Microchip Technology - PIC18LF14K50T-I/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	48MHz
Connectivity	I ² C, SPI, UART/USART, USB
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	14
Program Memory Size	16KB (8K × 16)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	768 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 11x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic18lf14k50t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Switch From	Switch To	Oscillator Delay
Sleep/POR	LFINTOSC HFINTOSC	Oscillator Warm-up Delay (Twarm)
Sleep/POR	LP, XT, HS	1024 clock cycles
Sleep/POR	EC, RC	8 clock cycles

TABLE 2-2: EXAMPLES OF DELAYS DUE TO CLOCK SWITCHING

2.9 4x Phase Lock Loop Frequency Multiplier

A Phase-Locked Loop (PLL) circuit is provided as an option for users who wish to use a lower frequency external oscillator or to operate at 32 MHz with the HFINTOSC. The PLL is designed for an input frequency from 4 MHz to 12 MHz. The PLL multiplies its input frequency by a factor of four when the PLL is enabled. This may be useful for customers who are concerned with EMI, due to high-frequency crystals.

Two bits control the PLL: the PLLEN bit of the CONFIG1H Configuration register and the SPLLEN bit of the OSCTUNE register. The PLL is enabled when the PLLEN bit is set and it is under software control when the PLLEN bit is cleared.

TABLE 2-3: PLL CONFIGURATION

PLLEN	SPLLEN	PLL Status
1	x	PLL enabled
0	1	PLL enabled
0	0	PLL disabled

2.9.1 32 MHZ INTERNAL OSCILLATOR FREQUENCY SELECTION

The Internal Oscillator Block can be used with the 4X PLL associated with the External Oscillator Block to produce a 32 MHz internal system clock source. The following settings are required to use the 32 MHz internal clock source:

- The FOSC bits in CONFIG1H must be set to use the INTOSC source as the device system clock (FOSC<3:0> = 1000 or 1001).
- The SCS bits in the OSCCON register must be cleared to use the clock determined by FOSC<3:0> in CONFIG1H (SCS<1:0> = 00).
- The IRCF bits in the OSCCON register must be set to the 8 MHz HFINTOSC set to use (IRCF<2:0> = 110).
- The SPLLEN bit in the OSCTUNE register must be set to enable the 4xPLL, or the PLLEN bit of CONFIG1H must be programmed to a '1'.

Note:	When using the PLLEN bit of CONFIG1H,
	the 4xPLL cannot be disabled by software
	and the 8 MHz HFINTOSC option will no
	longer be available.

The 4xPLL is not available for use with the internal oscillator when the SCS bits of the OSCCON register are set to '1x'. The SCS bits must be set to '00' to use the 4xPLL with the internal oscillator.

2.10 CPU Clock Divider

The CPU Clock Divider allows the system clock to run at a slower speed than the Low/Full Speed USB module clock while sharing the same clock source. Only the oscillator defined by the settings of the FOSC bits of the CONFIG1H Configuration register may be used with the CPU Clock Divider. The CPU Clock Divider is controlled by the CPUDIV bits of the CONFIG1L Configuration register. Setting the CPUDIV bits will set the system clock to:

- Equal the clock speed of the USB module
- Half the clock speed of the USB module
- · One third the clock speed of the USB module
- · One fourth the clock speed of the USB module

For more information on the CPU Clock Divider, see Figure 2-1 and Register 24-1 CONFIG1L.

3.3 Data Memory Organization

Note:	The operation of some aspects of data
	memory are changed when the PIC18
	extended instruction set is enabled. See
	Section 3.5 "Data Memory and the
	Extended Instruction Set" for more
	information.

The data memory in PIC18 devices is implemented as static RAM. Each register in the data memory has a 12-bit address, allowing up to 4096 bytes of data memory. The memory space is divided into as many as 16 banks that contain 256 bytes each. Figure 3-5 and Figure 3-6 show the data memory organization for the PIC18(L)F1XK50 devices.

The data memory contains Special Function Registers (SFRs) and General Purpose Registers (GPRs). The SFRs are used for control and status of the controller and peripheral functions, while GPRs are used for data storage and scratchpad operations in the user's application. Any read of an unimplemented location will read as '0's.

The instruction set and architecture allow operations across all banks. The entire data memory may be accessed by Direct, Indirect or Indexed Addressing modes. Addressing modes are discussed later in this subsection.

To ensure that commonly used registers (SFRs and select GPRs) can be accessed in a single cycle, PIC18 devices implement an Access Bank. This is a 256-byte memory space that provides fast access to SFRs and the lower portion of GPR Bank 0 without using the Bank Select Register (BSR). **Section 3.3.3 "Access Bank**" provides a detailed description of the Access RAM.

3.3.1 USB RAM

Part of the data memory is actually mapped to a special dual access RAM. When the USB module is disabled, the GPRs in these banks are used like any other GPR in the data memory space.

When the USB module is enabled, the memory in these banks is allocated as buffer RAM for USB operation. This area is shared between the microcontroller core and the USB Serial Interface Engine (SIE) and is used to transfer data directly between the two.

It is theoretically possible to use the areas of USB RAM that are not allocated as USB buffers for normal scratchpad memory or other variable storage. In practice, the dynamic nature of buffer allocation makes this risky at best. Additional information on USB RAM and buffer operation is provided in **Section 22.0 "Universal Serial Bus (USB)"**

3.3.2 BANK SELECT REGISTER (BSR)

Large areas of data memory require an efficient addressing scheme to make rapid access to any address possible. Ideally, this means that an entire address does not need to be provided for each read or write operation. For PIC18 devices, this is accomplished with a RAM banking scheme. This divides the memory space into 16 contiguous banks of 256 bytes. Depending on the instruction, each location can be addressed directly by its full 12-bit address, or an 8-bit low-order address and a 4-bit Bank Pointer.

Most instructions in the PIC18 instruction set make use of the Bank Pointer, known as the Bank Select Register (BSR). This SFR holds the four Most Significant bits of a location's address; the instruction itself includes the eight Least Significant bits. Only the four lower bits of the BSR are implemented (BSR<3:0>). The upper four bits are unused; they will always read '0' and cannot be written to. The BSR can be loaded directly by using the MOVLB instruction.

The value of the BSR indicates the bank in data memory; the eight bits in the instruction show the location in the bank and can be thought of as an offset from the bank's lower boundary. The relationship between the BSRs value and the bank division in data memory is shown in Figure 3-5 and Figure 3-6.

Since up to 16 registers may share the same low-order address, the user must always be careful to ensure that the proper bank is selected before performing a data read or write. For example, writing what should be program data to an 8-bit address of F9h while the BSR is 0Fh will end up resetting the program counter.

While any bank can be selected, only those banks that are actually implemented can be read or written to. Writes to unimplemented banks are ignored, while reads from unimplemented banks will return '0's. Even so, the STATUS register will still be affected as if the operation was successful. The data memory maps in Figure 3-5 and Figure 3-6 indicate which banks are implemented.

In the core PIC18 instruction set, only the MOVFF instruction fully specifies the 12-bit address of the source and target registers. This instruction ignores the BSR completely when it executes. All other instructions include only the low-order address as an operand and must use either the BSR or the Access Bank to locate their target registers.

9.3 PORTC, TRISC and LATC Registers

PORTC is an 8-bit wide, bidirectional port. The corresponding data direction register is TRISC. Setting a TRISC bit (= 1) will make the corresponding PORTC pin an input (i.e., disable the output driver). Clearing a TRISC bit (= 0) will make the corresponding PORTC pin an output (i.e., enable the output driver and put the contents of the output latch on the selected pin).

The PORTC Data Latch register (LATC) is also memory mapped. Read-modify-write operations on the LATC register read and write the latched output value for PORTC.

All the pins on PORTC are implemented with Schmitt Trigger input buffer. Each pin is individually configurable as an input or output.

Note:	On a Power-on Reset, RC<7:6> and
	RC<3:0> are configured as analog inputs
	and read as '0'.

EXAMPLE 9-3: INITIALIZING PORTC

CLRF	PORTC	; Initialize PORTC by
		; clearing output
		; data latches
CLRF	LATC	; Alternate method
		; to clear output
		; data latches
MOVLW	0CFh	; Value used to
		; initialize data
		; direction
MOVWF	TRISC	; Set RC<3:0> as inputs
		; RC<5:4> as outputs
		; RC<7:6> as inputs

REGISTER 9-11: PORTC: PORTC REGISTER

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| RC7 | RC6 | RC5 | RC4 | RC3 | RC2 | RC1 | RC0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0 **RC<7:0>:** PORTC I/O Pin bit

1 = Port pin is > VIH 0 = Port pin is < VIL

REGISTER 9-12: TRISC: PORTC TRI-STATE REGISTER

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| TRISC7 | TRISC6 | TRISC5 | TRISC4 | TRISC3 | TRISC2 | TRISC1 | TRISC0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 7-0

TRISC<7:0>: PORTC Tri-State Control bit

1 = PORTC pin configured as an input (tri-stated)

0 = PORTC pin configured as an output

FIGURE 14-4: EXAMPLE PWM (ENHANCED MODE) OUTPUT RELATIONSHIPS (ACTIVE-HIGH STATE)

			-	•	- Period	
00	(Single Output)	P1A Modulated		alav(1)		
		P1A Modulated				「
10	(Half-Bridge)	P1B Modulated				
		P1A Active			· · ·	
(Full-Bridge, ⁰¹ Forward)	(Full-Bridge,	P1B Inactive			1 1 1	<u> </u>
	Forward)	P1C Inactive				
		P1D Modulated	=́			
		P1A Inactive	;		1 1 1	<u> </u>
11	(Full-Bridge,	P1B Modulated	=́		— <u> </u>	
	Reverse)	P1C Active	;			
		P1D Inactive -			1 1 1	<u> </u>
Relati	ionships:		·			·

Note 1: Dead-band delay is programmed using the PWM1CON register (Section 14.4.6 "Programmable Dead-Band Delay mode").

15.3.14 SLEEP OPERATION

While in Sleep mode, the I²C Slave module can receive addresses or data and when an address match or complete byte transfer occurs, wake the processor from Sleep (if the MSSP interrupt is enabled).

15.3.15 EFFECTS OF A RESET

A Reset disables the MSSP module and terminates the current transfer.

15.3.16 MULTI-MASTER MODE

In Multi-Master mode, the interrupt generation on the detection of the Start and Stop conditions allows the determination of when the bus is free. The Stop (P) and Start (S) bits are cleared from a Reset or when the MSSP module is disabled. Control of the I^2C bus may be taken when the P bit of the SSPSTAT register is set, or the bus is Idle, with both the S and P bits clear. When the bus is busy, enabling the SSP interrupt will generate the interrupt when the Stop condition occurs.

In multi-master operation, the SDA line must be monitored for arbitration to see if the signal level is the expected output level. This check is performed by hardware with the result placed in the BCLIF bit.

The states where arbitration can be lost are:

- · Address Transfer
- Data Transfer
- A Start Condition
- A Repeated Start Condition
- An Acknowledge Condition

15.3.17 MULTI -MASTER COMMUNICATION, BUS COLLISION AND BUS ARBITRATION

Multi-Master mode support is achieved by bus arbitration. When the master outputs address/data bits onto the SDA pin, arbitration takes place when the master outputs a '1' on SDA, by letting SDA float high and another master asserts a '0'. When the SCL pin floats high, data should be stable. If the expected data on SDA is a '1' and the data sampled on the SDA pin = 0, then a bus collision has taken place. The master will set the Bus Collision Interrupt Flag, BCLIF and reset the I^2C port to its Idle state (Figure 15-25).

If a transmit was in progress when the bus collision occurred, the transmission is halted, the BF flag is cleared, the SDA and SCL lines are deasserted and the SSPBUF can be written to. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

If a Start, Repeated Start, Stop or Acknowledge condition was in progress when the bus collision occurred, the condition is aborted, the SDA and SCL lines are deasserted and the respective control bits in the SSPCON2 register are cleared. When the user services the bus collision Interrupt Service Routine and if the I^2C bus is free, the user can resume communication by asserting a Start condition.

The master will continue to monitor the SDA and SCL pins. If a Stop condition occurs, the SSPIF bit will be set.

A write to the SSPBUF will start the transmission of data at the first data bit, regardless of where the transmitter left off when the bus collision occurred.

In Multi-Master mode, the interrupt generation on the detection of Start and Stop conditions allows the determination of when the bus is free. Control of the I^2C bus can be taken when the P bit is set in the SSPSTAT register, or the bus is Idle and the S and P bits are cleared.

FIGURE 15-25: BUS COLLISION TIMING FOR TRANSMIT AND ACKNOWLEDGE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R-0	R-0	R-x
SPEN	RX9	SREN	CREN	ADDEN	FERR	OERR	RX9D
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimplei	mented bit, read	l as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit /	SPEN: Serial	Port Enable bit	figures DV/D	T and TV/CV m	ing on parial na	rt pipe)	
	1 = Serial points 0 = Serial points	rt enabled (con rt disabled (hel	d in Reset)		ons as senai poi	rt pins)	
bit 6	RX9: 9-bit Re	ceive Enable b	it				
	1 = Selects 9	-bit reception					
	0 = Selects 8	-bit reception					
bit 5	SREN: Single	Receive Enab	le bit				
	Asynchronous	<u>s mode</u> :					
	Don't care	mode – Master					
	1 = Enables s	sinale receive					
	0 = Disables	single receive					
	This bit is clea	ared after recep	tion is compl	ete.			
	Synchronous	<u>mode – Slave</u>					
hit 1	CREN: Contin		Enchlo hit				
DIL 4	Asynchronous	a mode.					
	1 = Enables I	receiver					
	0 = Disables	receiver					
	Synchronous	<u>mode</u> :					
	1 = Enables of 0 = Disables	continuous rece continuous rec	eive until ena eive	ble bit CREN is	s cleared (CREN	Noverrides SRI	EN)
bit 3	ADDEN: Add	ress Detect Ena	able bit				
	Asynchronous	<u>s mode 9-bit (R</u>	<u>X9 = 1)</u> :				
	1 = Enables	address detecti	on, enable in	terrupt and loa	d the receive bu	uffer when RSR	l<8> is set
	Asvnchronous	s mode 8-bit (R	X9 = 0:	are received a	nu nintri bit cari	be used as par	
	Don't care		<u> </u>				
bit 2	FERR: Framin	ng Error bit					
	1 = Framing	error (can be u	odated by rea	ading RCREG	register and rec	eive next valid	byte)
	0 = No framir	ng error					
bit 1	OERR: Overr	un Error bit					
	1 = Overrun e	error (can be cl	eared by clea	aring bit CREN)		
bit 0	RX9D. Ninth I	hit of Received	Data				
	This can be a	ddress/data hit	or a parity hi	t and must be o	calculated by us	er firmware.	
bit 2 bit 1 bit 0	1 = Enables 0 = Disables Asynchronous Don't care FERR: Framin 1 = Framing 0 = No framin OERR: Overru 1 = Overrun 0 = No overru RX9D: Ninth B This can be a	address detecti address detecti <u>s mode 8-bit (R</u> ng Error bit error (can be up ng error un Error bit error (can be cl un error bit of Received ddress/data bit	on, enable in ion, all bytes X9 = 0): odated by rea eared by clea Data or a parity bi	terrupt and loa are received a ading RCREG aring bit CREN t and must be a	d the receive bund ninth bit can register and rec) calculated by us	uffer when RSR be used as par eive next valid eive firmware.	k<8> is set rity bit byte)

REGISTER 16-2: RCSTA: RECEIVE STATUS AND CONTROL REGISTER⁽¹⁾

		SYNC = 0, BRG						H = 1, BRG16 = 0					
BAUD	Fos	c = 8.00	0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz			
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300	—	—	—	_	_	_		_	_	300	0.16	207	
1200	—	—	—	1202	0.16	207	1200	0.00	191	1202	0.16	51	
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25	
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	—	—	
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5	
19.2k	19231	0.16	25	19.23k	0.16	12	19.2k	0.00	11	—	—	—	
57.6k	55556	-3.55	8	—	—	—	57.60k	0.00	3	—	—	—	
115.2k	—	—	—	—	_		115.2k	0.00	1	_	_	—	

TABLE 16-5: BAUD RATES FOR ASYNCHRONOUS MODES (CONTINUED)

	SYNC = 0, BRGH = 0, E							= 0, BRG16 = 1				
BAUD	Fosc	= 48.00	0 MHz	Fosc = 18.432 MHz			Fosc = 12.000 MHz			Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRGH :SPBRG (decimal)	Actual Rate	% Error	SPBRGH :SPBRG (decimal)	Actual Rate	% Error	SPBRGH :SPBRG (decimal)	Actual Rate	% Error	SPBRGH :SPBRG (decimal)
300	300.0	0.00	9999	300.0	0.00	3839	300	0.00	2499	300.0	0.00	2303
1200	1200.1	0.00	2499	1200	0.00	959	1200	0.00	624	1200	0.00	575
2400	2400	0.00	1249	2400	0.00	479	2404	0.16	311	2400	0.00	287
9600	9615	0.16	311	9600	0.00	119	9615	0.16	77	9600	0.00	71
10417	10417	0.00	287	10378	-0.37	110	10417	0.00	71	10473	0.53	65
19.2k	19.23k	0.16	155	19.20k	0.00	59	19.23k	0.16	38	19.20k	0.00	35
57.6k	57.69k	0.16	51	57.60k	0.00	19	57.69k	0.16	12	57.60k	0.00	11
115.2k	115.38k	0.16	25	115.2k	0.00	9	_	_	—	115.2k	0.00	5

					SYNC = 0, BRGH = 0, BRG16 = 1							
BAUD	Fos	c = 8.00	0 MHz	Fosc = 4.000 MHz			Fosc = 3.6864 MHz			Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRGH :SPBRG (decimal)	Actual Rate	% Error	SPBRGH :SPBRG (decimal)	Actual Rate	% Error	SPBRGH :SPBRG (decimal)	Actual Rate	% Error	SPBRGH :SPBRG (decimal)
300	299.9	-0.02	1666	300.1	0.04	832	300.0	0.00	767	300.5	0.16	207
1200	1199	-0.08	416	1202	0.16	207	1200	0.00	191	1202	0.16	51
2400	2404	0.16	207	2404	0.16	103	2400	0.00	95	2404	0.16	25
9600	9615	0.16	51	9615	0.16	25	9600	0.00	23	—	_	_
10417	10417	0.00	47	10417	0.00	23	10473	0.53	21	10417	0.00	5
19.2k	19.23k	0.16	25	19.23k	0.16	12	19.20k	0.00	11	—	_	_
57.6k	55556	-3.55	8	_	_	_	57.60k	0.00	3	—	_	_
115.2k	—	_	_	—	_	_	115.2k	0.00	1	—	_	_

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
INTCON	GIE/GIEH	PEIE/GIEL	TMR0IE	INT0IE	RABIE	TMR0IF	INT0IF	RABIF	275
PIR1	_	ADIF	RCIF	TXIF	SSPIF	CCP1IF	TMR2IF	TMR1IF	278
PIE1	_	ADIE	RCIE	TXIE	SSPIE	CCP1IE	TMR2IE	TMR1IE	278
IPR1	_	ADIP	RCIP	TXIP	SSPIP	CCP1IP	TMR2IP	TMR1IP	278
ADRESH	A/D Result	Register, Hi	gh Byte		•		•		277
ADRESL	A/D Result	Register, Lo	w Byte						277
ADCON0	_	_	CHS3	CHS2	CHS1	CHS0	GO/DONE	ADON	277
ADCON1	—	_		_	PVCFG1	PVCFG0	NVCFG1	NVCFG0	277
ADCON2	ADFM	_	ACQT2	ACQT1	ACQT0	ADCS2	ADCS1	ADCS0	277
ANSEL	ANS7	ANS6	ANS5	ANS4	ANS3	—	—	—	278
ANSELH	—	—		—	ANS11	ANS10	ANS9	ANS8	278
TRISA	-	-	TRISA5	TRISA4	-	-	-	-	278
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	-	-	-	-	278
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	278

TABLE 17-2: REGISTERS ASSOCIATED WITH A/D OPERATION

Legend: — = unimplemented, read as '0'. Shaded cells are not used for A/D conversion.

19.0 POWER-MANAGED MODES

PIC18(L)F1XK50 devices offer a total of seven operating modes for more efficient power management. These modes provide a variety of options for selective power conservation in applications where resources may be limited (i.e., battery-powered devices).

There are three categories of power-managed modes:

- Run modes
- Idle modes
- · Sleep mode

These categories define which portions of the device are clocked and sometimes, what speed. The Run and Idle modes may use any of the three available clock sources (primary, secondary or internal oscillator block); the Sleep mode does not use a clock source.

The power-managed modes include several powersaving features offered on previous PIC microcontroller devices. One is the clock switching feature which allows the controller to use the Timer1 oscillator in place of the primary oscillator. Also included is the Sleep mode, offered by all PIC microcontroller devices, where all device clocks are stopped.

19.1 Selecting Power-Managed Modes

Selecting a power-managed mode requires two decisions:

- Whether or not the CPU is to be clocked
- The selection of a clock source

The IDLEN bit of the OSCCON register controls CPU clocking, while the SCS<1:0> bits of the OSCCON register select the clock source. The individual modes, bit settings, clock sources and affected modules are summarized in Table 19-1.

19.1.1 CLOCK SOURCES

The SCS<1:0> bits allow the selection of one of three clock sources for power-managed modes. They are:

- the primary clock, as defined by the FOSC<3:0> Configuration bits
- the secondary clock (the Timer1 oscillator)
- the internal oscillator block

19.1.2 ENTERING POWER-MANAGED MODES

Switching from one power-managed mode to another begins by loading the OSCCON register. The SCS<1:0> bits select the clock source and determine which Run or Idle mode is to be used. Changing these bits causes an immediate switch to the new clock source, assuming that it is running. The switch may also be subject to clock transition delays. Refer to **Section 2.8 "Clock Switching"** for more information.

Entry to the power-managed Idle or Sleep modes is triggered by the execution of a SLEEP instruction. The actual mode that results depends on the status of the IDLEN bit of the OSCCON register.

Depending on the current mode and the mode being switched to, a change to a power-managed mode does not always require setting all of these bits. Many transitions may be done by changing the oscillator select bits, or changing the IDLEN bit, prior to issuing a SLEEP instruction. If the IDLEN bit is already configured correctly, it may only be necessary to perform a SLEEP instruction to switch to the desired mode.

Mada	OSC	CON Bits	Module	Clocking	Available Cleak and Occillator Source
wode	IDLEN ⁽¹⁾	SCS<1:0>	CPU	Peripherals	Available Clock and Oscillator Source
Sleep	0	N/A	Off	Off	None – All clocks are disabled
PRI_RUN	N/A	00	Clocked	Clocked	Primary – LP, XT, HS, RC, EC and Internal Oscillator Block ⁽²⁾ . This is the normal, full power execution mode.
SEC_RUN	N/A	01	Clocked	Clocked	Secondary – Timer1 Oscillator
RC_RUN	N/A	lx	Clocked	Clocked	Internal Oscillator Block ⁽²⁾
PRI_IDLE	1	00	Off	Clocked	Primary – LP, XT, HS, HSPLL, RC, EC
SEC_IDLE	1	01	Off	Clocked	Secondary – Timer1 Oscillator
RC_IDLE	1	1x	Off	Clocked	Internal Oscillator Block ⁽²⁾

TABLE 19-1: POWER-MANAGED MODES

Note 1: IDLEN reflects its value when the **SLEEP** instruction is executed.

2: Includes HFINTOSC and HFINTOSC postscaler, as well as the LFINTOSC source.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E
bit 7							bit 0
ſ							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented	C = Clearable	e only bit
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
hit 7	enene. on i	atab Dariabar	al Cat Enabla k	.:4			
				JIL			
	0 = INT1pin	status has no e	effect on SR La	atch			
bit 6	SRSCKE: SF	R Latch Set Clo	ck Enable bit				
	1 = Set input	of SR latch is	pulsed with SF	RCLK			
	0 = Set input	of SR latch is	not pulsed with	h SRCLK			
bit 5	SRSC2E: SR	Latch C2 Set	Enable bit				
	1 = C2 Comp	parator output	sets SR Latch				
h :4		barator output r	nas no effect o	n SR Latch			
DIT 4	3R3C1E: SR	Latch C1 Set					
	1 = C1 Compose 0 = C1 Compose 0	parator output s	has no effect o	n SR Latch			
bit 3	SRRPE: SR	Latch Periphera	al Reset Enabl	e bit			
	1 = INT1 pin	resets SR Lato	:h				
	0 = INT1 pin	has no effect of	on SR Latch				
bit 2	SRRCKE: SF	R Latch Reset (Clock Enable b	oit			
	1 = Reset inp	out of SR latch	is pulsed with	SRCLK			
	0 = Reset inp	out of SR latch	is not pulsed v	with SRCLK			
bit 1	SRRC2E: SR	Latch C2 Res	et Enable bit				
	1 = C2 Comp0 = C2 Comp	parator output r	esets SR Latc has no effect o	n n SR Latch			
bit 0	SRRC1E: SR	Latch C1 Res	et Enable bit				
	1 = C1 Com	parator output r	esets SR Latc	h			
	0 = C1 Comp	parator output h	nas no effect o	n SR Latch			

REGISTER 20-2: SRCON1: SR LATCH CONTROL REGISTER 1

TABLE 20-3:	REGISTERS	ASSOCIATED	WITH THE SI	R LATCH
-------------	-----------	------------	-------------	---------

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset Values on page
SRCON0	SRLEN	SRCLK2	SRCLK1	SRCLK0	SRQEN	SRNQEN	SRPS	SRPR	278
SRCON1	SRSPE	SRSCKE	SRSC2E	SRSC1E	SRRPE	SRRCKE	SRRC2E	SRRC1E	278
CM2CON1	MC10UT	MC2OUT	C1RSEL	C2RSEL	C1HYS	C2HYS	C1SYNC	C2SYNC	278
INTCON3	INT2IP	INT1IP	—	INT2IE	INT1IE	—	INT2IF	INT1IF	275
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	278

Legend: Shaded cells are not used with the comparator voltage reference.

BTF	SC	Bit Test Fil	Bit Test File, Skip if Clear							
Synta	ax:	BTFSC f, b	{,a}							
Opera	ands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \\ a \in [0,1] \end{array}$	$0 \le f \le 255$ $0 \le b \le 7$ $a \in [0,1]$							
Oper	ation:	skip if (f)	skip if (f) = 0							
Statu	s Affected:	None								
Enco	ding:	1011	bbba ff	ff ffff						
Desc	ription:	If bit 'b' in reg instruction is the next instru- current instru- and a NOP is this a 2-cycle If 'a' is '0', th 'a' is '1', the GPR bank (c If 'a' is '0' an set is enable Indexed Liter mode where See Section Bit-Orientec Literal Offse	In bit of innegister 1 is 0, then the next instruction is skipped. If bit 'b' is '0', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details							
Word	s:	1	1							
Cycle Q C	es: vcle Activitv:	1(2) Note: 3 cyc by a	cles if skip and 2-word instrue	d followed ction.						
	Q1	Q2	Q3	Q4						
	Decode	Read	Process	No						
		register 'f'	Data	operation						
lf ski	ip:									
	Q1	Q2	Q3	Q4						
	operation	operation	operation	operation						
lf ski	ip and followed	by 2-word inst	truction:							
	Q1	, Q2	Q3	Q4						
	No	No	No	No						
	operation	operation	operation	operation						
	No	No	No	No						
	operation	operation	operation	operation						
<u>Exan</u>	n <u>ple:</u> Before Instruct PC	HERE BI FALSE : TRUE : ion = add	ress (Here)	G, 1, 0						
	After Instruction If FLAG<	n l> = 0; = add	ress (TRUE)							
	It FLAG< PC)								

BTFSS	Bit Test File	e, Skip if Se	t		
Syntax:	BTFSS f, b	{,a}			
Operands:	$0 \le f \le 255$ $0 \le b < 7$ $a \in [0,1]$				
Operation:	skip if (f)	= 1			
Status Affected:	None				
Encoding:	1010	bbba fff	f ffff		
Description:	1: If bit 'b' in register T is 'L', then the next instruction is skipped. If bit 'b' is 'L', then the next instruction fetched during the current instruction execution is discarded and a NOP is executed instead, making this a 2-cycle instruction. If 'a' is '0', the Access Bank is selected. I 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed Literal Offset Mode" for details.				
Words:			etalls.		
Cycles:	1(2) Note: 3 cyc by a	les if skip and 2-word instruc	followed tion.		
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	register 'f'	Data	operation		
lf skip:	U	1			
Q1	Q2	Q3	Q4		
No	No	No	No		
lf skip and followor	operation	operation	operation		
01	Q2	Q3	Q4		
No	No	No	No		
operation	operation	operation	operation		
No	No	No	No		
operation	operation	operation	operation		
Example: Before Instruc PC	HERE E FALSE : TRUE : tion = add	RTFSS FLA	G, 1, 0		
After Instruction If FLAG<1> = 0; PC = address (FALSE) If FLAG<1> = 1; PC = address (TRUE)					

ΒZ		Branch if	Zero							
Synta	ax:	BZ n								
Oper	ands:	-128 ≤ n ≤	127							
Oper	ation:	if ZERO bit (PC) + 2 +	is '1' 2n → PC							
Statu	s Affected:	None								
Enco	ding:	1110	1110 0000 nnnn nnnn							
Desc	ription:	If the ZERO bit is '1', then the program will branch. The 2's complement number '2n' is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 2 + 2n. This instruction is then a 2-cycle instruction.								
Word	ls:	1								
Cycle	es:	1(2)								
Q C If Ju	ycle Activity: mp:									
	Q1	Q2	Q3		Q4					
	Decode	Read literal 'n'	Proces Data	s Wi	rite to PC					
	No	No	No		No					
If No		operation	operation	on o	peration					
	Q1	Q2	Q3		Q4					
	Decode	Read literal	Proces	s	No					
		'n'	Data	0	peration					
<u>Exan</u>	nple: Refore Instruc	HERE	BZ J	ump						
	PC After Instructio If ZERO PC If ZERO	= ad on = 1; = ad = 0.	= address (HERE) = 1; = address (Jump)							
	PC	= 0, = ad	dress (H	ERE + 2	2)					

CAL	L	Subrouti	Subroutine Call						
Synta	IX:	CALL k {	s}						
Opera	ands:	0 ≤ k ≤ 1048575 s ∈ [0,1]							
Opera	ation:	$\begin{array}{l} (PC) + 4 \rightarrow TOS, \\ k \rightarrow PC{<}20{:}1{>}, \\ \text{if } s = 1 \\ (W) \rightarrow WS, \\ (Status) \rightarrow STATUSS, \\ (BSR) \rightarrow BSRS \end{array}$							
Status	s Affected:	None							
Encoo 1st wo 2nd w	ding: ord (k<7:0>) vord(k<19:8>)	1110 1111	110s k ₁₉ kkk	k ₇ kl kkk	kk :k	kkkk ₀ kkkk ₈			
10/2		(PC + 4) is pushed onto the return stack. If 's' = 1, the W, Status and BSR registers are also pushed into their respective shadow registers, WS, STATUSS and BSRS. If 's' = 0, no update occurs (default). Then, the 20-bit value 'k' is loaded into PC<20:1>. CALL is a 2-cycle instruction.							
Word	S:	2							
Cycle	S:	2							
QCy	cle Activity:								
Г	Q1	Q2	Q	3	_	Q4			
	Decode	Kead literal 'k'<7:0>,	PUSHI	sC to k	Re 'k' Wr	ad literal <19:8>, ite to PC			
	No operation	No operation	No opera) tion	op	No peration			
<u>Exam</u>	i <u>ple</u> :	HERE	CALL	THEF	RE,	1			
Before Instruction									
PC = address (HERE)									
,	PC PC TOS WS BSRS	= addres = addres = W = BSR	S (THER S (HERE	E) + 4))				

GOI	Ю	Uncondit	ional B	INCF				
Synta	ax:	GOTO k				Syntax		
Oper	ands:	$0 \le k \le 104$	8575			Operar		
Oper	ation:	$k \rightarrow PC<20$):1>					
Statu	is Affected:	None				Operati		
Enco	oding:					Operati		
1st w	/ord (k<7:0>)	1110	1111	k ₇ kkk	kkkk ₀	Status		
2nd v	word(k<19:8>)	1111	k ₁₉ kkk	kkkk	kkkk ₈	Encodi		
	anywhere within entire 2-Mbyte memory range. The 20-bit value 'k' is loaded into PC<20:1>. GOTO is always a 2-cycle instruction.							
Word	ds:	2						
Cycle	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	1	Q4	_		
Decode		de Read literal 'k'<7:0>,		tion ⁴	ead literal ‹'<19:8>, /rite to PC			
	No	No	No	,	No	Words:		
	operation	operation	opera	tion c	peration	Cycles:		
						Q Cyc		
Exan	nple:	GOTO THE	RE					
	After Instruction PC =	n Address (T	HERE)					

INCF	Incremen	Increment f							
Syntax:	INCF f{,c	d {,a}}							
Operands:	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$ $a \in [0,1]$							
Operation:	(f) + 1 \rightarrow de	est							
Status Affected:	C, DC, N,	OV, Z							
Encoding:	0010	10da	ffff	ffff					
Description.	incremente placed in W placed bac If 'a' is '0', t If 'a' is '1', t GPR bank If 'a' is '0' a set is enab in Indexed mode wher Section 25 Bit-Oriente Literal Offs	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed back in register 'f' (default). If 'a' is '0', the Access Bank is selected. If 'a' is '1', the BSR is used to select the GPR bank (default). If 'a' is '0' and the extended instruction set is enabled, this instruction operates in Indexed Literal Offset Addressing mode whenever $f \le 95$ (5Fh). See Section 25.2.3 "Byte-Oriented and Bit-Oriented Instructions in Indexed							
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Proce Data	ss a c	Write to destination					

= = =

After Instruction

CNT Z C DC

LFS	R	Load FSR MOVF Move f									
Synta	ax:	LFSR f, k			Synt	ax:	MOVF f{,	d {,a}}			
Oper	ands:	$\begin{array}{l} 0 \leq f \leq 2 \\ 0 \leq k \leq 409 \end{array}$	95		Oper	rands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in [0,1] \end{array}$				
Oper	ation:	$k\toFSRf$					a ∈ [0,1]				
Statu	s Affected:	None			Oper	ration:	$f \rightarrow dest$				
Encoding:		1110 1111	1110 00 0000 k ₇ 2	ff k ₁₁ kkk kkk kkkk	Statu Enco	us Affected: oding:	N, Z	00da f	fff	ffff	
Desc	ription:	The 12-bit File Select	The 12-bit literal 'k' is loaded into the File Select Register pointed to by 'f'.			cription:	The content a destinatio	ts of register n dependent	'f' are i t upon	noved to the	
Word	ls:	2					status of 'd'	. If 'd' is '0', 1	the rest	ult is	
Cycles:		2					placed in w	. in uns⊥, ∢in register '	f' (defa	ult).	
QC	ycle Activity:						Location 'f'	can be anyw	vhere ir	n the	
	Q1	Q2	Q3	Q4			256-byte ba	ank. he Access B	ank ie i	soloctod	
	Decode	Read literal 'k' MSB	Process Data	Write literal 'k' MSB to FSRfH			If 'a' is '1', ti GPR bank (If 'a' is '0' a set is enabl	If a is 0, the Access Bank is selecte If 'a' is '1', the BSR is used to select th GPR bank (default). If 'a' is '0' and the extended instruction			
	Decode	Read literalProcessWrite literal'k' LSBData'k' to FSRfL				in Indexed I mode when Section 25	_iteral Offset ever f ≤ 95 (.2.3 "Byte-C	Addre 5Fh). S riente	ssing See d and		
Exan	nple:	LFSR 2,	3ABh				Literal Offs	set Mode" fo	or detai	ls.	
	After Instructio	n	9h		Word	ds:	1				
	FSR2L	= 03 = AE	Bh		Cycl	es:	1				
					QC	vcle Activity:					
						Q1	Q2	Q3		Q4	
						Decode	Read register 'f'	Process Data	W	/rite W	
					Exar	nple:	MOVF RI	EG, 0, 0			
						Before Instruc REG W	tion = 22 = FF	h h			
						REG W	on = 22 = 22	h h			

25.2 Extended Instruction Set

In addition to the standard 75 instructions of the PIC18 instruction set, PIC18(L)F1XK50 devices also provide an optional extension to the core CPU functionality. The added features include eight additional instructions that augment indirect and indexed addressing operations and the implementation of Indexed Literal Offset Addressing mode for many of the standard PIC18 instructions.

The additional features of the extended instruction set are disabled by default. To enable them, users must set the XINST Configuration bit.

The instructions in the extended set can all be classified as literal operations, which either manipulate the File Select Registers, or use them for indexed addressing. Two of the instructions, ADDFSR and SUBFSR, each have an additional special instantiation for using FSR2. These versions (ADDULNK and SUBULNK) allow for automatic return after execution.

The extended instructions are specifically implemented to optimize re-entrant program code (that is, code that is recursive or that uses a software stack) written in high-level languages, particularly C. Among other things, they allow users working in high-level languages to perform certain operations on data structures more efficiently. These include:

- dynamic allocation and deallocation of software stack space when entering and leaving subroutines
- function pointer invocation
- software Stack Pointer manipulation
- manipulation of variables located in a software stack

A summary of the instructions in the extended instruction set is provided in Table 25-3. Detailed descriptions are provided in **Section 25.2.2 "Extended Instruction Set**". The opcode field descriptions in Table 25-1 (page 298) apply to both the standard and extended PIC18 instruction sets.

Note: The instruction set extension and the Indexed Literal Offset Addressing mode were designed for optimizing applications written in C; the user may likely never use these instructions directly in assembler. The syntax for these commands is provided as a reference for users who may be reviewing code that has been generated by a compiler.

25.2.1 EXTENDED INSTRUCTION SYNTAX

Most of the extended instructions use indexed arguments, using one of the File Select Registers and some offset to specify a source or destination register. When an argument for an instruction serves as part of indexed addressing, it is enclosed in square brackets ("[]"). This is done to indicate that the argument is used as an index or offset. MPASMTM Assembler will flag an error if it determines that an index or offset value is not bracketed.

When the extended instruction set is enabled, brackets are also used to indicate index arguments in byteoriented and bit-oriented instructions. This is in addition to other changes in their syntax. For more details, see Section 25.2.3.1 "Extended Instruction Syntax with Standard PIC18 Commands".

Note: In the past, square brackets have been used to denote optional arguments in the PIC18 and earlier instruction sets. In this text and going forward, optional arguments are denoted by braces ("{ }").

Mnemonic, Operands		Description	Cyclos	16-E	Bit Instru	uction V	Vord	Status
		Description	Cycles	MSb			LSb	Affected
ADDFSR	f, k	Add literal to FSR	1	1110	1000	ffkk	kkkk	None
ADDULNK	k	Add literal to FSR2 and return	2	1110	1000	11kk	kkkk	None
CALLW		Call subroutine using WREG	2	0000	0000	0001	0100	None
MOVSF	z _s , f _d	Move z _s (source) to 1st word	2	1110	1011	0zzz	ZZZZ	None
		f _d (destination) 2nd word		1111	ffff	ffff	ffff	
MOVSS	z _s , z _d	Move z _s (source) to 1st word	2	1110	1011	lzzz	ZZZZ	None
		z _d (destination) 2nd word		1111	xxxx	XZZZ	ZZZZ	
PUSHL	k	Store literal at FSR2, decrement FSR2	1	1110	1010	kkkk	kkkk	None
SUBFSR	f, k	Subtract literal from FSR	1	1110	1001	ffkk	kkkk	None
SUBULNK	k	Subtract literal from FSR2 and return	2	1110	1001	11kk	kkkk	None

TABLE 25-3: EXTENSIONS TO THE PIC18 INSTRUCTION SET

PIC18LF	1XK50		Standard Operating Conditions (unless otherwise stated)						
PIC18F1	XK50		Standard Operating Conditions (unless otherwise stated)						
Param.	Device	Min	True	Max			Conditions		
No.	Characteristics	win.	тур.т	wax.	Units	Vdd	Note		
	Supply Current (IDD) ^{(1, 2}	2)							
D010		_	6.0	12	μA	1.8	Fosc = 32 kHz		
		_	9	16	μΑ	3.0	LP Oscillator ⁽⁴⁾ , -40°C \leq TA \leq +85°C		
D010		_	8	15	μA	1.8	Fosc = 32 kHz		
		_	11	25	μΑ	3.0	LP Oscillator ⁽⁴⁾ , 40° C $< T_{0} < 185^{\circ}$ C		
		_	12	35	μA	5.0	-40 C \leq TA \leq +85 C		
D011*		_	6.0	12	μΑ	1.8	Fosc = 32 kHz		
		—	9.0	16	μA	3.0	LP Oscillator -40°C \leq TA \leq +125°C		
D011*		-	8.0	15	μA	1.8	Fosc = 32 kHz		
			11	25	μA	3.0	LP Oscillator ⁽⁴⁾		
		_	12	35	μA	5.0	$-40^{\circ}C \le 1A \le +125^{\circ}C$		
D011*		_	170	220	μA	1.8	Fosc = 1 MHz		
		—	280	370	μA	3.0	XT Oscillator		
D011*			200	250	μΑ	1.8	Fosc = 1 MHz		
		_	310	400	μΑ	3.0	XI Oscillator		
		—	380	490	μA	5.0			
D011*		_	75	110	μA	1.8	Fosc = 1 MHz		
		—	130	190	μA	3.0	CPU Idle		
D011*		_	90	130	μA	1.8	Fosc = 1 MHz		
			140	210	μΑ	3.0	XT Oscillator		
		—	160	250	μA	5.0			

TABLE 27-2: SUPPLY CURRENT, PIC18(L)F1XK50-I/E (INDUSTRIAL, EXTENDED)

* These parameters are characterized but not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to VDD; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

3: For RC oscillator configurations, current through REXT is not included. The current through the resistor can be extended by the formula IR = VDD/2REXT (mA) with REXT in kΩ.

4: FVR and BOR are disabled.

5: 330 nF capacitor on VUSB pin.

TABLE 27-17: COMPARATOR SPECIFICATIONS

Standard Operating Conditions (unless otherwise stated)

1.8V < VDD	< 3.6V, -40)°C < TA < +125°C	

Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments
CM01	VIOFF	Input Offset Voltage		±10	±50	mV	High-Power mode; VREF = VDD/2
			—	12	±80	mV	Low-Power mode; VREF = VDD/2
CM02	VICM	Input Common Mode Voltage	Vss	—	Vdd	V	
CM03	CMRR	Common Mode Rejection Ratio	55	_	_	dB	
CM04	TRESP	Response Time ⁽¹⁾	_	200	400	ns	
CM05	TMC2OV	Comparator Mode Change to Output Valid*	_	_	10	μS	
CM06	CHYSTER	Comparator Hysteresis	_	65	_	mV	

* These parameters are characterized but not tested.

Note 1: Response time measured with one comparator input at VDD/2, while the other input transitions from Vss to VDD in High-Power mode.

TABLE 27-18: CVREF VOLTAGE REFERENCE SPECIFICATIONS

Standard 1.8V < VD	Standard Operating Conditions (unless otherwise stated) 1.8V < VDD < 3.6V, -40°C < TA < +125°C								
Param. No.	Sym.	Characteristics	Min.	Тур.	Max.	Units	Comments		
CV01*	Clsb	Step Size		VDD/2 4 VDD/32	_	V V	Low Range (VRR = 1) High Range (VRR = 0)		
CV02*	CACC	Absolute Accuracy			± 1/4 ± 1/2	LSb LSb	Low Range (VRR = 1) High Range (VRR = 0)		
CV03*	CR	Unit Resistor Value [®]		2k		Ω			
CV04*	CST	Settling Time ⁽¹⁾		_	10	μS			

These parameters are characterized but not tested.

Note 1: Settling time measured while CVRR = 1 and CVR3:CVR0 transitions from '0000' to '1111'.

TABLE 27-19: FIXED VOLTAGE REFERENCE (FVR) SPECIFICATIONS

Standar 1.8V < \	Standard Operating Conditions (unless otherwise stated) 1.8V < VDD < 5.5V, -40°C < TA < +85°C								
VR Voltage Reference Specifications Standard Operating Conditions (unless otherwise						(unless otherwise stated)			
Param. No.	Sym.	Characteristics	Min. Typ. Max. Units Commen				Comments		
D003	VADFVR	Fixed Voltage Reference Voltage	-8		6	%	$V \text{DD} \geq 2.5 \text{V}$		
D004*	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.05	_		V/ms	See Section 23.3 "Power-on Reset (POR)" for details.		

* These parameters are characterized but not tested.

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E 1.27 BSC				
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	X			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A