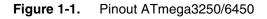


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	AVR
Core Size	8-Bit
Speed	16MHz
Connectivity	SPI, UART/USART, USI
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	54
Program Memory Size	32KB (16K x 16)
Program Memory Type	FLASH
EEPROM Size	1K x 8
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-VFQFN Exposed Pad
Supplier Device Package	64-QFN (9x9)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atmega325-16mi

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1. Pin Configurations

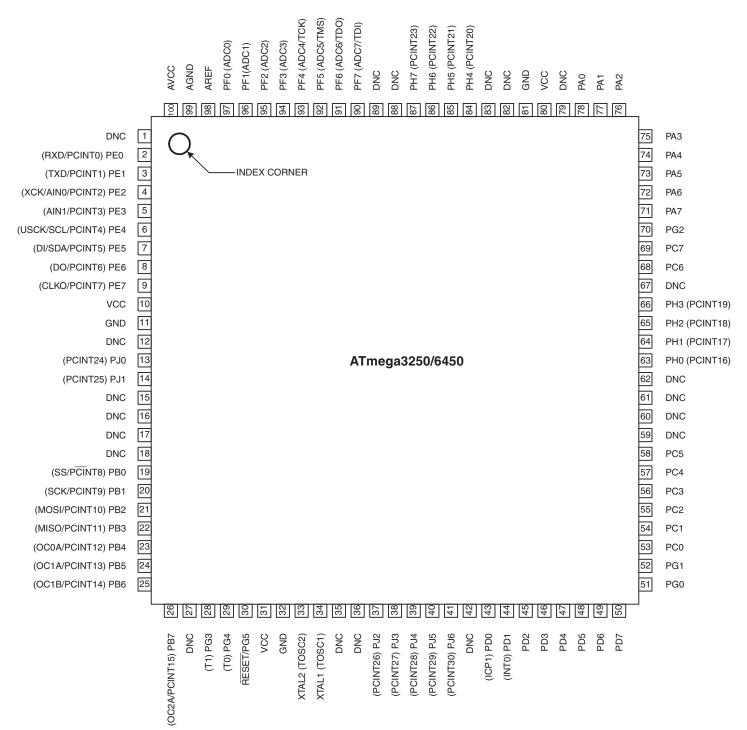
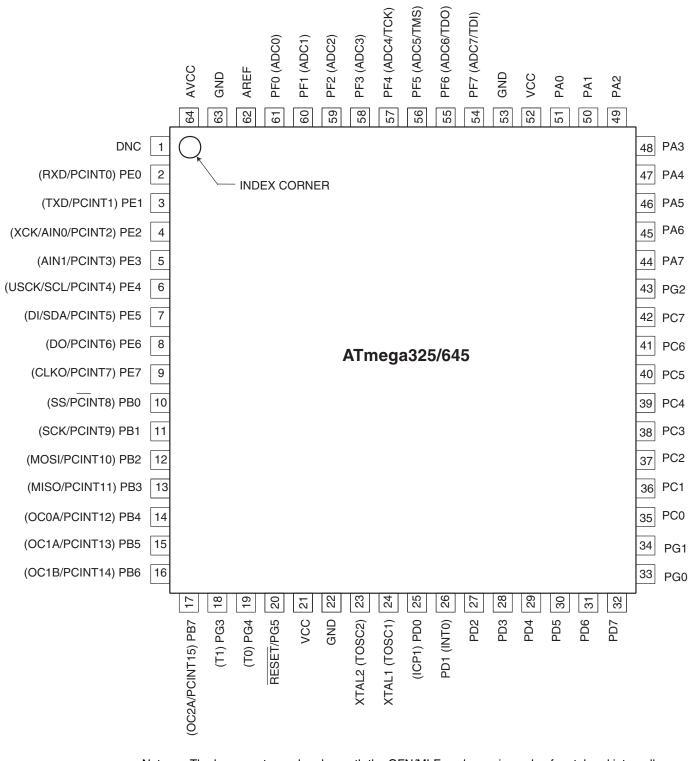
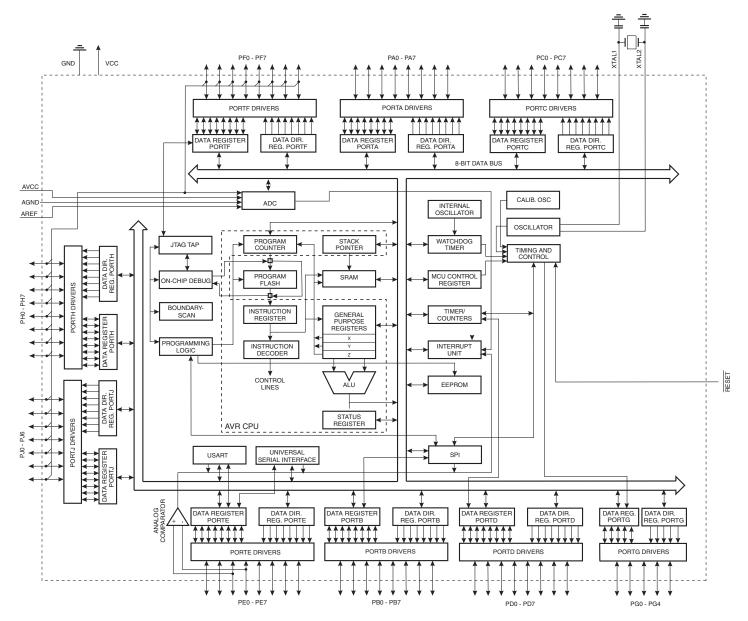



Figure 1-2. Pinout ATmega325/645


Note: The large center pad underneath the QFN/MLF packages is made of metal and internally connected to GND. It should be soldered or glued to the board to ensure good mechanical stability. If the center pad is left unconnected, the package might loosen from the board.

2. Overview

The Atmel ATmega325/3250/645/6450 is a low-power CMOS 8-bit microcontroller based on the AVR enhanced RISC architecture. By executing powerful instructions in a single clock cycle, the Atmel ATmega325/3250/645/6450 achieves throughputs approaching 1 MIPS per MHz allowing the system designer to optimize power consumption versus processing speed.

2.1 Block Diagram

Figure 2-1. Block Diagram

The Atmel[®]AVR[®] core combines a rich instruction set with 32 general purpose working registers. All the 32 registers are directly connected to the Arithmetic Logic Unit (ALU), allowing two independent registers to be accessed in one single instruction executed in one clock cycle. The

2.2 Comparison between ATmega325, ATmega3250, ATmega645 and ATmega6450

The ATmega325, ATmega3250, ATmega645, and ATmega6450 differ only in memory sizes, pin count and pinout. Table 2-1 on page 6 summarizes the different configurations for the four devices.

Device	Flash	EEPROM	RAM	General Purpose I/O Pins
ATmega325	32Kbytes	1Kbytes	2Kbytes	54
ATmega3250	32Kbytes	1Kbytes	2Kbytes	69
ATmega645	64Kbytes	2Kbytes	4Kbytes	54
ATmega6450	64Kbytes	2Kbytes	4Kbytes	69

Table 2-1.	Configuration	Summary
------------	---------------	---------

2.3 Pin Descriptions

The following section describes the I/O-pin special functions.

2.3.1 V_{cc}

Digital supply voltage.

2.3.2 GND

Ground.

2.3.3 Port A (PA7..PA0)

Port A is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port A output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port A pins that are externally pulled low will source current if the pull-up resistors are activated. The Port A pins are tri-stated when a reset condition becomes active, even if the clock is not running.

2.3.4 Port B (PB7..PB0)

Port B is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port B output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port B pins that are externally pulled low will source current if the pull-up resistors are activated. The Port B pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port B has better driving capabilities than the other ports.

Port B also serves the functions of various special features of the Atmel ATmega325/3250/645/6450 as listed on page 68.

2.3.5 Port C (PC7..PC0)

Port C is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port C output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port C pins that are externally pulled low will source current if the pull-up resistors are activated. The Port C pins are tri-stated when a reset condition becomes active, even if the clock is not running.

2.3.11 Port J (PJ6..PJ0)

Port J is a 7-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The Port J output buffers have symmetrical drive characteristics with both high sink and source capability. As inputs, Port J pins that are externally pulled low will source current if the pull-up resistors are activated. The Port J pins are tri-stated when a reset condition becomes active, even if the clock is not running.

Port J also serves the functions of various special features of the ATmega3250/6450 as listed on page 72.

2.3.12	RESET	
		Reset input. A low level on this pin for longer than the minimum pulse length will generate a reset, even if the clock is not running. The minimum pulse length is given in Table 28-4 on page 301. Shorter pulses are not guaranteed to generate a reset.
2.3.13	XTAL1	
		Input to the inverting Oscillator amplifier and input to the internal clock operating circuit.
2.3.14	XTAL2	
		Output from the inverting Oscillator amplifier.
2.3.15	AVCC	
		AVCC is the supply voltage pin for Port F and the A/D Converter. It should be externally connected to V_{CC} , even if the ADC is not used. If the ADC is used, it should be connected to V_{CC} through a low-pass filter.
2.3.16	AREF	

This is the analog reference pin for the A/D Converter.

7. Register Summary

Note: Registers with bold type only available in ATmega3250/6450.

Address	Nome	D:+ 7	-	-	-		ga3250/6450		DH 0	Daga
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xFF)	Reserved	-	-	-	-	-	-	-	-	
(0xFE)	Reserved	-	-	-	-	-	-	-	-	
(0xFD)	Reserved	-	-	-	-	-	-	-	-	
(0xFC)	Reserved	-	-	-	-	-	-	-	-	
(0xFB)	Reserved	-	-	-	-	-	-	-	-	
(0xFA)	Reserved	-	-	-	-	-	-	-	-	
(0xF9)	Reserved	-	-	-	-	-	-	-	-	
(0xF8)	Reserved	-	-	-	-	-	-	-	-	
(0xF7)	Reserved	-	-	-	-	-	-	-	-	
(0xF6)	Reserved	-	-	-	-	-	-	-	-	
(0xF5)	Reserved	-	-	-	-	-	-	-	-	
(0xF4)	Reserved	-	-	-	-	-	-	-	-	
(0xF3)	Reserved	-	-	-	-	-	-	-	-	
(0xF2)	Reserved	-	-	-	-	-	-	-	-	
, ,	Reserved	-	-	-	-	-	-	-	-	
(0xF1)	Reserved	-	-	-	-	-	-	-	-	
(0xF0)										
(0xEF)	Reserved	-	-	-	-	-	-	-	-	
(0xEE)	Reserved	-	-	-	-	-	-	-	-	
(0xED)	Reserved	-	-	-	-	-	-	-	-	
(0xEC)	Reserved	-	-	-	-	-	-	-	-	
(0xEB)	Reserved	-	-	-	-	-	-	-	-	
(0xEA)	Reserved	-	-	-	-	-	-	-	-	
(0xE9)	Reserved	-	-	-	-	-	-	-	-	
(0xE8)	Reserved	-	-	-	-	-	-	-	-	
(0xE7)	Reserved	-	-	-	-	-	-	-	-	
(0xE6)	Reserved	-	-	-	-	-	-	-	-	
. ,	Reserved	-	-	-	-	-	-	-	-	
(0xE5)	Reserved	-	-	-	-	_	-	-	-	
(0xE4)										
(0xE3)	Reserved	-	-	-	-	-	-	-	-	
(0xE2)	Reserved	-	-	-	-	-	-	-	-	
(0xE1)	Reserved	-	-	-	-	-	-	-	-	
(0xE0)	Reserved	-	-	-	-	-	-	-	-	
(0xDF)	Reserved	-	-	-	-	-	-	-	-	
(0xDE)	Reserved	-	-	-	-	-	-	-	-	
(0xDD)	PORTJ	-	PORTJ6	PORTJ5	PORTJ4	PORTJ3	PORTJ2	PORTJ1	PORTJ0	84
(0xDC)	DDRJ	-	DDJ6	DDJ5	DDJ4	DDJ3	DDJ2	DDJ1	DDJ0	84
(0xDB)	PINJ	-	PINJ6	PINJ5	PINJ4	PINJ3	PINJ2	PINJ1	PINJ0	84
(0xDA)	PORTH	PORTH7	PORTH6	PORTH5	PORTH4	PORTH3	PORTH2	PORTH1	PORTH0	84
(0xD9)	DDRH	DDH7	DDH6	DDH5	DDH4	DDH3	DDH2	DDH1	DDH0	84
, ,	PINH	PINH7	PINH6	PINH5	PINH4	PINH3	PINH2	PINH1	PINHO	84
(0xD8)	Reserved	-	-	-	-	-	-	-	-	04
(0xD7)										
(0xD6)	Reserved	-	-	-	-	-	-	-	-	
(0xD5)	Reserved	-	-	-	-	-	-	-	-	
(0xD4)	Reserved	-	-	-	-	-	-	-	-	
(0xD3)	Reserved	-	-	-	-	-	-	-	-	
(0xD2)	Reserved	-	-	-	-	-	-	-	-	
(0xD1)	Reserved	-	-	-	-	-	-	-	-	
(0xD0)	Reserved	-	-	-	-	-	-	-	-	
(0xCF)	Reserved	-	-	-	-	-	-	-	-	
(0xCE)	Reserved	-	-	-	-	-	-	-	-	
(0xCD)	Reserved	-	-	-	-	-	-	-	-	
(0xCC)	Reserved	-	-	-	-	-	-	-	-	
	Reserved	-	-	-	-	-	-	-	-	
(0xCB)										
(0xCA)	Reserved	-	-	-	-	-	-	-	-	
(0xC9)	Reserved	-	-	-	-	-	-	-	-	
(0, 00)	Reserved	-	-	-	-	-	-	-	-	
(0xC8)		-	-	-	-	-	-	-	-	
(0xC8) (0xC7)	Reserved									
	Reserved UDR0				USART0 D	ata Register	1			179
(0xC7)					USART0 D	ata Register	USART0 Baud F	ate Register High		179 184

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Page
(0xC3)	Reserved	-	-	-	-	-	-	-	-	
(0xC2)	UCSR0C	-	UMSEL0	UPM01	UPM00	USBS0	UCSZ01	UCSZ00	UCPOL0	182
(0xC1)	UCSR0B	RXCIE0	TXCIE0	UDRIE0	RXEN0	TXEN0	UCSZ02	RXB80	TXB80	181
(0xC0)	UCSR0A	RXC0	TXC0	UDRE0	FE0	DOR0	UPE0	U2X0	MPCM0	180
(0xBF)	Reserved	-	-	-	-	-	-	-	-	
(0xBE)	Reserved	-	-	-	-	-	-	-	-	
(0xBD)	Reserved	-	-	-	-	-	-	-	-	
(0xBC)	Reserved	-	-	-	-	-	-	-	-	
(0xBB)	Reserved	-	-	-	-	-	-	-	-	
(0xBA)	USIDR				USI Data	a Register				192
(0xB9)	USISR	USISIF	USIOIF	USIPF	USIDC	USICNT3	USICNT2	USICNT1	USICNT0	193
(0xB8)	USICR	USISIE	USIOIE	USIWM1	USIWM0	USICS1	USICS0	USICLK	USITC	194
(0xB7)	Reserved	-	-	-	-	-	-	-	-	
(0xB6)	ASSR	-	-	-	EXCLK	AS2	TCN2UB	OCR2UB	TCR2UB	145
. ,	Reserved	-	-	-	-	-	-	-	-	
(0xB5)	Reserved	-	-	-	-	-	-	-	-	
(0xB4)	OCR2A	-						-		145
(0xB3)				11/11		ut Compare Regis	er A			145
(0xB2)	TCNT2					Counter2				145
(0xB1)	Reserved	-	-	-	-	-	-	-	-	
(0xB0)	TCCR2A	FOC2A	WGM20	COM2A1	COM2A0	WGM21	CS22	CS21	CS20	143
(0xAF)	Reserved	-	-	-	-	-	-	-	-	
(0xAE)	Reserved	-	-	-	-	-	-	-	-	
(0xAD)	Reserved	-	-	-	-	-	-	-	-	
(0xAC)	Reserved	-	-	-	-	-	-	-	-	
(0xAB)	Reserved	-	-	-	-	-	-	-	-	
(0xAA)	Reserved	-	-	-	-	-	-	-	-	
(0xA9)	Reserved	-	-	-	-	-	-	-	-	
(0xA8)	Reserved	-	-	-	-	-	-	-	-	
(0xA0) (0xA7)	Reserved	-	-	-	-	-	-	-	-	
. ,	Reserved	-	-	-	-	-	-	-	-	
(0xA6)	Reserved	-	-	-	-	-	-	-	-	
(0xA5)										
(0xA4)	Reserved	-	-	-	-	-	-	-	-	
(0xA3)	Reserved	-	-	-	-	-	-	-	-	
(0xA2)	Reserved	-	-	-	-	-	-	-	-	
(0xA1)	Reserved	-	-	-	-	-	-	-	-	
(0xA0)	Reserved	-	-	-	-	-	-	-	-	
(0x9F)	Reserved	-	-	-	-	-	-	-	-	
(0x9E)	Reserved	-	-	-	-	-	-	-	-	
(0x9D)	Reserved	-	-	-	-	-	-	-	-	
(0x9C)	Reserved	-	-	-	-	-	-	-	-	
(0x9B)	Reserved	-	-	-	-	-	-	-	-	
(0x9A)	Reserved	-	-	-	-	-	-	-	-	
(0x99)	Reserved	-	-	-	-	-	-	-	-	
(0x99) (0x98)	Reserved	-	-	-	-	-	-	-	-	
. ,	Reserved	-	_	-	-	_	_	-	-	
(0x97)	Reserved	-	-	-	-	-	-	-	-	
(0x96)	Reserved	-	-						-	
(0x95)				-	-	-	-	-		
(0x94)	Reserved	-	-	-	-	-	-	-	-	
(0x93)	Reserved	-	-	-	-	-	-	-	-	
(0x92)	Reserved	-	-	-	-	-	-	-	-	
(0x91)	Reserved	-	-	-	-	-	-	-	-	
(0x90)	Reserved	-	-	-	-	-	-	-	-	
(0x8F)	Reserved	-	-	-	-	-	-	-	-	
(0x8E)	Reserved	-	-	-	-	-	-	-	-	
(0x8D)	Reserved	-	-	-	-	-	-	-	-	
(0x8C)	Reserved	-	-	-	-	-	-	-	-	
(0x8B)	OCR1BH				Counter1 Output	Compare Register				127
(0x8A)	OCR1BL					Compare Register				127
	OCR1AH					Compare Register				127
(0x89)	OCR1AL					Compare Register	-			127
(0x88)										
(0x87)	ICR1H					Capture Register	-			127
(0x86)	ICR1L TCNT1H			Tin		Capture Register	LOW			127
						unter1 High				127

Mnemonics	Operands	Description	Operation	Flags	#Clocks
BRTC	k	Branch if T Flag Cleared	if (T = 0) then PC \leftarrow PC + k + 1	None	1/2
BRVS	k	Branch if Overflow Flag is Set	if (V = 1) then PC \leftarrow PC + k + 1	None	1/2
BRVC	k	Branch if Overflow Flag is Cleared	if (V = 0) then PC \leftarrow PC + k + 1	None	1/2
BRIE	k	Branch if Interrupt Enabled	if $(I = 1)$ then PC \leftarrow PC + k + 1	None	1/2
BRID	k	Branch if Interrupt Disabled	if (I = 0) then PC \leftarrow PC + k + 1	None	1/2
BIT AND BIT-TEST	INSTRUCTIONS	· ·			
SBI	P,b	Set Bit in I/O Register	I/O(P,b) ← 1	None	2
CBI	P,b	Clear Bit in I/O Register	I/O(P,b) ← 0	None	2
LSL	Rd	Logical Shift Left	$Rd(n+1) \leftarrow Rd(n), Rd(0) \leftarrow 0$	Z,C,N,V	1
LSR	Rd	Logical Shift Right	$Rd(n) \leftarrow Rd(n+1), Rd(7) \leftarrow 0$	Z,C,N,V	1
ROL	Rd	Rotate Left Through Carry	$Rd(0) \leftarrow C, Rd(n+1) \leftarrow Rd(n), C \leftarrow Rd(7)$	Z,C,N,V	1
ROR	Rd	Rotate Right Through Carry	$Rd(7) \leftarrow C, Rd(n) \leftarrow Rd(n+1), C \leftarrow Rd(0)$	Z,C,N,V	1
ASR	Rd	Arithmetic Shift Right	Rd(n) ← Rd(n+1), n=06	Z,C,N,V	1
SWAP	Rd	Swap Nibbles	Rd(30)←Rd(74),Rd(74)←Rd(30)	None	1
BSET	s	Flag Set	$SREG(s) \leftarrow 1$	SREG(s)	1
BCLR	s	Flag Clear	$SREG(s) \leftarrow 0$	SREG(s)	1
BST	Rr, b	Bit Store from Register to T	$T \leftarrow Rr(b)$	т	1
BLD	Rd, b	Bit load from T to Register	Rd(b) ← T	None	1
SEC		Set Carry	C ← 1	С	1
CLC		Clear Carry	C ← 0	С	1
SEN		Set Negative Flag	N ← 1	Ν	1
CLN		Clear Negative Flag	N ← 0	N	1
SEZ		Set Zero Flag	Z ← 1	Z	1
CLZ		Clear Zero Flag	Z ← 0	Z	1
SEI		Global Interrupt Enable	l ← 1	1	1
CLI		Global Interrupt Disable	l ← 0	1	1
SES		Set Signed Test Flag	S ← 1	S	1
CLS		Clear Signed Test Flag	S ← 0	S	1
SEV		Set Twos Complement Overflow.	V ← 1	V	1
CLV		Clear Twos Complement Overflow	V ← 0	V	1
SET		Set T in SREG	T ← 1	Т	1
CLT		Clear T in SREG	T ← 0	Т	1
SEH		Set Half Carry Flag in SREG	H ← 1	Н	1
CLH		Clear Half Carry Flag in SREG	H ← 0	Н	1
DATA TRANSFER I	NSTRUCTIONS				-
MOV	Rd, Rr	Move Between Registers	$Rd \leftarrow Rr$	None	1
MOVW	Rd, Rr	Copy Register Word	$Rd+1:Rd \leftarrow Rr+1:Rr$	None	1
LDI	Rd, K	Load Immediate	Rd ← K	None	1
LD	Rd, X	Load Indirect	$Rd \leftarrow (X)$	None	2
LD	Rd, X+	Load Indirect and Post-Inc.	$Rd \leftarrow (X), X \leftarrow X + 1$	None	2
LD	Rd, - X	Load Indirect and Pre-Dec.	$X \leftarrow X - 1, Rd \leftarrow (X)$	None	2
LD	Rd, Y	Load Indirect	$Rd \leftarrow (Y)$	None	2
LD	Rd, Y+	Load Indirect and Post-Inc.	$Rd \leftarrow (Y), Y \leftarrow Y + 1$	None	2
LD	Rd, - Y	Load Indirect and Pre-Dec.	$Y \leftarrow Y - 1, Rd \leftarrow (Y)$	None	2
LDD	Rd,Y+q	Load Indirect with Displacement	$Rd \leftarrow (Y + q)$	None	2
LD	Rd, Z	Load Indirect	$Rd \leftarrow (Z)$	None	2
LD	Rd, Z+	Load Indirect and Post-Inc.	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	2
LD	Rd, -Z	Load Indirect and Pre-Dec.	$Z \leftarrow Z - 1, Rd \leftarrow (Z)$	None	2
LDD	Rd, Z+q	Load Indirect with Displacement	$Rd \leftarrow (Z + q)$	None	2
LDS	Rd, k	Load Direct from SRAM	$Rd \leftarrow (k)$	None	2
ST	X, Rr	Store Indirect	$(X) \leftarrow Rr$	None	2
ST	X+, Rr	Store Indirect and Post-Inc.	$(X) \leftarrow Rr, X \leftarrow X + 1$	None	2
ST	- X, Rr	Store Indirect and Pre-Dec.	$X \leftarrow X - 1, (X) \leftarrow Rr$	None	2
ST	Y, Rr	Store Indirect	$(Y) \leftarrow Rr$	None	2
ST	Y+, Rr	Store Indirect and Post-Inc.	$(Y) \leftarrow Rr, Y \leftarrow Y + 1$	None	2
ST	- Y, Rr	Store Indirect and Pre-Dec.	$Y \leftarrow Y - 1, (Y) \leftarrow Rr$	None	2
STD	Y+q,Rr	Store Indirect with Displacement	$(Y + q) \leftarrow Rr$	None	2
ST	Z, Rr	Store Indirect	$(Z) \leftarrow Rr$	None	2
ST	Z+, Rr	Store Indirect and Post-Inc.	$(Z) \leftarrow Rr, Z \leftarrow Z + 1$	None	2
ST	-Z, Rr	Store Indirect and Pre-Dec.	$Z \leftarrow Z - 1$, (Z) $\leftarrow Rr$	None	2
STD	Z+q,Rr	Store Indirect with Displacement	$(Z + q) \leftarrow Rr$	None	2
STS	k, Rr	Store Direct to SRAM	(k) ← Rr	None	2
LPM		Load Program Memory	$R0 \leftarrow (Z)$	None	3
LPM	Rd, Z	Load Program Memory	$Rd \leftarrow (Z)$	None	3
LPM	Rd, Z+	Load Program Memory and Post-Inc	$Rd \leftarrow (Z), Z \leftarrow Z+1$	None	3

9. Ordering Information

9.1 ATmega325

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package Type ⁽¹⁾	Operational Range
8	1.8 - 5.5V	ATmega325V-8AU ATmega325V-8AUR ⁽⁴⁾ ATmega325V-8MU ATmega325V-8MUR ⁽⁴⁾	64A 64A 64M1 64M1	Industrial
16	2.7 - 5.5V	ATmega325-16AU ATmega325-16AUR ⁽⁴⁾ ATmega325-16MU ATmega325-16MUR ⁽⁴⁾	64A 64A 64M1 64M1	(-40°C to 85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed Grades see Figure 28-1 on page 299 and Figure 28-2 on page 299.

	Package Type				
64A	64-lead, 14 x 14 x 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)				
64M1	64-pad, 9 x 9 x 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)				

9.2 ATmega3250

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package Type ⁽¹⁾	Operational Range
8	1.8 - 5.5V	ATmega3250V-8AU ATmega3250V-8AUR ⁽⁴⁾	100A 100A	Industrial
16	2.7 - 5.5V	ATmega3250-16AU ATmega3250-16AUR ⁽⁴⁾	100A 100A	(-40°C to 85°C)

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed Grades see Figure 28-1 on page 299 and Figure 28-2 on page 299.

	Package Type	
100A	100-lead, 14 x 14 x 1.0mm, 0.5mm Lead Pitch, Thin Profile Plastic Quad Flat Package (TQFP)	

9.3 ATmega645

Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package Type ⁽¹⁾	Operational Range	
8	1.8 - 5.5V	ATmega645V-8AU ATmega645V-8AUR ⁽⁴⁾ ATmega645V-8MU ATmega645V-8MUR ⁽⁴⁾	64A 64A 64M1 64M1	Industrial (-40°C to 85°C)	
16	2.7 - 5.5V	ATmega645-16AU ATmega645-16AUR ⁽⁴⁾ ATmega645-16MU ATmega645-16MUR ⁽⁴⁾	64A 64A 64M1 64M1		

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.

3. For Speed Grades see Figure 28-1 on page 299 and Figure 28-2 on page 299.

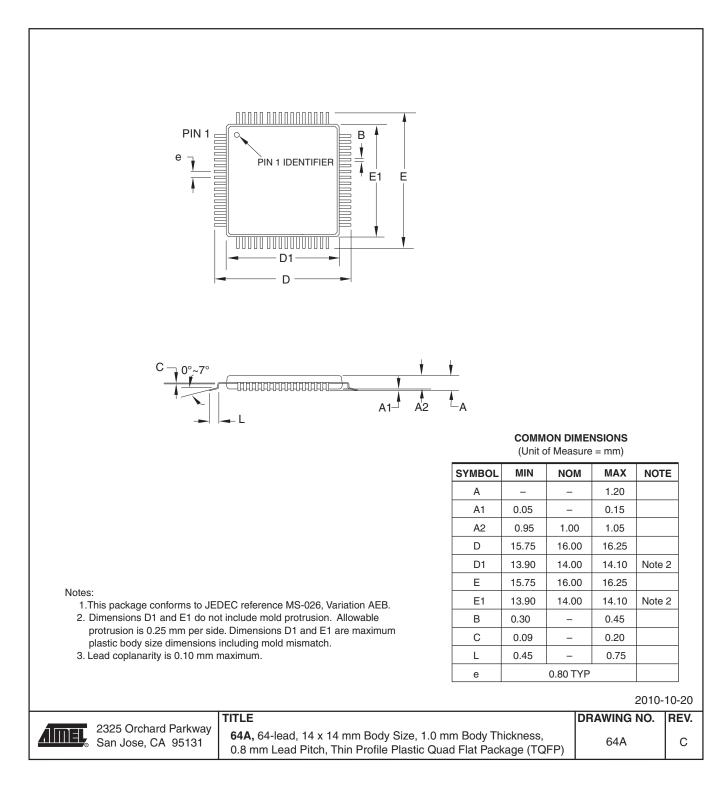
Package Type				
64A	64-lead, 14 x 14 x 1.0mm, Thin Profile Plastic Quad Flat Package (TQFP)			
64M1	64-pad, 9 x 9 x 1.0mm, Quad Flat No-Lead/Micro Lead Frame Package (QFN/MLF)			

9.4 ATmega6450

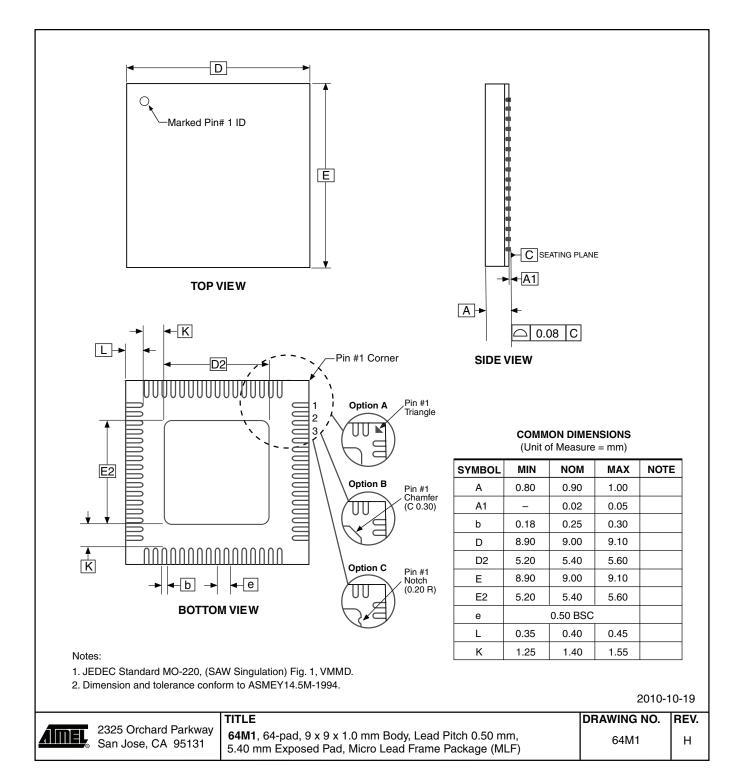
Speed (MHz) ⁽³⁾	Power Supply	Ordering Code ⁽²⁾	Package Type ⁽¹⁾	Operational Range
8	1.8 - 5.5V	ATmega6450V-8AU ATmega6450V-8AUR ⁽⁴⁾	100A 100A	Industrial (-40°C to 85°C)
16	2.7 - 5.5V	ATmega6450-16AU ATmega6450-16AUR ⁽⁴⁾	100A 100A	

Notes: 1. This device can also be supplied in wafer form. Please contact your local Atmel sales office for detailed ordering information and minimum quantities.

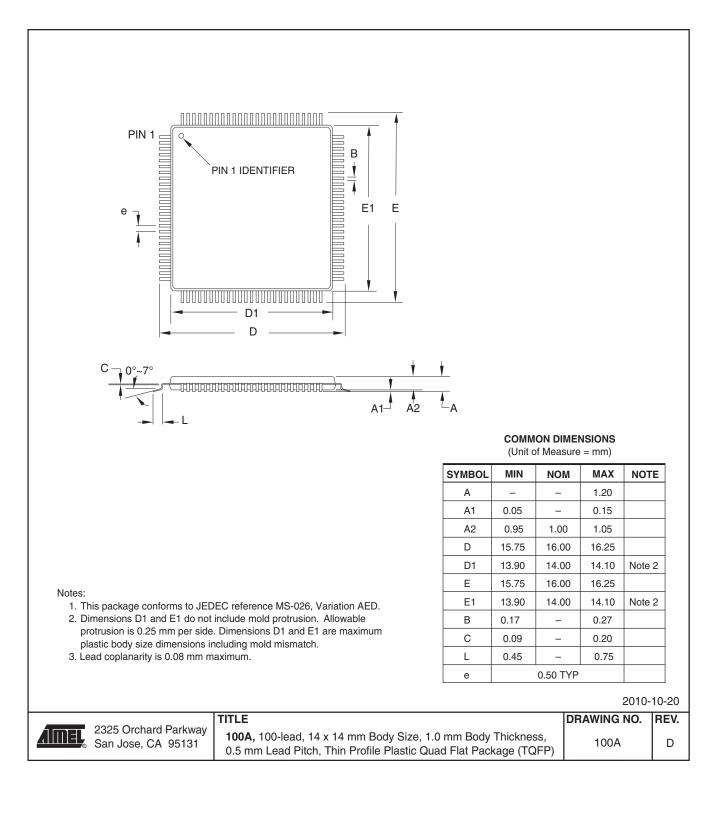
2. Pb-free packaging alternative, complies to the European Directive for Restriction of Hazardous Substances (RoHS directive). Also Halide free and fully Green.


3. For Speed Grades see Figure 28-1 on page 299 and Figure 28-2 on page 299.

Package Type			
Pitch, Thin Profile Plastic Quad Flat Package (TQFP)			


10. Packaging Information

10.1 64A



10.2 64M1

10.3 100A

11. Errata

11.1 Errata ATmega325

The revision letter in this section refers to the revision of the ATmega325 device.

11.1.1 ATmega325 Rev. C

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.1.2 ATmega325 Rev. B

Not sampled.

11.1.3 ATmega325 Rev. A

- Interrupts may be lost when writing the timer registers in the asynchronous timer
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.2 Errata ATmega3250

The revision letter in this section refers to the revision of the ATmega3250 device.

11.2.1 ATmega3250 Rev. C

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.2.2 ATmega3250 Rev. B

Not sampled.

11.2.3 ATmega3250 Rev. A

- Interrupts may be lost when writing the timer registers in the asynchronous timer
- 1. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.3 Errata ATmega645

The revision letter in this section refers to the revision of the ATmega645 device.

11.3.1 ATmega645 Rev. A

Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer

The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

11.4 Errata ATmega6450

The revision letter in this section refers to the revision of the ATmega6450 device.

11.4.1 ATmega6450 Rev. A

• Interrupts may be lost when writing the timer registers in the asynchronous timer

1. Interrupts may be lost when writing the timer registers in the asynchronous timer The interrupt will be lost if a timer register that is synchronous timer clock is written when the asynchronous Timer/Counter register (TCNTx) is 0x00.

Problem Fix/ Workaround

Always check that the asynchronous Timer/Counter register neither have the value 0xFF nor 0x00 before writing to the asynchronous Timer Control Register (TCCRx), asynchronous Timer Counter Register (TCNTx), or asynchronous Output Compare Register (OCRx).

12. Datasheet Revision History

Please note that the referring page numbers in this section are referring to this document. The referring revision in this section are referring to the document revision.

12.1 Rev. 2570N - 05/11

- 1. Added Atmel QTouch Library Support and QTouch Sensing Capablity Features.
- 2. Updated the last page with Atmel[®] trademarks and Microsft Windows[®] trademarks.

12.2 Rev. 2570M - 04/11

- 1. Removed "Preliminary" from the front page
- 2. Removed "Disclaimer" section from the datasheet
- 3. Updated Table 28-5 on page 301 "BODLEVEL Fuse Coding(1)"
- 4. Updated "Ordering Information" on page 17 to include the "Tape & Reel" devices. Removed "AI" and "MI" devices.
- 5. Updated "Errata" on page 24.
- 6. Updated the datasheet according to the Atmel new drand style guide, including the last page.

12.3 Rev. 2570L - 08/07

- 1. Updated "Features" on page 1.
- 2. Added "Data Retention" on page 9
- 3. Updated "Serial Programming Algorithm" on page 281.
- 4. Updated "Speed Grades" on page 299.
- 5. Updated "System and Reset Characteristics" on page 301.
- 6. Updated the Register Description at the end of each chapter.

12.4 Rev. 2570K - 04/07

1. Updated "Errata" on page 24.

12.5 Rev. 2570J - 11/06

- 1. Updated Table 28-7 on page 304.
- 2. Updated note in Table 28-7 on page 304.

12.6 Rev. 2570I - 07/06

- 1. Updated Table 15-6 on page 92.
- 2. Updated Table 15-2 on page 97, Table 15-4 on page 97, Table 17-3 on page 124, Table 17-5 on page 125, Table 18-2 on page 143 and Table 18-4 on page 144.
- 3. Updated "Fast PWM Mode" on page 115.
- 4. Updated Features in "USI Universal Serial Interface" on page 185.
- 5. Added "Clock speed considerations." on page 191.
- 6. Updated "Errata" on page 24.

12.7 Rev. 2570H - 06/06

- 1. Updated "Calibrated Internal RC Oscillator" on page 29.
- 2. Updated "OSCCAL Oscillator Calibration Register" on page 32.
- 3. Added Table 28-2 on page 300.

12.8 Rev. 2570G - 04/06

- 1. Updated "Calibrated Internal RC Oscillator" on page 29.
- 12.9 Rev. 2570F 03/06
 - 1. Updated "Errata" on page 24.

12.10 Rev. 2570E - 03/06

- 1. Added Addresses in Register Descriptions.
- 2. Updated number of Genearl Purpose I/O pins.
- 3. Correction of Bitnames in "Register Summary" on page 10.
- 4. Added "Resources" on page 9.
- 5. Updated "Power Management and Sleep Modes" on page 35.
- 6. Updated "Bit 0 IVCE: Interrupt Vector Change Enable" on page 54.
- 7. Updated Introduction in "I/O-Ports" on page 60.
- 8. Updated 19. "SPI Serial Peripheral Interface" on page 148.
- 9. Updated "Bit 6 ACBG: Analog Comparator Bandgap Select" on page 199.
- 10 Updated Features in "Analog to Digital Converter" on page 201.
- 11. Updated "Prescaling and Conversion Timing" on page 204.
- 12. Updated "Atmel ATmega325/3250/645/6450 Boot Loader Parameters" on page 262.
- 13. Updated "DC Characteristics" on page 297.

12.11 Rev. 2570D - 05/05

- 1. MLF-package alternative changed to "Quad Flat No-Lead/Micro Lead Frame Package QFN/MLF".
- 2. Added "Pin Change Interrupt Timing" on page 55.
- 3. Updated "Signature Bytes" on page 268.
- 4. Updated Table 27-15 on page 282.
- 5. Added Figure 27-12 on page 284.
- 6. Updated Figure 23-9 on page 209 and Figure 27-5 on page 276.
- 7. Updated algorithm "Enter Programming Mode" on page 271.
- 8. Added "Supply Current of I/O modules" on page 311.
- 9. Updated "Ordering Information" on page 17.

12.12 Rev. 2570C - 11/04

- 1. "0 8MHz @ 2.7 5.5V; 0 16MHz @ 4.5 5.5V" on page 1 updated.
- 2. Table 9-8 on page 30 updated.
- COM01:0 renamed COM0A1:0 in "8-bit Timer/Counter0 with PWM" on page 85.
- 4. PRR-bit descripton added to "16-bit Timer/Counter1" on page 102, "SPI Serial Peripheral Interface" on page 148, and "USART0" on page 157.
- 5. "Part Number" on page 225 updated.
- 6. "Typical Characteristics" on page 306 updated.
- 7. "DC Characteristics" on page 297 updated.
- 8. "Alternate Functions of Port G" on page 76 updated.

12.13 Rev. 2570B - 09/04

1. Updated "Ordering Information" on page 17.

12.14 Rev. 2570A - 09/04

1. Initial revision.

