Microchip Technology - PIC18LF13K50T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	14
Program Memory Size	8KB (4K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	512 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf13k50t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R-x
	_	_		—	PRI_SD	HFIOFL	LFIOFS
bit 7							bit 0
Legend:							
R = Readable	bit $W = V$	Writable bit	U = Unimple	emented bit, re	ead as '0'	q = depends or	n condition
-n = Value at P	OR '1' =	Bit is set	'0' = Bit is c	leared		x = Bit is unkno	own
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2	PRI_SD: Prim	nary Oscillator	Drive Circuit sh	nutdown bit			
	1 = Oscillator drive circuit on						
	0 = Oscillator	drive circuit of	(zero power)				
bit 1	HFIOFL: HFI	NTOSC Freque	ency Locked bi	t			
	1 = HFINTO	SC is in lock					
	0 = HFINIO	SC has not yet	locked				
bit 0	LFIOFS: LFIN	ITOSC Freque	ncy Stable bit				
	1 = LFINTOS	SC is stable	_				
	0 = LFINTOS	SC is not stable	e				

REGISTER 2-2: OSCCON2: OSCILLATOR CONTROL REGISTER 2

2.6.1 OSCTUNE REGISTER

The HFINTOSC is factory calibrated, but can be adjusted in software by writing to the TUN<5:0> bits of the OSCTUNE register (Register 2-3).

The default value of the TUN<5:0> is '000000'. The value is a 6-bit two's complement number.

When the OSCTUNE register is modified, the HFINTOSC frequency will begin shifting to the new frequency. Code execution continues during this shift, while giving no indication that the shift has occurred.

OSCTUNE does not affect the LFINTOSC frequency. The operation of features that depend on the LFINTOSC clock source frequency, such as the Power-up Timer (PWRT), Watchdog Timer (WDT), Fail-Safe Clock Monitor (FSCM) and peripherals, are *not* affected by the change in frequency.

The OSCTUNE register also implements the INTSRC and SPLLEN bits, which control certain features of the internal oscillator block.

The INTSRC bit allows users to select which internal oscillator provides the clock source when the 31 kHz frequency option is selected. This is covered in greater detail in **Section 2.5.1 "LFINTOSC"**.

The SPLLEN bit controls the operation of the frequency multiplier. For more details about the function of the SPLLEN bit see Section 2.9 "4x Phase Lock Loop Frequency Multiplier".

REGISTER 2-3: OSCTUNE: OSCILLATOR TUNING REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
INTSRC	SPLLEN	TUN5	TUN4	TUN3	TUN2	TUN1	TUN0
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 7	INTSRC: Inte	ernal Oscillator	Low-Frequen	cy Source Seled	ct bit		
	1 = 31.25 kH	Iz device clock	derived from	16 MHz HFINT	OSC source (d	livide-by-512 er	nabled)
	0 = 31 kHz d	levice clock de	rived directly f	rom LFINTOSC	internal oscilla	ator	
bit 6	SPLLEN: Sof	ftware Controll	ed Frequency	Multiplier PLL b	bit		
	1 = PLL enal	bled (for HFIN	OSC 8 MHz	only)			
	0 = PLL disa	bled					
bit 5-0	TUN<5:0>: F	requency Tuni	ng bits				
	011111 = Ma	aximum freque	ncy				
	011110 =						
	000001 -						
000001 = 0							
	111111 =		5	,, ,		- ,	
	•••						
	100000 = Mi	nimum frequen	су				

PIC18(L)F1XK50

Clock Mode	Clock Frequency	USBDIV	4x PLL Enabled	CPUDIV<1:0>	System Clock Frequency (MHz)
				0.0	48
			Vaa	01	24
			Tes	10	16
	10 M⊔-	1		11	12
	12 MHZ	I		00	12
			No	01	6
				10	4
				11	3
EC nigh/ns		0	Yes	00	24
				01	12
				10	8
	6 MU7			11	6
				00	6
			No	01	3
			INO	10	2
				11	1.5

TABLE 2-4: LOW-SPEED USB CLOCK SETTINGS

Note: The system clock frequency in Table 2-4 only applies if the OSCCON register bits SCS<1:0> = 00. By changing these bits, the system clock can operate down to 31 kHz.

TABLE 2-5: FULL-SPEED USB CLOCK SETTINGS

Clock Mode	Clock Frequency	4x PLL Enabled	CPUDIV<1:0>	System Clock Frequency (MHz)
			00	48
EC High	48 MHz	No	01	24
			10	16
			11	12
			00	48
EC High/HS	12 MHz	Yes	01	24
			10	16
			11	12

Note:	The system clock frequency in the above
	table only applies if the OSCCON register
	bits $SCS < 1:0 > = 00$. By changing these
	bits, the system clock can operate down to
	31 kHz.

7.8 RCON Register

The RCON register contains flag bits which are used to determine the cause of the last Reset or wake-up from Idle or Sleep modes. RCON also contains the IPEN bit which enables interrupt priorities.

The operation of the SBOREN bit and the Reset flag bits is discussed in more detail in **Section 23.1** "**RCON Register**".

REGISTER 7-10: RCON: RESET CONTROL REGISTER

R/W-0	R/W-1	U-0	R/W-1	R-1	R-1	R/W-0	R/W-0
IPEN	SBOREN ⁽¹⁾	—	RI	TO	PD	POR ⁽²⁾	BOR
bit 7					•		bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	IPEN: Interrupt Priority Enable bit 1 = Enable priority levels on interrupts 0 = Disable priority levels on interrupts (PIC16CXXX Compatibility mode)
bit 6	SBOREN: BOR Software Enable bit ⁽¹⁾ <u>If BOREN<1:0> = 01:</u> 1 = BOR is enabled 0 = BOR is disabled <u>If BOREN<1:0> = 00, 10 or 11:</u>
	Bit is disabled and read as '0'.
bit 5	Unimplemented: Read as '0'
bit 4	RI: RESET Instruction Flag bit
	 1 = The RESET instruction was not executed (set by firmware or Power-on Reset) 0 = The RESET instruction was executed causing a device Reset (must be set in firmware after a code-executed Reset occurs)
bit 3	To: Watchdog Time-out Flag bit
	 1 = Set by power-up, CLRWDT instruction or SLEEP instruction 0 = A WDT time-out occurred
bit 2	PD: Power-down Detection Flag bit
	 1 = Set by power-up or by the CLRWDT instruction 0 = Set by execution of the SLEEP instruction
bit 1	POR: Power-on Reset Status bit ⁽²⁾
	1 = No Power-on Reset occurred 0 = A Power-on Reset occurred (must be set in software after a Power-on Reset occurs)
bit 0	BOR: Brown-out Reset Status bit ^(a)
	 1 = A Brown-out Reset has not occurred (set by firmware only) 0 = A Brown-out Reset occurred (must be set by firmware after a POR or Brown-out Reset occurs)
Note 1:	If SBOREN is enabled, its Reset state is '1'; otherwise, it is '0'.
2:	The actual Reset value of POR is determined by the type of device Reset. See the notes following this register and Section 23.6 "Reset State of Registers" for additional information.

3: See Table 23-3.

14.4 PWM (Enhanced Mode)

The Enhanced PWM Mode can generate a PWM signal on up to four different output pins with up to ten bits of resolution. It can do this through four different PWM output modes:

- Single PWM
- Half-Bridge PWM
- Full-Bridge PWM, Forward mode
- Full-Bridge PWM, Reverse mode

To select an Enhanced PWM mode, the P1M bits of the CCP1CON register must be set appropriately.

The PWM outputs are multiplexed with I/O pins and are designated P1A, P1B, P1C and P1D. The polarity of the PWM pins is configurable and is selected by setting the CCP1M bits in the CCP1CON register appropriately.

Table 14-2 shows the pin assignments for each Enhanced PWM mode.

Figure 14-3 shows an example of a simplified block diagram of the Enhanced PWM module.

Note: To prevent the generation of an incomplete waveform when the PWM is first enabled, the ECCP module waits until the start of a new PWM period before generating a PWM signal.

Note 1:	The TRIS register value for each PWM output must be configured appropriately.
2.	Any nin not used by an Enhanced PW/M mode is available for alternate nin functions

TABLE 14-2:	EXAMPLE PIN ASSIGNMENTS FOR VARIOUS PWM ENHANCED MODES

ECCP Mode	P1M<1:0>	CCP1/P1A	P1B	P1C	P1D
Single	0.0	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾	Yes ⁽¹⁾
Half-Bridge	10	Yes	Yes	No	No
Full-Bridge, Forward	01	Yes	Yes	Yes	Yes
Full-Bridge, Reverse	11	Yes	Yes	Yes	Yes

Note 1: Outputs are enabled by pulse steering in Single mode. See Register 14-4.

0.0	(Single Output)	P1A Modulated	— — İ		·	<u> </u>
00	(engle eutput)		F			
		P1A Modulated				
10	(Half-Bridge)	P1B Modulated	Dela	ay(")		¦
		P1A Active	— ¦			
01	(Full-Bridge, Forward)	P1B Inactive	; ;			<u> </u>
	, en la la la	P1C Inactive				
		P1D Modulated				
		P1A Inactive	! !		 	
11	(Full-Bridge,	P1B Modulated				
	1/646196)	P1C Active			1 	
		P1D Inactive	<u> </u>		 	 I I

EXAMPLE ENHANCED PWM OUTPUT RELATIONSHIPS (ACTIVE-LOW STATE) FIGURE 14-5:

mode").

14.4.6 PROGRAMMABLE DEAD-BAND DELAY MODE

In Half-Bridge applications where all power switches are modulated at the PWM frequency, the power switches normally require more time to turn off than to turn on. If both the upper and lower power switches are switched at the same time (one turned on, and the other turned off), both switches may be on for a short period of time until one switch completely turns off. During this brief interval, a very high current (shoot-through current) will flow through both power switches, shorting the bridge supply. To avoid this potentially destructive shoot-through current from flowing during switching, turning on either of the power switches is normally delayed to allow the other switch to completely turn off.

In Half-Bridge mode, a digitally programmable dead-band delay is available to avoid shoot-through current from destroying the bridge power switches. The delay occurs at the signal transition from the non-active state to the active state. See Figure 14-14 for illustration. The lower seven bits of the associated PWM1CON register (Register 14-3) sets the delay period in terms of microcontroller instruction cycles (TcY or 4 Tosc).

FIGURE 14-14: EXAMPLE OF HALF-BRIDGE PWM OUTPUT

FIGURE 14-15: EXAMPLE OF HALF-BRIDGE APPLICATIONS

14.4.8 OPERATION IN POWER-MANAGED MODES

In Sleep mode, all clock sources are disabled. Timer2 will not increment and the state of the module will not change. If the ECCP pin is driving a value, it will continue to drive that value. When the device wakes up, it will continue from this state. If Two-Speed Start-ups are enabled, the initial start-up frequency from HFINTOSC and the postscaler may not be stable immediately.

In PRI_IDLE mode, the primary clock will continue to clock the ECCP module without change. In all other power-managed modes, the selected power-managed mode clock will clock Timer2. Other power-managed mode clocks will most likely be different than the primary clock frequency.

14.4.8.1 Operation with Fail-Safe Clock Monitor

If the Fail-Safe Clock Monitor is enabled, a clock failure will force the device into the RC_RUN Power-Managed mode and the OSCFIF bit of the PIR2 register will be set. The ECCP will then be clocked from the internal oscillator clock source, which may have a different clock frequency than the primary clock.

See the previous section for additional details.

14.4.9 EFFECTS OF A RESET

Both Power-on Reset and subsequent Resets will force all ports to Input mode and the CCP registers to their Reset states.

This forces the enhanced CCP module to reset to a state compatible with the standard CCP module.

17.1.6 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital Conversion. The ADC interrupt flag is the ADIF bit in the PIR1 register. The ADC interrupt enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared by software.

Note:	The ADIF bit is set at the completion of
	every conversion, regardless of whether
	or not the ADC interrupt is enabled.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the global interrupt must be disabled. If the global interrupt is enabled, execution will switch to the Interrupt Service Routine. Please see **Section 17.1.6** "**Interrupts**" for more information.

TABLE 17-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock	Period (TAD)	Device Frequency (Fosc)				
ADC Clock Source	ADCS<2:0>	48 MHz	16 MHz	4 MHz	1 MHz	
Fosc/2	000	41.67 ns ⁽²⁾	125 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	
Fosc/4	100	83.33 ns ⁽²⁾	250 ns ⁽²⁾	1.0 μs	4.0 μs	
Fosc/8	001	167 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾	
Fosc/16	101	333 ns ⁽²⁾	1.0 μs	4.0 μs	16.0 μs ⁽³⁾	
Fosc/32	010	667 ns ⁽²⁾	2.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽³⁾	
Fosc/64	110	1.33 μs	4.0 μs	16.0 μs ⁽³⁾	64.0 μs ⁽³⁾	
FRC	x11	1-4 μs ^(1,4)	1-4 μs ^(1,4)	1-4 μs ^(1,4)	1-4 μs ^(1,4)	

Legend: Shaded cells are outside of recommended range.

- Note 1: The FRC source has a typical TAD time of 1.7 μ s.
 - 2: These values violate the minimum required TAD time.
 - 3: For faster conversion times, the selection of another clock source is recommended.
 - 4: When the device frequency is greater than 1 MHz, the FRC clock source is only recommended if the conversion will be performed during Sleep.

17.1.7 RESULT FORMATTING

The 10-bit A/D conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON2 register controls the output format.

Figure 17-2 shows the two output formats.

FIGURE 17-2: 10-BIT A/D CONVERSION RESULT FORMAT

17.2.10 ADC REGISTER DEFINITIONS

The following registers are used to control the operation of the ADC.

Note:	Analog pin co	ontrol is pe	erformed by the
	ANSEL and	ANSELH	registers. For
	ANSEL and	ANSELH	registers, see
	Register 9-15	and	Register 9-16,
	respectively.		

REGISTER 17-1: ADCON0: A/D CONTROL REGISTER 0

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-6	Unimplemented: Read as '0'
bit 5-2	CHS<3:0>: Analog Channel Select bits
	0000 = Reserved
	0001 = Reserved
	0010 = Reserved
	0011 = AN3
	0100 = AN4
	0101 = AN5
	0110 = AN6
	0111 = AN7
	1000 = AN8
	1001 = AN9
	1010 = AN10
	1011 = AN11
	1100 = Reserved
	1101 = Reserved
	1110 = DAC
	1111 = FVR
bit 1	GO/DONE: A/D Conversion Status bit
	 1 = A/D conversion cycle in progress. Setting this bit starts an A/D conversion cycle. This bit is automatically cleared by hardware when the A/D conversion has completed. 0 = A/D conversion completed/not in progress
bit 0	ADON: ADC Enable bit
	1 = ADC is enabled
	0 = ADC is disabled and consumes no operating current
Note 1:	Selecting reserved channels will yield unpredictable results as unimplemented input channels are left floating.

FIGURE 17-6: ADC TRANSFER FUNCTION

19.5.3 EXIT BY RESET

Exiting Sleep and Idle modes by Reset causes code execution to restart at address 0. See **Section 23.0** "**Reset**" for more details.

The exit delay time from Reset to the start of code execution depends on both the clock sources before and after the wake-up and the type of oscillator. Exit delays are summarized in Table 19-2.

19.5.4 EXIT WITHOUT AN OSCILLATOR START-UP DELAY

Certain exits from power-managed modes do not invoke the OST at all. There are two cases:

- PRI_IDLE mode, where the primary clock source is not stopped and
- the primary clock source is not any of the LP, XT, HS or HSPLL modes.

In these instances, the primary clock source either does not require an oscillator start-up delay since it is already running (PRI_IDLE), or normally does not require an oscillator start-up delay (RC, EC, INTOSC, and INTOSCIO modes). However, a fixed delay of interval TCsD following the wake event is still required when leaving Sleep and Idle modes to allow the CPU to prepare for execution. Instruction execution resumes on the first clock cycle following this delay.

TABLE 19-2:EXIT DELAY ON WAKE-UP BY RESET FROM SLEEP MODE OR ANY IDLE MODE
(BY CLOCK SOURCES)

Clock Source before Wake-up	Clock Source after Wake-up	Exit Delay	Clock Ready Status Bit (OSCCON)	
	LP, XT, HS			
Primary Device Clock	HSPLL	тоор(1)	OSTS	
(PRI_IDLE mode)	EC, RC			
	HFINTOSC ⁽²⁾		IOSF	
	LP, XT, HS	Tost ⁽³⁾		
	HSPLL	TOST + t _{PLL} ⁽³⁾	OSTS	
	EC, RC	TCSD ⁽¹⁾		
	HFINTOSC ⁽¹⁾	TIOBST ⁽⁴⁾	IOSF	
	LP, XT, HS	Tost ⁽⁴⁾		
	HSPLL	TOST + t _{PLL} ⁽³⁾	OSTS	
HFINTOSC ⁽)	EC, RC	TCSD ⁽¹⁾		
	HFINTOSC ⁽¹⁾	None	IOSF	
	LP, XT, HS	Tost ⁽³⁾		
None	HSPLL	TOST + t _{PLL} (3)	OSTS	
(Sleep mode)	EC, RC	TCSD ⁽¹⁾		
	HFINTOSC ⁽¹⁾	TIOBST ⁽⁴⁾	IOSF	

Note 1: TCSD is a required delay when waking from Sleep and all Idle modes and runs concurrently with any other required delays (see Section 19.4 "Idle Modes"). On Reset, HFINTOSC defaults to 1 MHz.

2: Includes both the HFINTOSC 16 MHz source and postscaler derived frequencies.

3: TOST is the Oscillator Start-up Timer. t_{PLL} is the PLL Lock-out Timer (parameter F12).

4: Execution continues during the HFINTOSC stabilization period, TIOBST.

PIC18(L)F1XK50

FIGURE 21-2: VOLTAGE REFERENCE OUTPUT BUFFER EXAMPLE

REGISTER 21-1: REFCON0: REFERENCE CONTROL REGISTER 0

R/W-0	R-0	R/W-0	R/W-1	U-0	U-0	U-0	U-0
FVR1EN	FVR1ST	FVR1S1	FVR1S0	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as	'0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	FVR1EN: Fixed Voltage Reference 1 Enable bit0 = FVR is disabled1 = FVR is enabled
bit 6	FVR1ST: Fixed Voltage Reference 1 Stable bit0 = FVR is not stable1 = FVR is stable
bit 5-4	FVR1S<1:0>: Fixed Voltage Reference 1 Voltage Select bits 00 = Reserved, do not use 01 = 1.024V (x1) 10 = 2.048V (x2) 11 = 4.096V (x4)
bit 3-0	Unimplemented: Read as '0'

23.0 RESET

The PIC18(L)F1XK50 devices differentiate between various kinds of Reset:

- a) Power-on Reset (POR)
- b) MCLR Reset during normal operation
- c) MCLR Reset during power-managed modes
- d) Watchdog Timer (WDT) Reset (during execution)
- e) Programmable Brown-out Reset (BOR)
- f) RESET Instruction
- g) Stack Full Reset
- h) Stack Underflow Reset

This section discusses Resets generated by MCLR, POR and BOR and covers the operation of the various start-up timers. Stack Reset events are covered in Section 3.1.2.4 "Stack Full and Underflow Resets". WDT Resets are covered in Section 24.2 "Watchdog Timer (WDT)". A simplified block diagram of the On-Chip Reset Circuit is shown in Figure 23-1.

23.1 RCON Register

Device Reset events are tracked through the RCON register (Register 23-1). The lower five bits of the register indicate that a specific Reset event has occurred. In most cases, these bits can only be cleared by the event and must be set by the application after the event. The state of these flag bits, taken together, can be read to indicate the type of Reset that just occurred. This is described in more detail in **Section 23.6** "**Reset State of Registers**".

The RCON register also has control bits for setting interrupt priority (IPEN) and software control of the BOR (SBOREN). Interrupt priority is discussed in Section 7.0 "Interrupts". BOR is covered in Section 23.4 "Brown-out Reset (BOR)".

FIGURE 24-2: CODE-PROTECTED PROGRAM MEMORY FOR PIC18(L)F1XK50

		Device						
Address (from/to)	14	K50	1;	3K50				
	BBSIZ = 1	BBSIZ = 0	BBSIZ = 1	BBSIZ = 0				
0000h 01FFh	Boot Block, 2 KW CPB, WRTB, EBTRB	Boot Block, 1 KW CPB, WRTB, EBTRB	Boot Block, 1 KW CPB, WRTB, EBTRB	Boot Block, 0.512 KW CPB, WRTB, EBTRB				
0200h 03FFh				Block 0 1.512 KW				
0400h 05FFh		Block 0 3 KW	Block 0 1 KW	CP0, WRT0, EBTR0				
0600h 07FFh		CP0, WRT0, EBTR0	CP0, WRT0, EBTR0					
0800h 0FFFh	Block 0 2 KW CP0, WRT0, EBTR0		Block 1 2 KW CP1, WRT1, EBTR1	Block 1 2 KW CP1, WRT1, EBTR1				
1000h 1FFFh	Block 1 4 KW CP1, WRT1, EBTR1	Block 1 4 KW CP1, WRT1, EBTR1	Reads all '0's	Reads all '0's				
2000h 27FFh	Reads all '0's	Reads all '0's						
2800h 2FFFh								
3000h 37FFh								
3800h 3FFFh								
4000h 47FFh								
4800h 4FFFh								
5000h 57FFh								
5800h 5FFFh								
6000h 67FFh								
6800h 6FFFh								
7000h 77FFh								
7800h 7FFFh								
8000h FFFFh								

Note: Refer to the test section for requirements on test memory mapping.

PIC18(L)F1XK50

POP)	Рор Тор	Pop Top of Return Stack						
Synta	ax:	POP	POP						
Operands:		None	None						
Operation:		$(TOS) \rightarrow b$	$(TOS) \rightarrow bit bucket$						
Status Affected:		None	None						
Enco	oding:	0000	0000	000	0110				
Desc	ription:	The TOS v stack and is then becon was pushe This instruc the user to stack to inc	The TOS value is pulled off the return stack and is discarded. The TOS value then becomes the previous value that was pushed onto the return stack. This instruction is provided to enable the user to properly manage the return stack to incorporate a software stack.						
Words:		1							
Cycles:		1							
Q Cycle Activity:									
Q1		Q2	Q3			Q4			
	Decode	No operation	POP TOS value		ор	No eration			
Example:		POP GOTO	NEW						
Before Instructic TOS Stack (1 lev After Instruction TOS PC		tion level down) on	= = =	0031A: 014332 014332 NEW	2h 2h 2h				

PUSH		Push Top	Push Top of Return Stack							
Syntax:		PUSH								
Operands:		None	None							
Operation:		$(PC + 2) \rightarrow$	$(PC + 2) \rightarrow TOS$							
Status /	Affected:	None	None							
Encoding:		0000	0000	000	0	0101				
the return stack. The previous TOS value is pushed down on the stack. This instruction allows implementing software stack by modifying TOS an then pushing it onto the return stack						TOS stack. enting a OS and stack.				
Words:		1	1							
Cycles:		1	1							
Q Cycl	le Activity:									
	Q1	Q2	Q	3		Q4				
	Decode	PUSH PC + 2 onto return stack	No operation		op	No peration				
<u>Exampl</u>	<u>e</u> :	PUSH								
Be	efore Instruc TOS PC	tion	= =	345Ah 0124h						
Af	ter Instructio PC TOS Stack (1	on level down)	= = =	0126h 0126h 345Ah						

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +125^{\circ}C$					
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
		Internal Program Memory Programming Specifications ⁽¹⁾						
D110	Vpp	Voltage on MCLR/VPP/RA3 pin	8	_	9	V	(Note 3, Note 4)	
D113	IDDP	Supply Current during Programming	—	_	10	mA		
		Data EEPROM Memory ⁽²⁾						
D120	ED	Byte Endurance	100K	—	—	E/W	-40°C to +85°C	
D121	Vdrw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	Using EECON to read/write	
D122	TDEW	Erase/Write Cycle Time	—	3	4	ms		
D123	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated	
D124	TREF	Number of Total Erase/Write Cycles before Refresh ⁽²⁾	1M	10M	—	E/W	-40°C to +85°C	
D130		Program Flash Memory						
	Ер	Cell Endurance	10k	—	—	E/W	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131	Vpr	VDD for Read	Vddmin	_	VDDMAX	V		
D131A		Voltage on MCLR/VPP during Erase/Program	8.0	_	9.0	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D131B	Vbe	VDD for Bulk Erase	2.7	—	VDDMAX	V	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132	VPEW	VDD for Write or Row Erase	2.2 Vddmin	—	Vddmax Vddmax	V	PIC18LF1XK50 PIC18F1XK50	
D132A	IPPPGM	Current on MCLR/VPP during Erase/Write	_	1.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D132B	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D133	TPEW	Erase/Write cycle time	—	2.0	2.8	ms	Temperature during programming: $10^{\circ}C \le TA \le 40^{\circ}C$	
D134	TRETD	Characteristic Retention	_	40	_	Year	Provided no other specifications are violated	

TABLE 27-5: MEMORY PROGRAMMING REQUIREMENTS

† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: These specifications are for programming the on-chip program memory through the use of table write instructions.

2: Refer to Section 5.8 "Using the Data EEPROM" for a more detailed discussion on data EEPROM endurance.

3: Required only if single-supply programming is disabled.

4: The MPLAB ICD 2 does not support variable VPP output. Circuitry to limit the ICD 2 VPP voltage must be placed between the ICD 2 and target system when programming or debugging with the ICD 2.

TABLE 27-12: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER, AND BROWN-OUT RESET PARAMETERS

Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$								
Param. No.	Sym.	Characteristic	Min.	Тур.†	Max.	Units	Conditions	
30	ТмсL	MCLR Pulse Width (low)	2 5			μS μS	VDD = 3.3-5V, -40°C to +85°C VDD = 3.3-5V	
31	Twdt	Standard Watchdog Timer Time-out Period	10 10	17 17	27 30	ms ms	VDD = 3.3V-5V, -40°C to +85°C VDD = 3.3V-5V	
31A	TWDTLP	Low Power Watchdog Timer Time-out Period	10 10	18 18	27 33	ms ms	VDD = 3.3V-5V, -40°C to +85°C VDD = 3.3V-5V	
32	Tost	Oscillator Start-up Timer Period ^(1,2,3)	—	1024	—	Tosc		
33*	TPWRT	Power-up Timer Period, $\overline{PWRTE} = 0$	40	65	140	ms		
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset		-	2.73	μS		
35	VBOR	Brown-out Reset Voltage	1.75 2.05 2.35 2.65	1.9 2.2 2.7 2.85	2.05 2.35 2.85 3.05	V V V	BORV = 1.9V BORV = 2.2V BORV = 2.7V BORV = 2.85V	
36*	VHYST	Brown-out Reset Hysteresis	_	25	50	mV	-40°C to +85°C	
37*	TBORDC	Brown-out Reset DC Response Time	0	3	35	μS	$VDD \leq VBOR$	

Standard Operating Conditions (unless otherwise stated)

These parameters are characterized but not tested.

Data in "Typ." column is at 3V, 25°C unless otherwise stated. These parameters are for design guidance † only and are not tested.

Note 1: Instruction cycle period (TCY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min" values with an external clock applied to the OSC1 pin. When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: By design.

3: Period of the slower clock.

APPENDIX A: REVISION HISTORY

Revision A (May 2008)

Original data sheet for PIC18F1XK50/PIC18LF1XK50 devices.

Revision B (June 2008)

Revised 27.4 DC Characteristics table.

Revision C (04/2009)

Revised data sheet title; Revised Features section; Revised Table 1-2; Revised Table 3-1, Table 3-2; Added Note 3 in Section 9.1; Revised Register 14-1; Revised Example 16-1; Revised Section 18.8.4; Revised Register 18-3; Revised Table 20-2; Revised Sections 22.2.1, 22.2.2, 22.5.1.1, 22.7; Revised Tables 23-4, 27-1, 27-2, 27-3 27-4, 27-8.

Revision D (05/2010)

Revised the 20-pin PDIP, SSOP, SOIC Diagram; Added the 20-pin QFN Diagram; Revised Table 1, Table 1-1; Revised Figure 2-1; Added Note below Section 2.11.1 (Low-Speed Operation); Revised Table 3-1, Table 3-2; Revised Section 4 (Flash Program Memory) and Section 5 (Data EEPROM Memory); Revised Example 5-2, Table 5-1; Deleted Note 1 from Registers 7-4, 7-8; Revised Tables 9-1, 9-3; Revised Sections 14.1 (ECCP Outputs and Configuration), 14.4.4 (Enhanced PWM Auto-Shutdown Mode); Added Note 4 below Register 14-2; Revised Figure 14-10; Revised Equation 17-1; Revised Table 18-3 and Table 20-3; Revised Equation 21-1; Deleted Section 21.1.3 (Output Clamped to Vss); Revised Figure 21-1; Revised Table 21-1, Table 23-4 and Table 24-1; Added Note 2 to Table 24-1; Revised Register 24-6; Deleted Note 1 from Table 24-3; Revised Section 27 (tables); Added 20-Lead QFN Package Marking Information and Package Details; Revised the Product Identification System Section; Other minor corrections.

Revision E (10/2010)

Updated Section 27.0 Electrical Specifications.

Revision F (04/2015)

Updated Figures 1, 2 and 22-5, Table 1, Register 14-2; Updated note in Section 2.11.1; Updated Section 7.2 (Interrupt Priority), Section 27.0 (Electrical Specifications), Section 29.0 (Packaging Information) and the Product Identification System page; Added graphs in Section 28.0 (DC and AC Characteristics Graphs and Charts); Changed data sheet status from Preliminary to Final; Other minor corrections.