

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Betuils	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I²C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (8K x 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf14k50-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Device Overview	7
2.0	Oscillator Module)	13
3.0	Memory Organization	27
4.0	Flash Program Memory	49
5.0	Data EEPROM Memory	58
6.0	8 x 8 Hardware Multiplier	62
7.0	Interrupts	64
8.0	Low Dropout (LDO) Voltage Regulator	
9.0	I/O Ports	
10.0	Timer0 Module	
11.0	Timer1 Module	99
12.0	Timer2 Module	104
13.0	Timer3 Module	107
14.0	Enhanced Capture/Compare/PWM (ECCP) Module	111
15.0	Master Synchronous Serial Port (MSSP) Module	133
16.0	Enhanced Universal Synchronous Asynchronous Receiver Transmitter (EUSART)	175
17.0	Analog-to-Digital Converter (ADC) Module	202
18.0	Comparator Module	215
19.0	Power-Managed Modes	227
20.0	SR Latch	233
	Voltage References	
22.0	Universal Serial Bus (USB)	241
	Reset	
24.0	Special Features of the CPU	280
25.0	Instruction Set Summary	297
26.0	Development Support	347
27.0	Electrical Specifications	351
28.0	DC and AC Characteristics Graphs and Charts	385
29.0	Packaging Information	398
Appe	ndix A: Revision History	408
Appe	ndix B: Device Differences	409
The I	Nicrochip Web Site	410
Custo	omer Change Notification Service	410
Custo	omer Support	410
Prod	uct Identification System	411

Features	PIC18F13K50	PIC18LF13K50	PIC18F14K50	PIC18LF14K50			
LDO Regulator	Yes	No	Yes	No			
Program Memory (Bytes)	8	K	10	5K			
Program Memory (Instructions)	40	96	81	92			
Data Memory (Bytes)	5	12	7	68			
Operating Frequency		DC – 4	8 MHz				
Interrupt Sources	30						
I/O Ports	Ports A, B, C						
Timers	4						
Enhanced Capture/ Compare/PWM Modules	les 1						
Serial Communications		MSSP, Enhance	ed USART, USB				
10-Bit Analog-to-Digital Module		9 Input C	Channels				
Resets (and Delays)	POR, BOR, RESI	POR, BOR, RESET Instruction, Stack Full, Stack Underflow, MCLR, WDT (PWRT, OST)					
Instruction Set	75 Instructions, 83 with Extended Instruction Set Enabled						
Packages	20-Pin	PDIP, SSOP, SOIC	C (300 mil) and QFI	N (5x5)			

TABLE 1-1: DEVICE FEATURES FOR THE PIC18(L)F1XK50 (20-PIN DEVICES)

2.6 Oscillator Control

The Oscillator Control (OSCCON) (Register 2-1) and the Oscillator Control 2 (OSCCON2) (Register 2-2) registers control the system clock and frequency selection options.

REGISTER 2-1: OSCCON: OSCILLATOR CONTROL REGISTER

R/W-0	R/W-0	R/W-1	R/W-1	R-q	R-0	R/W-0	R/W-0
IDLEN	IRCF2	IRCF1	IRCF0	OSTS ⁽¹⁾	HFIOFS	SCS1	SCS0
bit 7		1					bit (
Lonondi							
Legend:		Muitable bit				a denometo o	n eenditien
R = Readab		Writable bit	•	emented bit, re		q = depends o	
-n = Value a	at POR 1'=	Bit is set	'0' = Bit is c	lieared		x = Bit is unkn	own
bit 7		nters Idle mod	e on SLEEP ins				
bit 6-4	IRCF<2:0>: I 111 = 16 MHz 110 = 8 MHz 101 = 4 MHz 100 = 2 MHz 011 = 1 MHz 010 = 500 kH 001 = 250 kH 000 = 31 kHz	z (3) Iz Iz	tor Frequency \$	Select bits			
bit 3	1 = Device is	running from		ed by FOSC<2	::0> of the CON OSC or LFINTC		
bit 2	1 = HFINTOS	NTOSC Frequ SC frequency i SC frequency i					
bit 1-0	SCS<1:0>: S 1x = Internal 01 = Seconda	ystem Clock S oscillator block ary (Timer1) os	elect bits	G1H[FOSC<3:	0>]).		
2 : S	Reset state depen Source selected b	y the INTSRC	bit of the OSC	TUNE register,	see text.		

3: Default output frequency of HFINTOSC on Reset.

3.1.2.2 Return Stack Pointer (STKPTR)

The STKPTR register (Register 3-1) contains the Stack Pointer value, the STKFUL (stack full) bit and the STKUNF (Stack Underflow) bits. The value of the Stack Pointer can be 0 through 31. The Stack Pointer increments before values are pushed onto the stack and decrements after values are popped off the stack. On Reset, the Stack Pointer value will be zero. The user may read and write the Stack Pointer value. This feature can be used by a Real-Time Operating System (RTOS) for return stack maintenance.

After the PC is pushed onto the stack 31 times (without popping any values off the stack), the STKFUL bit is set. The STKFUL bit is cleared by software or by a POR.

The action that takes place when the stack becomes full depends on the state of the STVREN (Stack Overflow Reset Enable) Configuration bit. (Refer to **Section 24.1 "Configuration Bits"** for a description of the device Configuration bits.) If STVREN is set (default), the 31st push will push the (PC + 2) value onto the stack, set the STKFUL bit and reset the device. The STKFUL bit will remain set and the Stack Pointer will be set to zero.

If STVREN is cleared, the STKFUL bit will be set on the 31st push and the Stack Pointer will increment to 31. Any additional pushes will not overwrite the 31st push and STKPTR will remain at 31.

When the stack has been popped enough times to unload the stack, the next pop will return a value of zero to the PC and sets the STKUNF bit, while the Stack Pointer remains at zero. The STKUNF bit will remain set until cleared by software or until a POR occurs.

Note:	Returning a value of zero to the PC on an underflow has the effect of vectoring the						
	program to the Reset vector, where the						
	stack conditions can be verified and						
	appropriate actions can be taken. This is						
	not the same as a Reset, as the contents						
	of the SFRs are not affected.						

3.1.2.3 PUSH and POP Instructions

Since the Top-of-Stack is readable and writable, the ability to push values onto the stack and pull values off the stack without disturbing normal program execution is a desirable feature. The PIC18 instruction set includes two instructions, PUSH and POP, that permit the TOS to be manipulated under software control. TOSU, TOSH and TOSL can be modified to place data or a return address on the stack.

The PUSH instruction places the current PC value onto the stack. This increments the Stack Pointer and loads the current PC value onto the stack.

The POP instruction discards the current TOS by decrementing the Stack Pointer. The previous value pushed onto the stack then becomes the TOS value.

REGISTER 3-1: STKPTR: STACK POINTER REGISTER

R/C-0	R/C-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
STKFUL ⁽¹⁾	STKUNF ⁽¹⁾	—	SP4	SP3	SP2	SP1	SP0		
bit 7				·		·	bit 0		
Legend:									
R = Readable bitW = Writable bitU = UnimplementedC = Clearable only bit									
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		

bit 7	STKFUL: Stack Full Flag bit ⁽¹⁾
	1 = Stack became full or overflowed0 = Stack has not become full or overflowed
bit 6	STKUNF: Stack Underflow Flag bit ⁽¹⁾
	1 = Stack underflow occurred0 = Stack underflow did not occur
bit 5	Unimplemented: Read as '0'
bit 4-0	SP<4:0>: Stack Pointer Location bits

Note 1: Bit 7 and bit 6 are cleared by user software or by a POR.

- Note 1: If a change on the I/O pin should occur when the read operation is being executed (start of the Q2 cycle), then the RABIF interrupt flag may not get set. Furthermore, since a read or write on a port affects all bits of that port, care must be taken when using multiple pins in Interrupt-on-Change mode. Changes on one pin may not be seen while servicing changes on another pin.
 - 2: When configured for USB operation, interrupt-on-change functionality on RA0 and RA1 is automatically disabled.
 - **3:** In order for the digital inputs to function on the RA<1:0> port pins, the interrupton-change pins must be enabled (IOCA <1:0> = 11) and the USB module must be disabled (USBEN = 0).

The interrupt-on-change feature is recommended for wake-up on key depression operation and operations where PORTA is only used for the interrupt-on-change feature. Polling of PORTA is not recommended while using the interrupt-on-change feature.

Each of the PORTA pins has an individually controlled weak internal pull-up. When set, each bit of the WPUA register enables the corresponding pin pull-up. When cleared, the RABPU bit of the INTCON2 register enables pull-ups on all pins which also have their corresponding WPUA bit set. When set, the RABPU bit disables all weak pull-ups. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are disabled on a Power-on Reset.

Note:	On a Power-on Reset, RA4 is configured
	as analog inputs by default and read as
	'0'; RA<1:0> and RA<5:3> are configured
	as digital inputs.

RA0 and RA1 are multiplexed with the USB module and can serve as the differential data lines for the onchip USB transceiver.

RA0 and RA1 do not have TRISA bits associated with them. As digital port pins, they can only function as digital inputs. When configured for USB operation, the data direction is determined by the configuration and status of the USB module at a given time.

RA3 is an input only pin. Its operation is controlled by the MCLRE bit of the CONFIG3H register. When selected as a port pin (MCLRE = 0), it functions as a digital input only pin; as such, it does not have TRIS or LAT bits associated with its operation.

Note:	O	n a Pow	er-on F	Reset,	RA	3 is enat	oled as			
	а	digital	input	only	if	Master	Clear			
	functionality is disabled.									

Pins RA4 and RA5 are multiplexed with the main oscillator pins; they are enabled as oscillator or I/O pins by the selection of the main oscillator in the Configuration register (see **Section 24.1 "Configuration Bits"** for details). When they are not used as port pins, RA4 and RA5 and their associated TRIS and LAT bits read as '0'.

Pin RA4 is multiplexed with an analog input. The operation of pin RA4 as analog is selected by setting the ANS3 bit in the ANSEL register which is the default setting after a Power-on Reset.

Note:	On a Power-on Reset, RA4 is configured
	as analog inputs and read as '0'.

EXAMPLE 9-1: INITIALIZING PORTA

CLRF	PORTA	; Initialize PORTA by ; clearing output
		5 1
		; data latches
CLRF	LATA	; Alternate method
		; to clear output
		; data latches
MOVLW	030h	; Value used to
		; initialize data
		; direction
MOVWF	TRISA	; Set RA<5:4> as output

11.0 TIMER1 MODULE

The Timer1 timer/counter module incorporates the following features:

- Software selectable operation as a 16-bit timer or counter
- Readable and writable 8-bit registers (TMR1H and TMR1L)
- Selectable internal or external clock source and Timer1 oscillator options
- Interrupt-on-overflow
- Reset on CCP Special Event Trigger
- Device clock status flag (T1RUN)

A simplified block diagram of the Timer1 module is shown in Figure 11-1. A block diagram of the module's operation in Read/Write mode is shown in Figure 11-2.

The module incorporates its own low-power oscillator to provide an additional clocking option. The Timer1 oscillator can also be used as a low-power clock source for the microcontroller in power-managed operation.

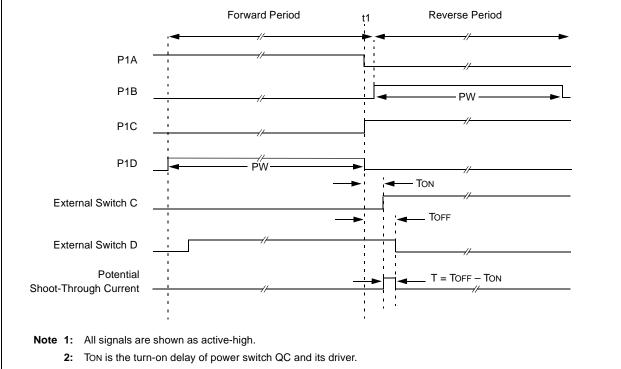
Timer1 can also be used to provide Real-Time Clock (RTC) functionality to applications with only a minimal addition of external components and code overhead.

Timer1 is controlled through the T1CON Control register (Register 11-1). It also contains the Timer1 Oscillator Enable bit (T1OSCEN). Timer1 can be enabled or disabled by setting or clearing control bit, TMR1ON of the T1CON register.

R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N
bit 7							bit 0

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

Legend: R = Readable I	oit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 7	RD16: 16	-bit Read/Write Mode Enab	le bit	
			mer1 in one 16-bit operation ner1 in two 8-bit operations	
bit 6	T1RUN: T	imer1 System Clock Status	bit	
		system clock is derived from		
		system clock is derived from		
bit 5-4		<1:0>: Timer1 Input Clock P	rescale Select bits	
	-	Prescale value Prescale value		
		Prescale value		
	• - • • • • •	Prescale value		
bit 3	T1OSCE	N: Timer1 Oscillator Enable	bit	
		1 oscillator is enabled		
		1 oscillator is shut off	enciptor and turned off to plinnin	ata navyan duain
L:1 0			resistor are turned off to elimin	late power drain.
bit 2		R1CS = 1:	It Synchronization Select bit	
		t synchronize external clock	k input	
		ronize external clock input		
	When TM	R1CS = 0:		
	This bit is	ignored. Timer1 uses the ir	ternal clock when TMR1CS =	0.
bit 1	TMR1CS:	Timer1 Clock Source Sele	ct bit	
		nal clock from the T13CKI p nal clock (Fosc/4)	pin (on the rising edge)	
bit 0	TMR10N	: Timer1 On bit		
		les Timer1		
	0 = Stops	s Timer1		


© 2008-2015 Microchip Technology Inc.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	275
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	278
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	278
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	278
TMR1L	Timer1 Reg	jister, Low B	yte						276
TMR1H	Timer1 Reg	jister, High B	syte						276
T1CON	RD16	T1RUN	T1CKPS1	T1CKPS0	T1OSCEN	T1SYNC	TMR1CS	TMR10N	276
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	278
ANSELH	—	—	—	—	ANS11	ANS10	ANS9	ANS8	278
SSPCON1	WCOL	SSPOV	SSPEN	CKP	SSPM3	SSPM2	SSPM1	SSPM0	276

TABLE 11-2: REGISTERS ASSOCIATED WITH TIMER1 AS A TIMER/COUNTER

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the Timer1 module.

FIGURE 14-11: EXAMPLE OF PWM DIRECTION CHANGE AT NEAR 100% DUTY CYCLE

3: TOFF is the turn-off delay of power switch QD and its driver.

14.4.3 START-UP CONSIDERATIONS

When any PWM mode is used, the application hardware must use the proper external pull-up and/or pull-down resistors on the PWM output pins.

Note:	When the microcontroller is released from
	Reset, all of the I/O pins are in the
	high-impedance state. The external cir-
	cuits must keep the power switch devices
	in the Off state until the microcontroller
	drives the I/O pins with the proper signal
	levels or activates the PWM output(s).

The CCP1M<1:0> bits of the CCP1CON register allow the user to choose whether the PWM output signals are active-high or active-low for each pair of PWM output pins (P1A/P1C and P1B/P1D). The PWM output polarities must be selected before the PWM pin output drivers are enabled. Changing the polarity configuration while the PWM pin output drivers are enable is not recommended since it may result in damage to the application circuits.

The P1A, P1B, P1C and P1D output latches may not be in the proper states when the PWM module is initialized. Enabling the PWM pin output drivers at the same time as the Enhanced PWM modes may cause damage to the application circuit. The Enhanced PWM modes must be enabled in the proper Output mode and complete a full PWM cycle before enabling the PWM pin output drivers. The completion of a full PWM cycle is indicated by the TMR2IF bit of the PIR1 register being set as the second PWM period begins.

15.2.1 REGISTERS

The MSSP module has four registers for SPI mode operation. These are:

- SSPCON1 Control Register
- SSPSTAT Status register
- SSPBUF Serial Receive/Transmit Buffer
- SSPSR Shift Register (Not directly accessible)

SSPCON1 and SSPSTAT are the control and status registers in SPI mode operation. The SSPCON1 register is readable and writable. The lower six bits of the SSPSTAT are read-only. The upper two bits of the SSPSTAT are read/write. SSPSR is the shift register used for shifting data in and out. SSPBUF provides indirect access to the SSPSR register. SSPBUF is the buffer register to which data bytes are written, and from which data bytes are read.

In receive operations, SSPSR and SSPBUF together create a double-buffered receiver. When SSPSR receives a complete byte, it is transferred to SSPBUF and the SSPIF interrupt is set.

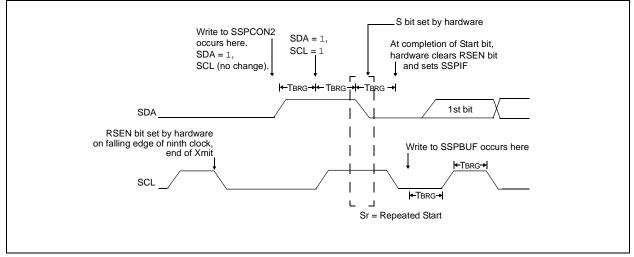
During transmission, the SSPBUF is not double-buffered. A write to SSPBUF will write to both SSPBUF and SSPSR.

REGISTER 15-1: SSPSTAT: MSSP STATUS REGISTER (SPI MODE)

				•	•		
R/W-0	R/W-0	R-0	R-0	R-0	R-0	R-0	R-0
SMP	CKE	D/A	Р	S	R/W	UA	BF
bit 7					·	·	bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	eared	x = Bit is unk	nown
bit 7	0 = Input dat	<u>node:</u> ta sampled at e ta sampled at m					
		e cleared when		n Slave mode.			
bit 6		ock Select bit ⁽¹					
				tive to Idle clocl le to active clocl			
bit 5	D/A: Data/Ad Used in I ² C i						
bit 4	P: Stop bit Used in I ² C i	mode only. This	bit is cleared	d when the MSS	P module is d	isabled, SSPEN	l is cleared.
bit 3	S: Start bit Used in I ² C i	mode only.					
bit 2	R/₩ : Read/√ Used in I ² C i	Write Informatio	n bit				
bit 1	UA: Update Used in I ² C i						
bit 0	BF: Buffer F 1 = Receive	ull Status bit (R complete, SSP not complete, S	BUF is full				
Note 1: Pe		not complete, S	SSPBUF is er		register.		

15.3.9 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition occurs when the RSEN bit of the SSPCON2 register is programmed high and the I²C logic module is in the Idle state. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. Following this, the RSEN bit of the SSPCON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSPSTAT register will be set. The SSPIF bit will not be set until the Baud Rate Generator has timed out.


- **Note 1:** If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

Immediately following the SSPIF bit getting set, the user may write the SSPBUF with the 7-bit address in 7-bit mode or the default first address in 10-bit mode. After the first eight bits are transmitted and an ACK is received, the user may then transmit an additional eight bits of address (10-bit mode) or eight bits of data (7-bit mode).

15.3.9.1 WCOL Status Flag

If the user writes the SSPBUF when a Repeated Start sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur).

FIGURE 15-20: REPEAT START CONDITION WAVEFORM

Note: Because queuing of events is not allowed, writing of the lower five bits of SSPCON2 is disabled until the Repeated Start condition is complete.

					SYNC	C = 0, BRGH	l = 0, BRC	G16 = 0				
BAUD	Foso	; = 48.00	0 MHz	Fosc = 18.432 MHz			Fosc = 12.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300		_	_			_		_	_	_	_	
1200		_	_	1200	0.00	239	1202	0.16	155	1200	0.00	143
2400	_	_	_	2400	0.00	119	2404	0.16	77	2400	0.00	71
9600	9615	0.16	77	9600	0.00	29	9375	-2.34	19	9600	0.00	17
10417	10417	0.00	71	10286	-1.26	27	10417	0.00	17	10165	-2.42	16
19.2k	19.23k	0.16	38	19.20k	0.00	14	18.75k	-2.34	9	19.20k	0.00	8
57.6k	57.69k	0.16	12	57.60k	0.00	7	—	_	_	57.60k	0.00	2
115.2k	—	—	—	_	_	—	_	—	—	—	—	—

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRG	l = 0, BRG	616 = 0				
BAUD	Fos	c = 8.000) MHz	Fosc = 4.000 MHz			Fosc	= 3.686	4 MHz	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_	_	_	300	0.16	207	300	0.00	191	300	0.16	51
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	_	_	—
9600	9615	0.16	12	_	_	_	9600	0.00	5	_	_	—
10417	10417	0.00	11	10417	0.00	5	—	_	_	—	_	_
19.2k	_	_	_	—	_	_	19.20k	0.00	2	—	_	_
57.6k	—	_	—	—	—	—	57.60k	0.00	0	—	_	—
115.2k	_	_	_		_	_		_	_		_	—

					SYNC	C = 0, BRGH	l = 1, BRG	316 = 0				
BAUD	Fosc	= 48.00	0 MHz	Fosc = 18.432 MHz			Fosc = 12.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	—		_		_	_	_	—	—	—	—	_
1200	—	—	—	—	—	—	—	—	—	—	—	—
2400	—	_	_	_	_	_	_	—	_	—	—	_
9600	—	_	_	9600	0.00	119	9615	0.16	77	9600	0.00	71
10417	—	_	_	10378	-0.37	110	10417	0.00	71	10473	0.53	65
19.2k	19.23k	0.16	155	19.20k	0.00	59	19.23k	0.16	38	19.20k	0.00	35
57.6k	57.69k	0.16	51	57.60k	0.00	19	57.69k	0.16	12	57.60k	0.00	11
115.2k	115.38k	0.16	25	115.2k	0.00	9	_	_	_	115.2k	0.00	5

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	275
PIR1	—	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	278
PIE1	—	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	278
IPR1	—	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	278
RCSTA	SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D	277
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	278
TXREG	EUSART T	ransmit Reg	ister						277
TXSTA	CSRC	TX9	TXEN	SYNC	SENDB	BRGH	TRMT	TX9D	277
BAUDCON	ABDOVF	RCIDL	DTRXP	CKTXP	BRG16	—	WUE	ABDEN	277
SPBRGH	EUSART Baud Rate Generator Register, High Byte								
SPBRG	EUSART B	aud Rate G	enerator Re	gister, Low	Byte				277

 TABLE 16-7:
 REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for synchronous master transmission.

16.4.1.6 Synchronous Master Reception

Data is received at the RX/DT pin. The RX/DT pin output driver must be disabled by setting the corresponding TRIS bits when the EUSART is configured for synchronous master receive operation.

In Synchronous mode, reception is enabled by setting either the Single Receive Enable bit (SREN of the RCSTA register) or the Continuous Receive Enable bit (CREN of the RCSTA register).

When SREN is set and CREN is clear, only as many clock cycles are generated as there are data bits in a single character. The SREN bit is automatically cleared at the completion of one character. When CREN is set, clocks are continuously generated until CREN is cleared. If CREN is cleared in the middle of a character the CK clock stops immediately and the partial character is discarded. If SREN and CREN are both set, then SREN is cleared at the completion of the first character and CREN takes precedence.

To initiate reception, set either SREN or CREN. Data is sampled at the RX/DT pin on the trailing edge of the TX/CK clock pin and is shifted into the Receive Shift Register (RSR). When a complete character is received into the RSR, the RCIF bit is set and the character is automatically transferred to the two character receive FIFO. The Least Significant eight bits of the top character in the receive FIFO are available in RCREG. The RCIF bit remains set as long as there are un-read characters in the receive FIFO.

16.4.1.7 Slave Clock

Synchronous data transfers use a separate clock line, which is synchronous with the data. A device configured as a slave receives the clock on the TX/CK line. The TX/CK pin output driver must be disabled by setting the associated TRIS bit when the device is configured for synchronous slave transmit or receive operation. Serial data bits change on the leading edge to ensure they are valid at the trailing edge of each clock. One data bit is transferred for each clock cycle. Only as many clock cycles should be received as there are data bits.

16.4.1.8 Receive Overrun Error

The receive FIFO buffer can hold two characters. An overrun error will be generated if a third character, in its entirety, is received before RCREG is read to access the FIFO. When this happens the OERR bit of the RCSTA register is set. Previous data in the FIFO will not be overwritten. The two characters in the FIFO buffer can be read, however, no additional characters will be received until the error is cleared. The OERR bit can only be cleared by clearing the overrun condition. If the overrun error occurred when the SREN bit is set and CREN is clear then the error is cleared by reading RCREG. If the overrun occurred when the CREN bit is set then the error condition is cleared by either clearing the CREN bit of the RCSTA register or by clearing the SPEN bit which resets the EUSART.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E
bit 7		·			·	·	bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented	C = Clearable	e only bit
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
L:1 7		atab Daviahan		. 14			
bit 7		Latch Periphera		Dit			
		status sets SR status has no e		itch			
bit 6	•	R Latch Set Clo					
		of SR latch is					
	0 = Set input	of SR latch is	not pulsed with	n SRCLK			
bit 5		Latch C2 Set					
		parator output					
1.11.4		parator output l		n SR Latch			
bit 4		Latch C1 Set					
		parator output s parator output l		n SR Latch			
bit 3	•	Latch Periphera					
	1 = INT1 pin	resets SR Late	ch				
	0 = INT1 pin	has no effect of	on SR Latch				
bit 2	SRRCKE: SF	R Latch Reset (Clock Enable b	bit			
		out of SR latch out of SR latch					
bit 1	SRRC2E: SR	Latch C2 Res	et Enable bit				
		oarator output i oarator output l					
bit 0	SRRC1E: SR	Latch C1 Res	et Enable bit				
	1 = C1 Comp	parator output i	esets SR Latc	h			
	0 = C1 Comp	orotor output l	and no offect o				

REGISTER 20-2: SRCON1: SR LATCH CONTROL REGISTER 1

TABLE 20-3:	REGISTERS ASSOCIATED WITH THE SR LATCH
-------------	---

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	278
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	278
CM2CON1	MC10UT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC	278
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	_	INT2IF	INT1IF	275
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	278

Legend: Shaded cells are not used with the comparator voltage reference.

22.2.4 USB ENDPOINT CONTROL

Each of the eight possible bidirectional endpoints has its own independent control register, UEPn (where 'n' represents the endpoint number). Each register has an identical complement of control bits. The prototype is shown in Register 22-4.

The EPHSHK bit (UEPn<4>) controls handshaking for the endpoint; setting this bit enables USB handshaking. Typically, this bit is always set except when using isochronous endpoints.

The EPCONDIS bit (UEPn<3>) is used to enable or disable USB control operations (SETUP) through the endpoint. Clearing this bit enables SETUP transactions. Note that the corresponding EPINEN and EPOUTEN bits must be set to enable IN and OUT transactions. For Endpoint 0, this bit should always be cleared since the USB specifications identify Endpoint 0 as the default control endpoint.

The EPOUTEN bit (UEPn<2>) is used to enable or disable USB OUT transactions from the host. Setting this bit enables OUT transactions. Similarly, the EPINEN bit (UEPn<1>) enables or disables USB IN transactions from the host.

The EPSTALL bit (UEPn<0>) is used to indicate a STALL condition for the endpoint. If a STALL is issued on a particular endpoint, the EPSTALL bit for that endpoint pair will be set by the SIE. This bit remains set until it is cleared through firmware, or until the SIE is reset.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL ⁽¹⁾
bit 7							bit 0

REGISTER 22-4: UEPn: USB ENDPOINT n CONTROL REGISTER (UEP0 THROUGH UEP7)

Legend:								
R = Readable bit W = Wr		bit U = Unimplem	U = Unimplemented bit, read as '0'					
-n = Value	at POR '1' = Bit is set	t '0' = Bit is clea	eared x = Bit is unknowr					
bit 7-5	Unimplemented: Read as	ʻ0'						
bit 4	EPHSHK: Endpoint Handsh							
	 1 = Endpoint handshake enabled 0 = Endpoint handshake disabled (typically used for isochronous endpoints) 							
bit 3	EPCONDIS: Bidirectional Endpoint Control bit							
		I = 1 and EPINEN = 1: Endpoint n from control transfers; only IN and OUT transfers allowed Endpoint n for control (SETUP) transfers; IN and OUT transfers also allowed						
bit 2	EPOUTEN: Endpoint Output Enable bit							
	1 = Endpoint n output enabled0 = Endpoint n output disabled							
bit 1	EPINEN: Endpoint Input Enable bit							
	 1 = Endpoint n input enable 0 = Endpoint n input disable 							
bit 0	EPSTALL: Endpoint STALL Enable bit ⁽¹⁾							
	1 = Endpoint n is stalled							
	0 = Endpoint n is not stalled							

Note 1: Valid only if Endpoint n is enabled; otherwise, the bit is ignored.

22.7 Oscillator

The USB module has specific clock requirements. For full-speed operation, the clock source must be 48 MHz. Even so, the microcontroller core and other peripherals are not required to run at that clock speed. Available clocking options are described in detail in **Section 2.11** "**USB Operation**".

22.8 Interrupt-on-Change for D+/D-Pins

The PIC18(L)F1XK50 has interrupt-on-change functionality on both D+ and D- data pins. This feature allows the device to detect voltage level changes when first connected to a USB host/hub.

The USB host/hub has 15K pull-down resistors on the D+ and D- pins. When the PIC18(L)F1XK50 attaches to the bus the D+ and D- pins can detect voltage changes. External resistors are needed for each pin to maintain a high state on the pins when detached. The USB module must be disable (USBEN = 0) for the interrupt-on-change to function. Enabling the USB module (USBEN = 1) will automatically disable the interrupt-on-change for D+ and D- pins. Refer to Section 7.11 "PORTA and PORTB Interrupt-on-Change" for mode detail.

22.9 USB Firmware and Drivers

Microchip provides a number of application-specific resources, such as USB firmware and driver support. Refer to www.microchip.com for the latest firmware and driver support.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3 Bit 2		Bit 1	Bit 0	Details on Page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	66
IPR2	OSCFIP	C1IP	C2IP	EEIP	BCL1IP	USBIP	TMR3IP	_	74
PIR2	OSCFIF	C1IF	C2IF	EEIF	BCL1IF	USBIF	TMR3IF	—	70
PIE2	OSCFIE	C1IE	C2IE	EEIE	BCL1IE	USBIE	TMR3IE	—	72
UCON	—	PPBRST	SE0	PKTDIS	USBEN	RESUME SUSPND		—	242
UCFG	UTEYE	_	_	UPUEN	_	FSEN	PPB1	PPB0	244
USTAT	_	ENDP3	ENDP2	ENDP1	ENDP0	DIR	PPBI	—	246
UADDR	—	ADDR6	ADDR5	ADDR4	ADDR3	ADDR2	ADDR1	ADDR0	248
UFRML	FRM7	FRM6	FRM5	FRM4	FRM3	FRM2	FRM1	FRM0	242
UFRMH	_	—	_	_	— FRM10 FRM		FRM9	FRM8	242
UIR	—	SOFIF	STALLIF	IDLEIF	TRNIF	ACTVIF	UERRIF	URSTIF	256
UIE	_	SOFIE	STALLIE	IDLEIE	TRNIE	ACTVIE	UERRIE	URSTIE	258
UEIR	BTSEF	_	_	BTOEF	DFN8EF	CRC16EF	CRC5EF	PIDEF	259
UEIE	BTSEE	—	_	BTOEE	DFN8EE	CRC16EE	CRC5EE	PIDEE	260
UEP0	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	247
UEP1	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	247
UEP2	—	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	247
UEP3	_	_	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	247
UEP4	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	247
UEP5	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	247
UEP6	_	_	_	EPHSHK	EPCONDIS	EPOUTEN EPINEN		EPSTALL	247
UEP7	—	—	_	EPHSHK	EPCONDIS	EPOUTEN	EPINEN	EPSTALL	247

 TABLE 22-4:
 REGISTERS ASSOCIATED WITH USB MODULE OPERATION⁽¹⁾

Legend: — = unimplemented, read as '0'. Shaded cells are not used by the USB module.

Note 1: This table includes only those hardware mapped SFRs located in Bank 15 of the data memory space. The Buffer Descriptor registers, which are mapped into Bank 4 and are not true SFRs, are listed separately in Table 22-3.

24.3.2 DATA EEPROM CODE PROTECTION

The entire data EEPROM is protected from external reads and writes by two bits: CPD and WRTD. CPD inhibits external reads and writes of data EEPROM. WRTD inhibits internal and external writes to data EEPROM. The CPU can always read data EEPROM under normal operation, regardless of the protection bit settings.

24.3.3 CONFIGURATION REGISTER PROTECTION

The Configuration registers can be write-protected. The WRTC bit controls protection of the Configuration registers. In normal execution mode, the WRTC bit is readable only. WRTC can only be written via ICSP or an external programmer.

24.4 ID Locations

Eight memory locations (20000h-200007h) are designated as ID locations, where the user can store checksum or other code identification numbers. These locations are both readable and writable during normal execution through the TBLRD and TBLWT instructions or during program/verify. The ID locations can be read when the device is code-protected.

24.5 In-Circuit Serial Programming

PIC18(L)F1XK50 devices can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data and three other lines for power, ground and the programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

24.6 In-Circuit Debugger

When the DEBUG Configuration bit is programmed to a '0', the In-Circuit Debugger functionality is enabled. This function allows simple debugging functions when used with MPLAB[®] IDE. When the microcontroller has this feature enabled, some resources are not available for general use. Table 24-4 shows which resources are required by the background debugger.

TABLE 24-4 :	DEBUGGER RESOURCES
$I \land D \sqcup L \sqcup L \dashv \neg$.	

I/O pins:	RA0, RA1
Stack:	2 levels
Program Memory:	512 bytes
Data Memory:	10 bytes

To use the In-Circuit Debugger function of the microcontroller, the design must implement In-Circuit Serial Programming connections to the following pins:

- MCLR/VPP/RA3
- VDD
- Vss
- RA0
- RA1

This will interface to the In-Circuit Debugger module available from Microchip or one of the third party development tool companies.

24.7 Single-Supply ICSP Programming

The LVP Configuration bit enables Single-Supply ICSP Programming (formerly known as Low-Voltage ICSP Programming or LVP). When Single-Supply Programmed <u>without</u> requiring high voltage being applied to the MCLR/VPP/RA3 pin, but the RC3/PGM pin is then dedicated to controlling Program mode entry and is not available as a general purpose I/O pin.

While programming, using Single-Supply Programming mode, VDD is applied to the MCLR/VPP/RA3 pin as in normal execution mode. To enter Programming mode, VDD is applied to the PGM pin.

- Note 1: High-voltage programming is always available, regardless of the state of the LVP bit or the PGM pin, by applying VIHH to the MCLR pin.
 - 2: By default, Single-Supply ICSP is enabled in unprogrammed devices (as supplied from Microchip) and erased devices.
 - **3:** When Single-Supply Programming is enabled, the RC3 pin can no longer be used as a general purpose I/O pin.
 - 4: When LVP is enabled, externally pull the PGM pin to Vss to allow normal program execution.

If Single-Supply ICSP Programming mode will not be used, the LVP bit can be cleared. RC3/PGM then becomes available as the digital I/O pin, RC3. The LVP bit may be set or cleared only when using standard high-voltage programming (VIHH applied to the MCLR/ VPP/RA3 pin). Once LVP has been disabled, only the standard high-voltage programming is available and must be used to program the device.

Memory that is not code-protected can be erased using either a block erase, or erased row by row, then written at any specified VDD. If code-protected memory is to be erased, a block erase is required.

RCALL Relative Call									
Synta	ax:	RCALL n							
Oper	ands:	-1024 ≤ n ≤	1023						
Oper	ation:	· · ·	$(PC) + 2 \rightarrow TOS,$ $(PC) + 2 + 2n \rightarrow PC$						
Statu	is Affected:	None	None						
Enco	oding:	1101	1nnn	nnnr	ı	nnnn			
Description: Subroutine call with a jump up to 1K from the current location. First, return address (PC + 2) is pushed onto the stack. Then, add the 2's complemen number '2n' to the PC. Since the PC' have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is a 2-cycle instruction.						return to the ement e PC will next II be			
Word	ds:	1							
Cycle	es:	2	2						
QC	ycle Activity:								
	Q1	Q2	Q3	3		Q4			
	Decode	Read literal 'n' PUSH PC to stack	Proce Dat		Writ	e to PC			
	No	No	No			No			
	operation	operation	opera	tion	ope	eration			

Example: HERE RCALL Jump

Before Instruction PC = Address (HERE) After Instruction PC = Address (Jump) TOS = Address (HERE + 2)

RESET Reset Syntax: RESET Operands: None Operation: Reset all registers and flags that are affected by a MCLR Reset. Status Affected: All Encoding: 0000 0000 1111 1111 Description: This instruction provides a way to execute a MCLR Reset by software. Words: 1 Cycles: 1 Q Cycle Activity: Q1 Q2 Q3 Q4 Decode Start No No Reset operation operation

Example:

After Instruction Registers = Reset Value Flags* = Reset Value

RESET

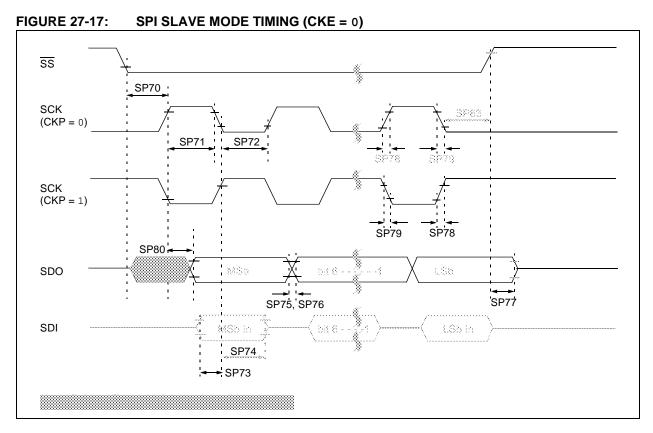
© 2008-2015 Microchip Technology Inc.

TABLE 27-3: POWER-DOWN CURRENT, PIC18(L)F1XK50-I/E (CONTINUED)

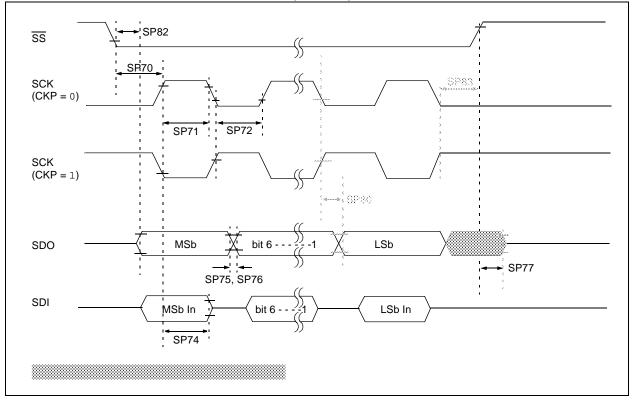
PIC18LF1XK50				Standard Operating Conditions (unless otherwise stated)						
PIC18F1XK50			Standard Operating Conditions (unless otherwise stated)							
Param. No.	Device Characteristics	Min.	Тур.†	Max. +85°C	Max. +125°C	Units	Conditions			
							Vdd	Note		
	Power-down Module Current									
D032		_	0.04	2.0	9	μA	1.8	A/D Current ^(1, 4) , no conversion in		
		_	0.05	4.0	12	μA	3.0	progress		
D032		_	3.5	10	14	μA	1.8	A/D Current ^(1, 4) , no conversion in		
			4.0	14	17	μΑ	3.0	progress		
		_	5.0	19	22	μA	5.0			
D033		_	14	38	44	μA	1.8	Comparator Current, low power		
		_	15	40	47	μΑ	3.0			
D033		_	15	40	49	μA	2.0	Comparator Current, low power		
		_	16	44	53	μA	3.0			
			17	50	60	μΑ	5.0			
D033A		_	115	239	244	μΑ	1.8	Comparator Current, high power		
		_	120	242	249	μΑ	3.0			
D033A		-	144	243	250	μΑ	2.0	Comparator Current, high power		
		—	146	247	256	μΑ	3.0			
		_	151	253	264	μA	5.0			
D034		_	11	20	25	μΑ	1.8	Voltage Reference Current		
		_	20	30	35	μΑ	3.0			
D034		_	15	36	45	μΑ	2.0	Voltage Reference Current		
		_	25	45	60	μΑ	3.0			
			35	65	74	μA	5.0			

* These parameters are characterized but not tested.

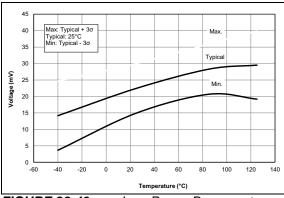
† Data in "Typ." column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

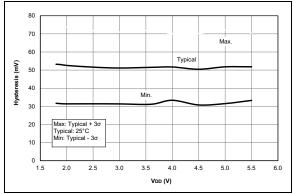

Note 1: The peripheral current is the sum of the base IDD or IPD and the additional current consumed when this peripheral is enabled. The peripheral △ current can be determined by subtracting the base IDD or IPD current from this limit. Max values should be used when calculating total current consumption.

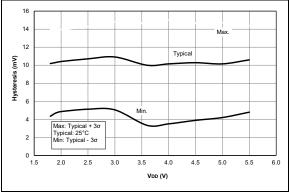
2: The power-down current in Sleep mode does not depend on the oscillator type. Power-down current is measured with the part in Sleep mode, with all I/O pins in high-impedance state and tied to VDD.

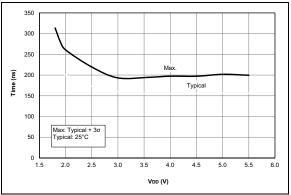

3: Fixed Voltage Reference is automatically enabled whenever the BOR is enabled

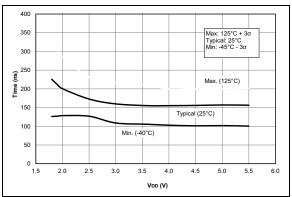
4: A/D oscillator source is FRC


5: 330 μf capacitor on VUSB pin.




Unless otherwise noted, V_{IN} = 5V, F_{OSC} = 300 kHz, C_{IN} = 0.1 $\mu F,$ T_A = 25°C.


FIGURE 28-49: Low-Power Brown-out Reset Hysteresis, LPBOR = 0.


FIGURE 28-50: Comparator Hysteresis, Normal-Power Mode (C x SP = 1, C x HYS = 1).

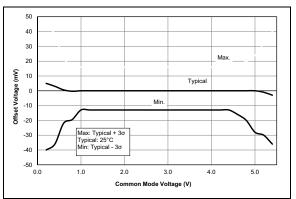

FIGURE 28-51: Comparator Hysteresis, Low-Power Mode ($C \times SP = 0$, $C \times HYS = 1$).

FIGURE 28-52: Comparator Response Time, Normal-Power Mode (C x SP = 1).

FIGURE 28-53: Comparator Response Time, Over Temperature, Normal-Power Mode ($C \times SP = 1$).

FIGURE 28-54: Comparator Input Offset at 25°C, Normal-Power Mode (C x SP = 1) PIC18F1XK50 Only.