Cycle Activity:	by	a 2-word instru	lction.
Example:	COMF REG, 0, 0		Q Cycle Activity. Q1	Q2	Q3	Q4
Before Instru			Decode	Read	Process	No
REG	= 13h			register 'f'	Data	operation
After Instruc			lf skip:			
REG W	= 13h = ECh		Q1	Q2	Q3	Q4
vv			No operation	No operation	No operation	No operation
			If skip and followe			operation
			Q1	Q2	Q3	Q4
			No	No	No	No
			operation	operation	operation	operation
			No	No	No	No
			operation	operation	operation	operation
			Example:	HERE	CPFSEQ REG	B, O
				NEQUAL EQUAL	:	
			Before Instruc	~		
			PC Addr		RE	
			W	= ?		
			REG	= ?		
			After Instruction			
			If REG	= W;		

XORWF Exclusive OR W with f						
Syntax:	XORWF	f {,d {,a}}				
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$					
Operation:	(W) .XOR. ((f) \rightarrow dest				
Status Affected:	N, Z					
Encoding:	0001 10da ffff ffff					
	in W. If 'd' is in the regist If 'a' is '0', tl If 'a' is '1', tl GPR bank (If 'a' is '0' a set is enabl in Indexed I mode when Section 25	register 'f'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in the register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read register 'f'	Process Data	Write to destination			
Example:	XORWF F	REG, 1, 0				
Before Instruc REG W After Instructio REG W	= AFh = B5h					

	Subroutir	ne Call Using	y WREG			
Syntax:	CALLW					
Operands:	None					
Operation:	(W) → PCL (PCLATH) -	$(PC + 2) \rightarrow TOS,$ $(W) \rightarrow PCL,$ $(PCLATH) \rightarrow PCH,$ $(PCLATU) \rightarrow PCU$ None				
Status Affected:	None					
Encoding:	0000	0000 000	01 0100			
Description	First, the return address (PC + 2) is pushed onto the return stack. Next, the contents of W are written to PCL; the existing value is discarded. Then, the contents of PCLATH and PCLATU are latched into PCH and PCU, respectively. The second cycle is executed as a NOP instruction while the new next instruction is fetched. Unlike CALL, there is no option to update W, Status or BSR.					
Words:	1					
Cycles:	2					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decede	Read	PUSH PC to	No			
Decode						
	WREG	stack	operation			
No operation	No operation	stack No operation	operation No operation			

MO\	/SF	Move Ind	exed to	f		
Synta	ax:	MOVSF [2	<u>z_s],</u> f _d			
Oper	ands:	$0 \le z_s \le 12^{\circ}$ $0 \le f_d \le 408^{\circ}$				
Oper	ation:	((FSR2) + 2	$(z_s) \rightarrow f_d$			
Statu	s Affected:	None				
1st w	oding: ord (source) word (destin.)	1110 1111	1011 ffff	Ozzz ffff	zzzz _s ffff _d	
Desc	ription:	The contents of the source register are moved to destination register 'f _d '. The actual address of the source register is determined by adding the 7-bit literal offset 'z _s ' in the first word to the value of FSR2. The address of the destination register is specified by the 12-bit literal 'f _d ' in the second word. Both addresses can be anywhere in the 4096-byte data space (000h to FFFh). The MOVSF instruction cannot use the PCL, TOSU, TOSH or TOSL as the destination register. If the resultant source address points to an indirect addressing register, the				
Word	ls:	2				
Cycle	es:	2				
	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Determine source addr	Determ source a		Read urce reg	
	Decode	No operation No dummy read	No operati		Write gister 'f' (dest)	
<u>Exan</u>	Example: MOVSF [05h], REG2					
	Before Instruc FSR2 Contents of 85h REG2	= 80	h			
	After Instruction FSR2 Contents	on = 80	h			
	of 85h REG2	= 33 = 33				

ADD	WF	ADD W t (Indexed			iode)			
Synta	ax:	ADDWF	[k] {,d}					
Oper	ands:	$\begin{array}{l} 0 \leq k \leq 95 \\ d \in [0,1] \end{array}$						
Oper	ation:	(W) + ((FS	R2) + k) -	\rightarrow dest				
Statu	s Affected:	N, OV, C,	N, OV, C, DC, Z					
Enco	ding:	0010	01d0	kkkk	kkkk			
Desc	ription:	The contents of W are added to the contents of the register indicated by FSR2, offset by the value 'k'. If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f' (default).						
Word	ls:	1						
Cycle	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read 'k'	Proce Dat		Write to estination			
<u>Exan</u>	nple:	ADDWF	[OFST]	, 0				
	Before Instruct	ion						
	W OFST FSR2 Contents of 0A2Ch After Instruction	= = = n	17h 2Ch 0A00h 20h	1				
	W Contents of 0A2Ch	=	37h 20h					

BSF			Bit Set Indexed (Indexed Literal Offset mode)						
Synt	ax:	BSF [k], k	C						
Operands:		$\begin{array}{l} 0 \leq f \leq 95 \\ 0 \leq b \leq 7 \end{array}$							
Oper	ration:	$1 \rightarrow ((FSR)$	$1 \rightarrow ((FSR2) + k) < b >$						
Statu	is Affected:	None	None						
Encoding:		1000	bbb0	kkkk	kkkk				
Description:			Bit 'b' of the register indicated by FSR2, offset by the value 'k', is set.						
Words:		1							
Cycles:		1							
Q Cycle Activity:									
	Q1	Q2	Q3	}	Q4				
	Decode Read register		Proce Dat		Write to estination				
<u>Exar</u>	nple:	BSF	[FLAG_C	FST], '	7				
Before Instruction FLAG_OFST FSR2 Contents of 0A0Ah After Instruction Contents			0Ah 0A00ł 55h	ı					
	of 0A0Ah	=	D5h	D5h					

SETF			Set Indexed (Indexed Literal Offset mode)						
Synt	ax:	SETF [k]	SETF [k]						
Operands:		$0 \leq k \leq 95$							
Ope	ration:	FFh o ((F	SR2) + k)	1					
Status Affected:		None	None						
Encoding:		0110	1000	kkk}	k kk	kk			
Description:			The contents of the register indicated by FSR2, offset by 'k', are set to FFh.						
Words:		1	1						
Cycles:		1	1						
QC	cycle Activity:								
	Q1	Q2	Q	}	Q4				
	Decode	Read 'k'	Proce Dat		Write registe				
<u>Exar</u>	<u>mple</u> :	SETF	[OFST]						
	Before Instruct OFST FSR2	= 2 = 0	Ch A00h						

=	2Ch
=	0A00ł
=	00h
=	FFh
	_

			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
		Internal Program Memory Programming Specifications ⁽¹⁾						
D110	VPP	Voltage on MCLR/VPP/RA3 pin	8	_	9	V	(Note 3, Note 4)	
D113	IDDP	Supply Current during Programming	_	_	10	mA		
		Data EEPROM Memory ⁽²⁾						
D120	ED	Byte Endurance	100K	_	_	E/W	-40°C to +85°C	
D121	Vdrw	VDD for Read/Write	VDDMIN	_	VDDMAX	V	Using EECON to read/write	
D122	TDEW	Erase/Write Cycle Time	_	3	4	ms		
D123	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
D130		Program Flash Memory						
	Eр	Cell Endurance	10k	_	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131	Vpr	VDD for Read	Vddmin	_	VDDMAX	V		
D131A		Voltage on MCLR/VPP during Erase/Program	8.0	—	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131B	Vbe	VDD for Bulk Erase	2.7	—	VDDMAX	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132	Vpew	VDD for Write or Row Erase	2.2 Vddmin		Vddmax Vddmax	V	PIC18LF1XK50 PIC18F1XK50	
D132A	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132B	IDDPGM	Current on VDD during Erase/Write	—	5.0	_	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D133	TPEW	Erase/Write cycle time	_	2.0	2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D134	TRETD	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated	

TABLE 27-5: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 5.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

SS = SSOP	PART NO.	<u>[X]</u> ⁽¹⁾	×	<u>/xx</u>	xxx	Exam	ples:
tier is used for ordering purposes and is not	Device: Tape and Reel Option: Temperature Range: Package:	Tape and Reel Option PIC18F13K50 ⁽¹⁾ , P PIC18LF13K50 ⁽¹⁾ , Blank = Standard T = Tape an I = -40°C to E = -40°C to P = PDIP SO = SOIC SS = SSOP MQ = QFN	Range IC18F14K50 ⁽¹⁾ , PIC18LF14K50 d packaging (tube of d Reel ⁽¹⁾ +85°C (Indus) +125°C (Exten	Package		a) F F F C) F C) F C) F F C) F F C) F F F F F F F F F F F F F F F F F F F	 Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package.