

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf14k50-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 OSCILLATOR MODULE

2.1 Overview

The oscillator module has a variety of clock sources and features that allow it to be used in a wide range of applications, maximizing performance and minimizing power consumption. Figure 2-1 illustrates a block diagram of the oscillator module.

Key features of the oscillator module include:

- System Clock Selection
 - Primary External Oscillator
 - Secondary External Oscillator
 - Internal Oscillator
- Oscillator Start-up Timer
- System Clock Selection
- Clock Switching
- 4x Phase Lock Loop Frequency Multiplier
- CPU Clock Divider
- USB Operation
- Low-Speed
- Full-Speed
- Two-Speed Start-up Mode
- Fail-Safe Clock Monitoring

2.2 System Clock Selection

The SCS bits of the OSCCON register select between the following clock sources:

- Primary External Oscillator
- Secondary External Oscillator

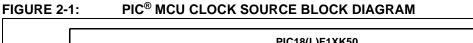
Internal Oscillator

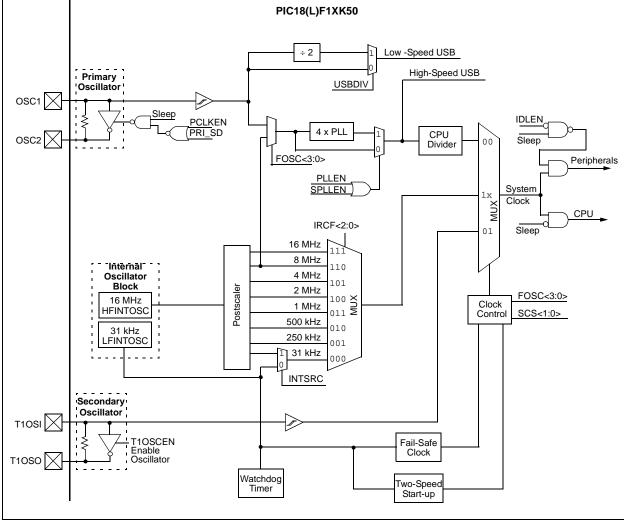
Note:	The frequ	ueno	cy of	the sys	stem clock wi	ill be
	referred	to	as	Fosc	throughout	this
	documer	ıt.				

TABLE 2-1:	SYSTEM CLOCK SELECTION
------------	------------------------

Configuration	Selection
SCS <1:0>	System Clock
1x	Internal Oscillator
01	Secondary External Oscillator
00 (Default after Reset)	Oscillator defined by FOSC<3:0>

The default state of the SCS bits sets the system clock to be the oscillator defined by the FOSC bits of the CONFIG1H Configuration register. The system clock will always be defined by the FOSC bits until the SCS bits are modified in software.


When the Internal Oscillator is selected as the system clock, the IRCF bits of the OSCCON register and the INTSRC bit of the OSCTUNE register will select either the LFINTOSC or the HFINTOSC. The LFINTOSC is selected when the IRCF<2:0> = 000 and the INTSRC bit is clear. All other combinations of the IRCF bits and the INTSRC bit will select the HFINTOSC as the system clock.


2.3 Primary External Oscillator

The Primary External Oscillator's mode of operation is selected by setting the FOSC<3:0> bits of the CONFIG1H Configuration register. The oscillator can be set to the following modes:

- LP: Low-Power Crystal
- XT: Crystal/Ceramic Resonator
- HS: High-Speed Crystal Resonator
- RC: External RC Oscillator
- EC: External Clock

Additionally, the Primary External Oscillator may be shut down under firmware control to save power.

5.3 Reading the Data EEPROM Memory

To read a data memory location, the user must write the address to the EEADR register, clear the EEPGD control bit of the EECON1 register and then set control bit, RD. The data is available on the very next instruction cycle; therefore, the EEDATA register can be read by the next instruction. EEDATA will hold this value until another read operation, or until it is written to by the user (during a write operation).

The basic process is shown in Example 5-1.

5.4 Writing to the Data EEPROM Memory

To write an EEPROM data location, the address must first be written to the EEADR register and the data written to the EEDATA register. The sequence in Example 5-2 must be followed to initiate the write cycle.

The write will not begin if this sequence is not exactly followed (write 55h to EECON2, write 0AAh to EECON2, then set WR bit) for each byte. It is strongly recommended that interrupts be disabled during this code segment.

Additionally, the WREN bit in EECON1 must be set to enable writes. This mechanism prevents accidental writes to data EEPROM due to unexpected code execution (i.e., runaway programs). The WREN bit should be kept clear at all times, except when updating the EEPROM. The WREN bit is not cleared by hardware.

After a write sequence has been initiated, EECON1, EEADR and EEDATA cannot be modified. The WR bit will be inhibited from being set unless the WREN bit is set. Both WR and WREN cannot be set with the same instruction.

At the completion of the write cycle, the WR bit is cleared by hardware and the EEPROM Interrupt Flag bit, EEIF, is set. The user may either enable this interrupt or poll this bit. EEIF must be cleared by software.

5.5 Write Verify

Depending on the application, good programming practice may dictate that the value written to the memory should be verified against the original value. This should be used in applications where excessive writes can stress bits near the specification limit.

EXAMPLE 5-1: DATA EEPROM READ

	MOVLW	data ee adi	DR	i
	MOVWF			; Data Memory Address to read
	BCF	EECON1, EEP	PGD	; Point to DATA memory
	BCF	EECON1, CFG	GS	; Access EEPROM
	BSF	EECON1, RD		; EEPROM Read
ĺ	MOVF	EEDATA, W		; W = EEDATA

EXAMPLE 5-2: DATA EEPROM WRITE

	MOVLW	DATA_EE_ADDR_LOW	;
	MOVWF	EEADR	; Data Memory Address to write
	MOVLW	DATA_EE_DATA	i
	MOVWF	EEDATA	; Data Memory Value to write
	BCF	EECON1, EEPGD	; Point to DATA memory
	BCF	EECON1, CFGS	; Access EEPROM
	BSF	EECON1, WREN	; Enable writes
	BCF	INTCON, GIE	; Disable Interrupts
	MOVLW	55h	;
Required	MOVWF	EECON2	; Write 55h
Sequence	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BSF	INTCON, GIE	; Enable Interrupts
			; User code execution
	BCF	EECON1, WREN	; Disable writes on write complete (EEIF set)

5.6 Operation During Code-Protect

Data EEPROM memory has its own code-protect bits in Configuration Words. External read and write operations are disabled if code protection is enabled.

The microcontroller itself can both read and write to the internal data EEPROM, regardless of the state of the code-protect Configuration bit. Refer to **Section 24.0 "Special Features of the CPU"** for additional information.

5.7 Protection Against Spurious Write

There are conditions when the user may not want to write to the data EEPROM memory. To protect against spurious EEPROM writes, various mechanisms have been implemented. On power-up, the WREN bit is cleared. In addition, writes to the EEPROM are blocked during the Power-up Timer period (TPWRT, parameter 33).

The write initiate sequence and the WREN bit together help prevent an accidental write during brown-out, power glitch or software malfunction.

5.8 Using the Data EEPROM

The data EEPROM is a high-endurance, byte addressable array that has been optimized for the storage of frequently changing information (e.g., program variables or other data that are updated often). When variables in one section change frequently, while variables in another section do not change, it is possible to exceed the total number of write cycles to the EEPROM without exceeding the total number of write cycles to a single byte. If this is the case, then an array refresh must be performed. For this reason, variables that change infrequently (such as constants, IDs, calibration, etc.) should be stored in Flash program memory.

EXAMPLE 5-3: DATA EEPROM REFRESH ROUTINE

	CLRF	EEADR	; Start at address 0
	BCF	EECON1, CFGS	; Set for memory
	BCF	EECON1, EEPGD	; Set for Data EEPROM
	BCF	INTCON, GIE	; Disable interrupts
	BSF	EECON1, WREN	; Enable writes
Loop			; Loop to refresh array
	BSF	EECON1, RD	; Read current address
	MOVLW	55h	;
	MOVWF	EECON2	; Write 55h
	MOVLW	0AAh	;
	MOVWF	EECON2	; Write OAAh
	BSF	EECON1, WR	; Set WR bit to begin write
	BTFSC	EECON1, WR	; Wait for write to complete
	BRA	\$-2	
	INCFSZ	EEADR, F	; Increment address
	BRA	LOOP	; Not zero, do it again
	BCF	EECON1, WREN	; Disable writes
	BSF	INTCON, GIE	; Enable interrupts

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	275
EEADR	EEADR7	EEADR6	EEADR5	EEADR4	EEADR3	EEADR2	EEADR1	EEADR0	277
EEDATA	EEPROM Data Register								277
EECON2	EEPROM Control Register 2 (not a physical register)						277		
EECON1	EEPGD	CFGS	—	FREE	WRERR	WREN	WR	RD	277
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCLIP	USBIP	TMR3IP	—	278
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCLIF	USBIF	TMR3IF	—	278
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCLIE	USBIE	TMR3IE	—	278

Legend: — = unimplemented, read as '0'. Shaded cells are not used during Flash/EEPROM access.

^{© 2008-2015} Microchip Technology Inc.

7.6 PIE Registers

The PIE registers contain the individual enable bits for the peripheral interrupts. Due to the number of peripheral interrupt sources, there are two Peripheral Interrupt Enable registers (PIE1 and PIE2). When IPEN = 0, the PEIE bit must be set to enable any of these peripheral interrupts.

REGISTER 7-6: PIE1: PERIPHERAL INTERRUPT ENABLE (FLAG) REGISTER 1

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7	Unimplemented: Read as '0'
bit 6	ADIE: A/D Converter Interrupt Enable bit
	1 = Enables the A/D interrupt
	0 = Disables the A/D interrupt
bit 5	RCIE: EUSART Receive Interrupt Enable bit
	1 = Enables the EUSART receive interrupt
	0 = Disables the EUSART receive interrupt
bit 4	TXIE: EUSART Transmit Interrupt Enable bit
	1 = Enables the EUSART transmit interrupt
	0 = Disables the EUSART transmit interrupt
bit 3	SSPIE: Master Synchronous Serial Port Interrupt Enable bit
	1 = Enables the MSSP interrupt
	0 = Disables the MSSP interrupt
bit 2	CCP1IE: CCP1 Interrupt Enable bit
	1 = Enables the CCP1 interrupt
	0 = Disables the CCP1 interrupt
bit 1	TMR2IE: TMR2 to PR2 Match Interrupt Enable bit
	1 = Enables the TMR2 to PR2 match interrupt
	0 = Disables the TMR2 to PR2 match interrupt
bit 0	TMR1IE: TMR1 Overflow Interrupt Enable bit
	1 = Enables the TMR1 overflow interrupt
	0 = Disables the TMR1 overflow interrupt

REGISTER 9-8: WPUB: WEAK PULL-UP PORTB REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	U-0	U-0	U-0	U-0
WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-4	WPUB<7:4>: Weak Pull-up Enable bit
	1 = Pull-up enabled
	0 = Pull-up disabled
bit 3-0	Unimplemented: Read as '0'

REGISTER 9-9: IOCB: INTERRUPT-ON-CHANGE PORTB REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
IOCB7	IOCB6	IOCB5	IOCB4	—	—	—	—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

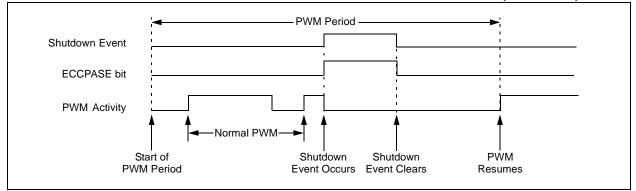
bit 7-4 IOCB<7:4>: Interrupt-on-change bits 1 = Interrupt-on-change enabled 0 = Interrupt-on-change disabled bit 3-0 Unimplemented: Read as '0'

REGISTER 9-10: LATB: PORTB DATA LATCH REGISTER

R/W-x	R/W-x	R/W-x	R/W-x	U-0	U-0	U-0	U-0
LATB7	LATB6	LATB5	LATB4	—	—	—	—
bit 7							bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 7-4 LATB<7:4>: RB<7:4> Port I/O Output Latch Register bits


bit 3-0 Unimplemented: Read as '0'

14.4.5 AUTO-RESTART MODE

The Enhanced PWM can be configured to automatically restart the PWM signal once the auto-shutdown condition has been removed. Auto-restart is enabled by setting the PRSEN bit in the PWM1CON register.

If auto-restart is enabled, the ECCPASE bit will remain set as long as the auto-shutdown condition is active. When the auto-shutdown condition is removed, the ECCPASE bit will be cleared via hardware and normal operation will resume.

FIGURE 14-13: PWM AUTO-SHUTDOWN WITH AUTO-RESTART ENABLED (PRSEN = 1)

15.3.3.2 Reception

When the R/\overline{W} bit of the address byte is clear and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is cleared. The received address is loaded into the SSPBUF register and the SDA line is held low (ACK).

When the address byte overflow condition exists, then the no Acknowledge (ACK) pulse is given. An overflow condition is defined as either bit BF bit of the SSPSTAT register is set, or bit SSPOV bit of the SSPCON1 register is set.

An MSSP interrupt is generated for each data transfer byte. Flag bit, SSPIF of the PIR1 register, must be cleared by software.

When the SEN bit of the SSPCON2 register is set, SCL will be held low (clock stretch) following each data transfer. The clock must be released by setting the CKP bit of the SSPCON1 register. See **Section 15.3.4** "**Clock Stretching**" for more detail.

15.3.3.3 Transmission

When the R/W bit of the incoming address byte is set and an address match occurs, the R/\overline{W} bit of the SSPSTAT register is set. The received address is loaded into the SSPBUF register. The ACK pulse will be sent on the ninth bit and pin SCK/SCL is held low regardless of SEN (see Section 15.3.4 "Clock Stretching" for more detail). By stretching the clock, the master will be unable to assert another clock pulse until the slave is done preparing the transmit data. The transmit data must be loaded into the SSPBUF register which also loads the SSPSR register. Then pin SCK/SCL should be released by setting the CKP bit of the SSPCON1 register. The eight data bits are shifted out on the falling edge of the SCL input. This ensures that the SDA signal is valid during the SCL high time (Figure 15-9).

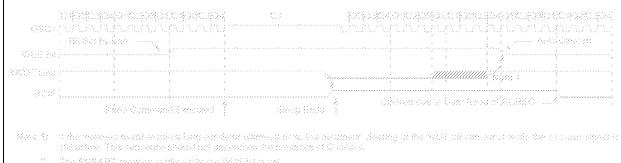
The ACK pulse from the master-receiver is latched on the rising edge of the ninth SCL input pulse. If the SDA line is high (not ACK), then the data transfer is complete. In this case, when the ACK is latched by the slave, the slave logic is reset (resets SSPSTAT register) and the slave monitors for another occurrence of the Start bit. If the SDA line was low (ACK), the next transmit data must be loaded into the SSPBUF register. Again, pin SCK/SCL must be released by setting bit CKP.

An MSSP interrupt is generated for each data transfer byte. The SSPIF bit must be cleared by software and the SSPSTAT register is used to determine the status of the byte. The SSPIF bit is set on the falling edge of the ninth clock pulse.

16.2 Clock Accuracy with Asynchronous Operation

The factory calibrates the internal oscillator block output (HFINTOSC). However, the HFINTOSC frequency may drift as VDD or temperature changes, and this directly affects the asynchronous baud rate. Two methods may be used to adjust the baud rate clock, but both require a reference clock source of some kind. The first (preferred) method uses the OSCTUNE register to adjust the HFINTOSC output. Adjusting the value in the OSCTUNE register allows for fine resolution changes to the system clock source. See **Section 2.6.1** "**OSCTUNE Register**" for more information.

The other method adjusts the value in the Baud Rate Generator. This can be done automatically with the Auto-Baud Detect feature (see **Section 16.3.1 "Auto-Baud Detect"**). There may not be fine enough resolution when adjusting the Baud Rate Generator to compensate for a gradual change in the peripheral clock frequency.


REGISTER 16-1: TXSTA: TRANSMIT STATUS AND CONTROL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-1	R/W-0
CSRC	TX9	TXEN ⁽¹⁾	SYNC	SENDB	BRGH	TRMT	TX9D
bit 7		11				11	bit 0
Legend:							
R = Readable b	bit	W = Writable bit		U = Unimplem	ented bit, read as	'0'	
-n = Value at PO	OR	'1' = Bit is set		'0' = Bit is clea	red	x = Bit is unknow	wn
bit 7	Asynchronous Don't care Synchronous m 1 = Master m			from BRG)			
bit 6	TX9: 9-bit Tran 1 = Selects 9		,				
bit 5	TXEN: Transmit 1 = Transmit e 0 = Transmit o	enabled					
bit 4	SYNC: EUSAR 1 = Synchrono 0 = Asynchron		t				
bit 3	Asynchronous	c Break on next tr ak transmission co	ansmission (c	leared by hardwa	are upon completi	on)	
bit 2	BRGH: High Ba Asynchronous 1 = High spee 0 = Low speed Synchronous m Unused in this	d d node:	it				
bit 1		it Shift Register St	atus bit				
bit 0	TX9D: Ninth bit	t of Transmit Data s/data bit or a pari					

Note 1: SREN/CREN overrides TXEN in Sync mode.

FIGURE 16-7: AUTO-WAKE-UP BIT (WUE) TIMING DURING NORMAL OPERATION

VOLE DE	30	il ast by t		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	3 N.S.N.S.N. 	<u> </u>	<u>Nanva</u>	ninnu	antarur.		unununun Asto Disersi	d No.
				-4. 	 : ' <i>1111111111111</i> '	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	; ; ;;			, y., y., y., g.,		
- Maaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	 		i Milianiania Verseise es		 r Hillinini Biltini Barbart			- Olyaceri da Millillillilli	s to Şisar Raor Millimini	s et 3000 Millinnin	9052 <i>иниципици</i> ни	HIR.

© 2008-2015 Microchip Technology Inc.

R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
MC1OUT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC					
bit 7							bit C					
Legend:												
R = Readable	a hit	W = Writable	hit	II – Unimpler	nented bit, rea	d as '0'						
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr						
	FOR						IOWIT					
bit 7	MC1OUT: Mi	rror Copy of C	OUT bit									
bit 6	MC2OUT: Mi	rror Copy of C2	2OUT bit									
bit 5	C1RSEL: Co	mparator C1 R	eference Sele	ct bit								
	1 = FVR rout	ed to C1VREF i	nput									
	0 = CVREF ro	uted to C1VRE	= input									
bit 4	C2RSEL: Co	C2RSEL: Comparator C2 Reference Select bit										
	1 = FVR rout	1 = FVR routed to C2VREF input										
	0 = CVREF ro	uted to C2VRE	= input									
bit 3	C1HYS: Comparator C1 Hysteresis Enable bit											
		rator C1 hyster ator C1 hyster										
bit 2	C2HYS: Corr	C2HYS: Comparator C2 Hysteresis Enable bit										
	 1 = Comparator C2 hysteresis enabled 0 = Comparator C2 hysteresis disabled 											
bit 1	•	Output Synch		sit								
					ock							
		 1 = C1 output is synchronous to rising edge to TMR1 clock 0 = C1 output is asynchronous 										
bit 0	•	2 Output Synch		oit								
		out is synchrono			ock							
		out is asynchror		-								

REGISTER 18-3: CM2CON1: COMPARATOR 2 CONTROL REGISTER 1

U-0	U-0	U-0	R/P-1	R/P-1	R/P-1	R/P-1	R/P-1
_	—	_	WDTPS3	WDTPS2	WDTPS1	WDTPS0	WDTEN
bit 7	÷						bit (
Legend:							
R = Readab	ble bit	P = Program	mable bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value v	when device is un	orogrammed		x = Bit is unki	nown		
bit 7-5	Unimplemen	ted: Read as	'0'				
bit 4-1	WDTPS<3:0>	: Watchdog T	imer Postscale	Select bits			
	1111 = 1:32 ,7						
	1110 = 1:16 ,3						
	1101 = 1:8,19						
	1100 = 1:4,09						
	1011 = 1:2,04						
	1010 = 1:1,02						
	1001 = 1:512						
	1000 = 1:256						
	0111 = 1:128						
	0110 = 1:64						
	0101 = 1:32						
	0100 = 1:16						
	0011 = 1:8						
	0010 = 1:4 0001 = 1:2						
	0001 = 1.2 0000 = 1.1						
		· · · ·					
bit 0	WDTEN: Wat	•		h			
			I. SWDTEN bit		agiatar		
	0 = VVDT IS CO	phirollea by S	VVDIEN DIT OF T	he WDTCON r	egister		

REGISTER 24-4: CONFIG2H: CONFIGURATION REGISTER 2 HIGH

TABLE 25-2: PIC18FXXXX INSTRUCTION SET

Mnemo	nic.			16-	-Bit Instr	uction W	ord	Status	
Opera	,	Description	Cycles	MSb			LSb	Affected	Notes
BYTE-ORIE	ENTED C	PERATIONS							
ADDWF	f, d, a	Add WREG and f	1	0010	01da0	ffff	ffff	C, DC, Z, OV, N	1, 2
ADDWFC	f, d, a	Add WREG and CARRY bit to f	1	0010	0da	ffff	ffff	C, DC, Z, OV, N	1, 2
ANDWF	f, d, a	AND WREG with f	1	0001	01da	ffff	ffff	Z, N	1,2
CLRF	f, a	Clear f	1	0110	101a	ffff	ffff	Z	2
COMF	f, d, a	Complement f	1	0001	11da	ffff	ffff	Z, N	1, 2
CPFSEQ	f, a	Compare f with WREG, skip =	1 (2 or 3)	0110	001a	ffff	ffff	None	4
CPFSGT	f, a	Compare f with WREG, skip >	1 (2 or 3)	0110	010a	ffff	ffff	None	4
CPFSLT	f, a	Compare f with WREG, skip <	1 (2 or 3)	0110	000a	ffff	ffff	None	1, 2
DECF	f, d, a	Decrement f	1 .	0000	01da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
DECFSZ	f, d, a	Decrement f, Skip if 0	1 (2 or 3)	0010	11da	ffff	ffff	None	1, 2, 3, 4
DCFSNZ	f, d, a	Decrement f, Skip if Not 0	1 (2 or 3)	0100	11da	ffff	ffff	None	1, 2
INCF	f, d, a	Increment f	1	0010	10da	ffff	ffff	C, DC, Z, OV, N	1, 2, 3, 4
INCFSZ	f, d, a	Increment f, Skip if 0	1 (2 or 3)	0011	11da	ffff	ffff	None	4
INFSNZ	f, d, a	Increment f, Skip if Not 0	1 (2 or 3)	0100	10da	ffff	ffff	None	1, 2
IORWF	f, d, a	Inclusive OR WREG with f	1 .	0001	00da	ffff	ffff	Z, N	1, 2
MOVF	f, d, a	Move f	1	0101	00da	ffff	ffff	Z, N	1
MOVFF	f _s , f _d	Move f _s (source) to 1st word	2	1100	ffff	ffff	ffff	None	
		f _d (destination) 2nd word		1111	ffff	ffff	ffff		
MOVWF	f, a	Move WREG to f	1	0110	111a	ffff	ffff	None	
MULWF	f, a	Multiply WREG with f	1	0000	001a	ffff	ffff	None	1, 2
NEGF	f, a	Negate f	1	0110	110a	ffff	ffff	C, DC, Z, OV, N	
RLCF	f, d, a	Rotate Left f through Carry	1	0011	01da	ffff	ffff	C, Z, N	1, 2
RLNCF	f, d, a	Rotate Left f (No Carry)	1	0100	01da	ffff	ffff	Z, N	
RRCF	f, d, a	Rotate Right f through Carry	1	0011	00da	ffff	ffff	C, Z, N	
RRNCF	f, d, a	Rotate Right f (No Carry)	1	0100	00da	ffff	ffff	Z, N	
SETF	f, a	Set f	1	0110	100a	ffff	ffff	None	1, 2
SUBFWB	f, d, a	Subtract f from WREG with borrow	1	0101	01da	ffff	ffff	C, DC, Z, OV, N	
SUBWF	f, d, a	Subtract WREG from f	1	0101	11da	ffff	ffff	C, DC, Z, OV, N	1, 2
SUBWFB	f, d, a	Subtract WREG from f with	1	0101	10da	ffff	ffff	C, DC, Z, OV, N	
		borrow							
SWAPF	f, d, a	Swap nibbles in f	1	0011	10da	ffff	ffff	None	4
TSTFSZ	f, a	Test f, skip if 0	1 (2 or 3)	0110	011a	ffff	ffff	None	1, 2
XORWF	f, d, a	Exclusive OR WREG with f	1 ΄	0001	10da	ffff	ffff	Z, N	

Note 1: When a PORT register is modified as a function of itself (e.g., MOVF PORTE, 1, 0), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

2: If this instruction is executed on the TMR0 register (and where applicable, 'd' = 1), the prescaler will be cleared if assigned.

3: If Program Counter (PC) is modified or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

4: Some instructions are two-word instructions. The second word of these instructions will be executed as a NOP unless the first word of the instruction retrieves the information embedded in these 16 bits. This ensures that all program memory locations have a valid instruction.

IOR	IORLW Inclusive OR literal with W					N	
Synta	ax:	IORLW k					
Oper	ands:	$0 \le k \le 255$	5				
Oper	ation:	(W) .OR. k	$\rightarrow W$				
Statu	s Affected:	N, Z					
Encoding: 0000 1001 kkkk kk			kkkk				
Desc	ription:		The contents of W are ORed with the eight-bit literal 'k'. The result is placed in W.				
Word	ls:	1	1				
Cycle	es:	1	1				
QC	ycle Activity:						
	Q1	Q2	Q3	3		Q4	
	Decode	Read literal 'k'	Proce Dat		Wı	rite to W	
<u>Exan</u>	nple:	IORLW	35h				
	Before Instruction						

Operands:	0 ≤ f ≤ 255 d ∈ [0,1] a ∈ [0,1]			
Operation:	(W) .OR. (f	$) \rightarrow dest$		
Status Affected:	N, Z			
Encoding:	0001	00da	ffff	ffff
Description:	 '0', the result is (default). If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enab in Indexed mode wher Section 25 	Inclusive OR W with register 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed		
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read register 'f'	Proce Dat		Write to destination

Inclusive OR W with f

IORWF f {,d {,a}}

W = 9Ah

After Instruction

W = BFh

Example:

IORWF Syntax:

IORWF RESULT, 0, 1

Before Instruct	ion	
RESULT	=	13h
W	=	91h
After Instruction	n	
RESULT	=	13h
W	=	93h

DS40001350F-page 320

RETFIE Return from Interrupt						
ax:	RETFIE {	RETFIE {s}				
ands:	$s \in [0,1]$	s ∈ [0,1]				
ation:	$1 \rightarrow \text{GIE/G}$ if s = 1 (WS) \rightarrow W, (STATUSS) (BSRS) \rightarrow	IEH or PI → Statu BSR,	IS,		ıged.	
s Affected:	GIE/GIEH,	PEIE/GI	EL.			
ding:	0000	0000	000	1	000s	
ription:	and Top-of- the PC. Inte setting eithe global inter contents of STATUSS a their corres Status and	Return from interrupt. Stack is popped and Top-of-Stack (TOS) is loaded into the PC. Interrupts are enabled by setting either the high or low priority global interrupt enable bit. If 's' = 1, the contents of the shadow registers, WS, STATUSS and BSRS, are loaded into their corresponding registers, W, Status and BSR. If 's' = 0, no update of				
ls:	1	• • • •				
es:	2	2				
Q1	Q2	Q3			Q4	
Decode	No operation	_		fro Set	OP PC m stack GIEH or GIEL	
No	No	-			No	
operation	operation	operat	tion	ор	eration	
After Interrupt PC W BSR Status		= T = V = B = S	VS SRS STATU	SS		
	ax: ands: ation: s Affected: ding: rription: dis: es: ycle Activity: Q1 Decode No operation nple: After Interrupt PC W BSR Status	ax:RETFIE(sands: $s \in [0,1]$ ation:(TOS) \rightarrow P $1 \rightarrow$ GIE/GIif $s = 1$ (WS) \rightarrow W,(STATUSS)(BSRS) \rightarrow PCLATU, Pas Affected:GIE/GIEH,oling:0000onterption:Return fromand Top-of-the PC. Interption:Return fromand Top-of-the PC. Interption:STATUSS atheir corresStatus andthese registdis:1es:2ycle Activity:Q1Q2DecodeNooperationoperationoperationoperationpcWBSR	ax:RETFIE{s}ands: $s \in [0,1]$ ation:(TOS) \rightarrow PC, $1 \rightarrow$ GIE/GIEH or PIif $s = 1$ (WS) \rightarrow W,(STATUSS) \rightarrow Statu(BSRS) \rightarrow BSR,PCLATU, PCLATH aas Affected:GIE/GIEH, PEIE/GIIand rop-of-Stack (The PC. Interrupts and Top-of-Stack (The PC. Interrupts and setting either the higglobal interrupt enablecontents of the shadSTATUSS and BSR.their correspondingStatus and BSR. If 'sthese registers occurdsdis:1es:2ycle Activity:Q1Q2Q3DecodeNoNoNooperationoperationoperationoperationpc=TWBSR=Status=Status=Status=	ax: RETFIE {s} ands: s ∈ [0,1] ation: (TOS) → PC, 1 → GIE/GIEH or PEIE/GI if s = 1 (WS) → W, (STATUSS) → Status, (BSRS) → BSR, PCLATU, PCLATH are und as Affected: GIE/GIEH, PEIE/GIEL. oting: 0000 0000 000 ription: Return from interrupt. Stack and Top-of-Stack (TOS) is the PC. Interrupts are enal setting either the high or Ic global interrupt enable bit. contents of the shadow reg STATUSS and BSRS, are STATUSS and BSR. If 's' = 0, these registers occurs (de dis: 1 es: 2 ycle Activity: Q1 Q2 Q3 Decode No No operation operation operation No No No operation operation operation No No No operation No No operation operation M RETFIE 1 <t< td=""><td>ax:RETFIE {s}ands:$s \in [0,1]$ation:(TOS) \rightarrow PC,$1 \rightarrow$ GIE/GIEH or PEIE/GIEL,if $s = 1$(WS) \rightarrow W,(STATUSS) \rightarrow Status,(BSRS) \rightarrow BSR,PCLATU, PCLATH are unchanteredand rop-of-Stack (TOS) is loadthe PC. Interrupts are enabledsetting either the high or low prglobal interrupt enable bit. If 's'contents of the shadow registerSTATUSS and BSRS, are loadtheir corresponding registers, NStatus and BSR. If 's' = 0, no uthese registers occurs (defaultdis:1es:2ycle Activity:Q1Q2Q3DecodeNoNoNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationpC= TOSW= WSBSR= BSRSStatus= STATUSS</td></t<>	ax:RETFIE {s}ands: $s \in [0,1]$ ation:(TOS) \rightarrow PC, $1 \rightarrow$ GIE/GIEH or PEIE/GIEL,if $s = 1$ (WS) \rightarrow W,(STATUSS) \rightarrow Status,(BSRS) \rightarrow BSR,PCLATU, PCLATH are unchanteredand rop-of-Stack (TOS) is loadthe PC. Interrupts are enabledsetting either the high or low prglobal interrupt enable bit. If 's'contents of the shadow registerSTATUSS and BSRS, are loadtheir corresponding registers, NStatus and BSR. If 's' = 0, no uthese registers occurs (defaultdis:1es:2ycle Activity:Q1Q2Q3DecodeNoNoNooperationoperationoperationoperationoperationoperationoperationoperationoperationoperationpC= TOSW= WSBSR= BSRSStatus= STATUSS	

RETLW	Return lite	Return literal to W			
Syntax:	RETLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	$k \rightarrow W$, (TOS) \rightarrow PC, PCLATU, PCLATH are unchanged				
Status Affected:	None				
Encoding:	0000	1100	kkk	k kkkk	
Description:	program co of the stack high addres	W is loaded with the 8-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.			
Words:	1				
Cycles:	2				
Q Cycle Activity:					
Q1	Q2	Q	3	Q4	
Decode	Read literal 'k'	Proce Dat		POP PC from stack Write to W	
No	No	No)	No	
operation	operation	opera	tion	operation	
Example: CALL TABLE	; W contai ; offset v ; W now ha	value as	ole		
:	; table va	a⊥ue			
TABLE					
ADDWF PCL RETLW k0 RETLW k1 :	; W = offs ; Begin ta ;				
:					
RETLW kn	; End of t	able			

Before Instruction

W	=	07h
After Instruc	tion	
W	=	value of

kn

TBL	RD	Table Rea	d			
Synta	ax:	TBLRD (*;	*+; *-;	+*)		
Oper	ands:	None				
Oper	ation:	if TBLRD *, (Prog Mem (TBLPTR)) \rightarrow TABLAT; TBLPTR – No Change; if TBLRD *+, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) + 1 \rightarrow TBLPTR; if TBLRD *-, (Prog Mem (TBLPTR)) \rightarrow TABLAT; (TBLPTR) – 1 \rightarrow TBLPTR; if TBLRD +*, (TBLPTR) + 1 \rightarrow TBLPTR; (Prog Mem (TBLPTR)) \rightarrow TABLAT;				
Statu	s Affected:	None				
Enco	ding:	0000	000	00	0000	0 10nn nn=0 * =1 *+ =2 *- =3 +*
	ription:	of Program program me Pointer (TBI The TBLPT each byte in has a 2-Mby TBLPT TBLPT	Memory, _PTR) R (a 2 the p /te add R[0] = R[0] = instruct as foll e ement ement	ory (F a po i is u 1-bit rogra dres 0: 1: ction	P.M.). To binter ca sed. pointer am mem s range. Least S of Prog Word Most S of Prog Word can mo) points to nory. TBLPTR
Word	ls:	1				
Cycle		2				
	vcle Activity	<i>r</i> :				
	Q1	Q2			Q3	Q4
	Decode	No operatio	on	op	No eration	No operation
	No operation	No opera (Read Prog Memor	tion gram		No eration	No operation (Write TABLAT)

TBLRD Table Read (Continued)

Example1:	TBLRD	*+	;	
Before Instruction	on			
TABLAT			=	55h
TBLPTR	(00A356h)		=	00A356h 34h
After Instruction	```)	=	3411
TABLAT	I		_	34h
TBLPTR			=	00A357h
Evennle?		u		
Example2:	TBLRD	+*	,	
Before Instruction	on			
TABLAT			=	AAh
TBLPTR			=	01A357h
MEMORY	(01A357h))	=	
	(01A358h))	=	34h
After Instruction)			0.41
TABLAT TBL PTR			=	34h 01A358h
IDLFIK			-	01A33011

Memory)

25.2.2 EXTENDED INSTRUCTION SET

ADDFSR Add Literal to FSR							
Synta	ax:	ADDFSR	f, k				
Oper	ands:	0 ≤ k ≤ 63 f ∈ [0, 1, 2	0 ≤ k ≤ 63 f ∈ [0, 1, 2]				
Oper	ation:	• • •	$FSR(f) + k \rightarrow FSR(f)$				
Statu	s Affected:	None	None				
Enco	ding:	1110	1000	ffk	k	kkkk	
Desc	ription:		The 6-bit literal 'k' is added to the contents of the FSR specified by 'f'.				
Word	ls:	1	1				
Cycle	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read	Proce	SS	٧	Vrite to	
		literal 'k'	Data	a i		FSR	

E		~	0.01
Example:	ADDFSR	2,	23n

Before Instru	ction	
FSR2	=	03FFh
After Instruct	ion	
FSR2	=	0422h

ADDULNK	Add Literal to FSR2 and Return				
Syntax:	ADDULN	IK k			
Operands:	$0 \le k \le 6$	$0 \le k \le 63$			
Operation:	FSR2 +	$FSR2 + k \rightarrow FSR2$,			
	$(TOS) \rightarrow$	$(TOS) \rightarrow PC$			
Status Affected:	None				
Encoding:	1110	1000	11kk	kkkk	
	The 6-bit literal 'k' is added to the contents of FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the ADDFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.				
	where f =	he ADDFSI = 3 (binary	R instructi	on,	
Words:	where f =	he ADDFSI = 3 (binary	R instructi	on,	

Q Cycle Activity:

Q1	Q2	Q3	Q4	
Decode	Read	Process	Write to	
	literal 'k'	Data	FSR	
No	No	No	No	
Operation	Operation	Operation	Operation	

Example: ADDULNK 23h

Before Instruction					
FSR2	=	03FFh			
PC	=	0100h			
After Instruction					
FSR2	=	0422h			
PC	=	(TOS)			

Note: All PIC18 instructions may take an optional label argument preceding the instruction mnemonic for use in symbolic addressing. If a label is used, the instruction syntax then becomes: {label} instruction argument(s).

SUE	FSR	Subtrac	Subtract Literal from FSR					
Synta	ax:	SUBFSR	SUBFSR f, k					
Oper	ands:	$0 \le k \le 63$	5					
		$f \in [0, 1,$	f ∈ [0, 1, 2]					
Oper	ation:	FSR(f) – I	$FSR(f) - k \rightarrow FSRf$					
Statu	s Affected:	None	None					
Enco	ding:	1110	1001	ffkk	kkkk			
Desc	ription:		The 6-bit literal 'k' is subtracted from the contents of the FSR specified by 'f'.					
Word	ls:	1	1					
Cycle	es:	1	1					
QC	ycle Activity:							
Q1		Q2	Q3		Q4			
	Decode	Read	Process		Write to			
		register 'f'	Data	a	destination			
Evon			0 0 0 0 0					

Before Instruction

FSR2	=	03FFh
After Instruct	ion	
FSR2	=	03DCh

Syntax:	SU	SUBULNK k				
Operands:	0 ≤	k ≤ 63				
Operation:	FS	$R2 - k \rightarrow FS$	SR2			
	$(TOS) \rightarrow PC$					
Status Affected:	No	ne				
Encoding:	1	.110 1	001	11kk	kkkk	
Words:	contents of the FSR2. A RETURN is then executed by loading the PC with the TOS. The instruction takes two cycles to execute; a NOP is performed during the second cycle. This may be thought of as a special case of the SUBFSR instruction, where f = 3 (binary '11'); it operates only on FSR2.					
Cycles:	1 2					
Q Cycle Activit	-					
Q1	,	Q2		Q3	Q4	
Decode)	Read register 'f'		ocess Data	Write to destinatio	
No		No		No	No	
INU		n Operation		eration	Operation	

Example: SUBULNK 23h

Before Instruction					
FSR2	=	03FFh			
PC	=	0100h			
After Instructi	ion				
FSR2	=	03DCh			
PC	=	(TOS)			

27.2 Standard Operating Conditions

The standard operating conditions for any device are defined as: **Operating Voltage:** $VDDMIN \le VDD \le VDDMAX$ Operating Temperature: $TA_MIN \le TA \le TA_MAX$ VDD — Operating Supply Voltage PIC18LF1XK50 VDDMIN (Fosc < 16 MHz)......+1.8V PIC18F1XK50 VDDMIN (Fosc < 16 MHz)...... +1.8V TA — Operating Ambient Temperature Range Industrial Temperature Ta_MIN--40°C Extended Temperature Ta_max.....+125°C

TABLE 27-2: SUPPLY CURRENT, PIC18(L)F1XK50-I/E (INDUSTRIAL, EXTENDED) (CONTINUED)

PIC18LF	1XK50	Standard Operating Conditions (unless otherwise stated) Standard Operating Conditions (unless otherwise stated)					
PIC18F12	XK50						
Param.	Device Characteristics	Min.	Тур.†	Max.	Units	Conditions	
No.						VDD	Note
	Supply Current (IDD) ^{(1,}	2)					
D014A		_	200	250	μA	1.8	Fosc = 4 MHz
		—	340	460	μΑ	3.0	EC Oscillator (medium power) CPU Idle
D014A		-	210	303	μA	1.8	Fosc = 4 MHz
			360	520	μA	3.0	EC Oscillator (medium power)
		_	430	670	μA	5.0	
D015		_	820	1000	μA	1.8	FOSC = 6 MHz
			1500	1900	μΑ	3.0	EC Oscillator (high power)
D015		—	830	1100	μA	1.8	FOSC = 6 MHz
		—	1500	1900	μA	3.0	EC Oscillator (high power) ⁽⁵⁾
		—	1700	2300	μΑ	5.0	
D015A			300	400	μA	1.8	Fosc = 6 MHz
		—	510	660	μΑ	3.0	EC Oscillator (high power) CPU Idle
D015A		_	320	430	μA	1.8	Fosc = 6 MHz
		—	530	690	μA	3.0	EC Oscillator (high power) CPU Idle ⁽⁵⁾
			640	840	μA	5.0	
D015B		_	4.7	6.0	mA	3.0	Fosc = 24 MHz 6 MHz EC Oscillator (high power) PLL enabled
D015B		—	4.7	6.1	mA	3.0	Fosc = 24 MHz
			5.6	7.4	mA	5.0	6 MHz EC Oscillator (high power) PLL enabled ⁽⁵⁾
D015C			2.0	2.5	mA	3.0	Fosc = 24 MHz 6 MHz EC Oscillator (high power) PLL enabled, CPU Idle
D015C		_	2.0	2.5	mA	3.0	Fosc = 24 MHz
		—	2.3	3.0	mA	5.0	6 MHz EC Oscillator (high power) PLL enabled, CPU Idle ⁽⁵⁾

* These parameters are characterized but not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 330 nF capacitor on VUSB pin.