
Parallax Inc. - BS2PE Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Active

Module/Board Type MCU Core

Core Processor SX48AC

Co-Processor -

Speed 8MHz

Flash Size 32KB EEPROM

RAM Size 38B

Connector Type -

Size / Dimension 1.2" x 0.6" (30mm x 15mm)

Operating Temperature 0°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/parallax/bs2pe

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/bs2pe-4509824
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

Quick Start Guide

Page 34 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

c) If the error reported a connection problem with the BASIC Stamp,
make sure the first line of code indicates the proper module name
and verify the programming cable connections, module
orientation (in the socket) and that it is properly powered, then try
downloading again.

8) Congratulations! You’ve just wr itten and downloaded your first

BASIC Stamp program! The "Hello World!" text that appeared on the
screen was sent from the BASIC Stamp, back up the programming
cable, to the PC.

4: BASIC Stamp Architecture – Memory Organization

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 81

BASIC Stamp Architecture Introduction This chapter provides detail on
the architecture (RAM usage) and math functions of the BS1, BS2, BS2e,
BS2sx, BS2p, BS2pe, and BS2px.

The following icons will appear to in dicate where there are differences
among the various BASIC Stamp models:

One or more of these icons indicates the item applies only
to the BS1, BS2, BS2e, BS2sx, BS2p, BS2pe, or BS2px
respectively.

If an item applies to the all of the models in the BS2
family, this icon is used.

The BASIC Stamp has two kinds of memory; RAM (for variables used by
your program) and EEPROM (for st oring the program itself). EEPROM
may also be used to store long-term data in much the same way that
desktop computers use a hard drive to hold both programs and files.

An important distinction between RAM and EEPROM is this:

• RAM loses its contents when the BASIC Stamp loses power; when
power returns, all RAM locations are cleared to 0s.

• EEPROM retains the contents of memory, with or without power,
until it is overwritten (such as during the program-downloading
process or with a WRITE instruction.)

The BS1 has 16 bytes (8 words) of RAM space arranged as shown in Table
4.1 The first word, called PORT, is used for I/O pin control. It consists of
two bytes, PINS and DIRS. The bits within PINS correspond to each of the
eight I/O pins on the BS1. Reading PINS effectively reads the I/O pins
directly, returning an 8-bit set of 1’s and 0’s corresponding to the high and
low state of the respective I/O pin at that moment. Writing to PINS will
store a high or low value on the respective I/O pins (though only on pins
that are set to outputs).

The second byte of PORT, DIRS, controls the direction of the I/O pins.
Each bit within DIRS corresponds to an I/O pin’s direction. A high bit (1)

MEMORY ORGANIZATION

RAM ORGANIZATION (BS1)

THE INPUT/OUTPUT VARIABLES.

All 2

1

4: BASIC Stamp Command Reference – ^/

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 121

The Xor Not operator (^/) returns the bitwise XOR NOT of two values.
Each bit of the values is subject to the following logic:

0 XOR NOT 0 = 1
0 XOR NOT 1 = 0
1 XOR NOT 0 = 0
1 XOR NOT 1 = 1

The result returned by ^/ will contain 1s in any bit positions in which the
first value and second values are equal.

Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101001
result = value1 ^/ value2
DEBUG %result ' Show result of OR NOT (%01011001)

XOR NOT: ̂ / 1

1

DEBUG – BASIC Stamp Command Reference

Page 162 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 2, 2e, 2sx, 2p, 2pe, and 2px Formatting
On the all BASIC Stamp models except the BS1, the DEBUG command, by
default, displays everything as ASCII characters. What if you want to
display a number? You might think th e following example would do this:

x VAR Byte

x = 65
DEBUG x ' Try to show decimal value of x

Since we set x equal to 65 (in line 2), you might expect the DEBUG line to
display �65� on the screen. Instead of �65�, however, you�ll see the letter
�A� if you run this example. The problem is that we never told the BASIC
Stamp how to output x, and it defaults to ASCII (the ASCII character at
position 65 is �A�). Instead, we need to tell it to display the �decimal
form� of the number in x. We can do this by using the decimal formatter
(DEC) before the variable. The example below will display �65� on the
screen.

x VAR Byte

x = 65
DEBUG DEC x ' Show decimal value of x

In addition to decimal (DEC), DEBUG can display numbers in
hexadecimal (HEX) and binary (BIN). See Table 5.11 and Table 5.12 for a
complete list of formatters.

Expressions are allowed within the DEBUG command arguments as well.
In the above code, DEBUG DEC x+25 would yield "90" and DEBUG
DEC x*10/2-3 would yield "322".

DISPLAYING ASCII CHARACTERS.

DISPLAYING DECIMAL NUMBERS.

All 2

DISPLAYING HEXADECIMAL AND
BINARY NUMBERS.

EXPRESSIONS IN DEBUG
COMMANDS.

5: BASIC Stamp Command Reference – FOR...NEXT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 193

reps VAR Nib ' counter for the FOR/NEXT loop

FOR reps = 1 TO 3 ' repeat with reps = 1, 2, 3
 DEBUG DEC reps, CR ' print rep number
NEXT

Running this example should display "1" , "2", and "3" on the screen.

FOR�NEXT can also be made to decrement (rather than increment) the
Counter variable. The BS1 does this when you specify a negative StepValue
(as well as a StartValue that is greater than the EndValue). All other BASIC
Stamp models do this automatically when the StartValue is greater than
the EndValue. Examples of both are shown below:

SYMBOL reps = B0 ' counter for the FOR/NEXT loop

FOR reps = 3 TO 1 STEP -1 ' repeat with reps = 3, 2, 1
 DEBUG #reps, CR ' print reps number
NEXT

-- or --

reps VAR Nib ' counter for the FOR/NEXT loop

FOR reps = 3 TO 1 ' repeat with reps = 3, 2, 1
 DEBUG DEC reps, CR ' print reps number
NEXT

Note that the code for all the BS2 models did not use the optional STEP
argument. This is because we wanted to decrement by positive 1 anyway
(the default unit) and the BASIC Stamp realizes it needs to decrement
because the StartValue is greater than the EndValue. A negative StepValue
on any BS2 model would be treated as its positive, twos complement
counterpart. For example, �1 in twos complement is 65535. So the
following code executes only once:

reps VAR Nib ' counter for the FOR/NEXT loop

FOR reps = 3 TO 1 STEP -1 ' try to decrement 3 by 65535
 DEBUG DEC reps, CR ' print reps number
NEXT

The above code would run through the loop once with reps set to 3. The
second time around, it would decrement reps by 65535 (-1 is 65535 in twos
complement) effectively making the number �65532 (4 in twos
complement) which is outside the range of the loop.

DECREMENTING THE COUNTER INSTEAD

OF INCREMENTING IT.

1

All 2

All 2

All 2

NOTE: Change the first line as noted
above and replace line 3 with
DEBUG #Reps, CR

1

I2CIN – BASIC Stamp Command Reference

Page 222 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

S P

S
T
A
R
T

SlaveID A
C
K

Address A
C
K

Data A
C
K

S
T
O
P

B
U
S

F
R
E
E

a6 a5 a4 a3 a2 a1 a0 rw a6 a5 a4 a3 a2 a1 a0a7 d6 d5 d4 d3 d2 d1 d0d7

NOTES:
S = Start Condition
P = Stop Condition
a = id or address bit
d = data bit (transmitted by the BASIC Stamp or the I C device)
ACK = Acknowledge signal. (Most acknowledge signals are generated by the I C device)

2

2

Figure 5.10: I2C Transmission
Format.

Since the I2CIN command is intended for input only, it actually overrides
the "R/W" bit (bit 0) in the SlaveID argument. This is done so that it can
use the I2C protocol’s "Combined Format" for receiving data. Put simply,
this means a command such as: I2CIN 0, $A1, 10, [Result] actually
transmits $A0, then 10, then $A1 and then it reads the data back from the
device. The $A0 means "write", the 10 is the address to write to, and
finally, the $A1 indicates a change of direction; to "read" the location,
instead. Even though the I2CIN command really doesn’t care what the
value of the SlaveID’s LSB is, it is suggested that you still set it
appropriately for clarity.

Also note that the I2CIN command does not support multiple I 2C masters
and the BASIC Stamp cannot operate as an I2C slave device.

Demo Program (I2C.bsp)

' I2C.bsp
' This program demonstrates writing and reading every location in a 24LC16B
' EEPROM using the BS2p/BS2pe's I2C commands. Connect the BS2p, BS2pe, or
' BS2px to the 24LC16B DIP EEPROM as shown in the diagram in the I2CIN or
' I2COUT command description.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "Program requires BS2p, BS2pe, or BS2px."
#ENDIF

SDA PIN 0 ' I2C SDA pin
SCL PIN SDA + 1

SPECIAL NOTE ABOUT I2CIN

INPLIMENTATION.

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

LCDIN – BASIC Stamp Command Reference

Page 260 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to
1 – 4 digits

-, 0 through 9,
A through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to
1 – 4 digits

$, 0 through 9,
A through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through
9, A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited
to 1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number
must be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

Table 5.48: LCDIN Conversion
Formatters

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data see Appendix C.

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 271

LOOKDOWN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LOOKDOWN Target, (Value0, Value1, ...ValueN), Variable
LOOKDOWN Target, { ComparisonOp } [Value0, Value1, ...ValueN], Variable

Function
Compare Target value to a list of values and store the index number of the
first value that matches into Variable. If no value in the list matches,
Variable is left unaffected. On all BS2 models, the optional ComparisonOp is
used as criteria for the match; the default criteria is "equal to."

� Target is a variable/constant/expression (0 � 65535) to be compared
to the values in the list.

� ComparisonOp is an optional comparison operator (as described in
Table 5.53) to be used as the criteria when comparing values. When
no ComparisonOp is specified, equal to (=) is assumed. This
argument is not available on the BS1.

� Values are variables/constants/expressions (0 � 65535) to be
compared to Target.

� Variable is a variable (usually a byte) that will be set to the index (0 �
255) of the matching value in the Values list. If no matching value is
found, Variable is left unaffected.

Quick Facts
Table 5.52: LOOKDOWN Quick
Facts.

 BS1 and all BS2 Models
Limit of Value

Entries
256

Starting Index
Number

0

If value list
contains no

match…
Variable is left unaffected

Related
Command

LOOKUP

Explanation
LOOKDOWN works like the index in a book. In an index, you search for a
topic and get the page number. LOOKDOWN searches for a target value
in a list, and stores the index number of the first match in a variable. For
example:

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

All 2

OWOUT – BASIC Stamp Command Reference

Page 304 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

This code will transmit a "reset" pulse to a 1-Wire device (connected to I/O
pin 0) and then will detect the device’s "presence" pulse and then transmit
one byte (the value $4E).

The Mode argument is used to control placement of reset pulses (and
detection of presence pulses) and to designate byte vs. bit input and
normal vs. high speed. Figure 5.23 shows the meaning of each of the 4
bits of Mode. Table 5.69 shows just some of the 16 possible values and
their effect.

Low/Hi Byte/Bit BERes

0

FERes

123

Front-End Reset
0=no reset
1=generate reset before data

Back-End Reset
0=no reset
1=generate reset after data

Low/High Speed
0=low
1=high

Byte/Bit Transfer
0=byte
1=bit

Figure 5.23: MODE Format.

Mode Effect

0 No Reset, Byte mode, Low speed
1 Reset before data, Byte mode, Low speed
2 Reset after data, Byte mode, Low speed
3 Reset before and after data, Byte mode, Low speed
4 No Reset, Bit mode, Low speed
5 Reset before data, Bit mode, Low speed
8 No Reset, Byte mode, High speed
9 Reset before data, Byte mode, High speed

Table 5.69: OWOUT Mode Values.

NOTE: The BS2pe is not capable
of high-speed transfers.

The proper value for Mode depends on the 1-Wire device and the portion
of the communication you’re working on . Please consult the data sheet for
the device in question to determine the correct value for Mode. In many
cases, however, when using the OWOUT command, Mode should be set
for a Front-End Reset (to initialize the transaction). This may vary due to
device and application requirements, however.

When using the Bit (rather than Byte) mode of data transfer, all variables
in the OutputData argument will only transmit one bit. For example, the
following code could be used to send two bits using this mode:

POT – BASIC Stamp Command Reference

Page 342 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

RUN – BASIC Stamp Command Reference

Page 384 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

In the BASIC Stamp, the variable RAM is implicitly considered an array.
What this line is doing, then, is moving the value in each RAM address
(B0(1), B0(2), B0(3), ...) to the SPRAM address that corresponds with its
byte index. The process is simply reversed to retrieve the RAM variable
space.

Any ProgramSlot specified above 7 will wrap around and result in running
one of the 8 programs (RUN 8 will run program 0, RUN 9 will run
program 1, etc).

Review the Advanced Compilation Tec hniques section beginning on page
68 for more information on do wnloading multiple programs.

Demo Program (RUN1.bsx)

' RUN1.bsx
' This example demonstrates the use of the RUN command. First, the SPRAM
' location that holds the current slot is read using the GET command to
' display the currently running program number. Then a set of values
' (based on the program number) are displayed on the screen. Afterwards,
' program number 1 is run. This program is a BS2sx project consisting of
' RUN1.BSX and RUN2.BSX, but will run on all multi-slot BASIC Stamp models.

' {$STAMP BS2sx, RUN2.BSX}
' {$PBASIC 2.5}

#SELECT $STAMP ' set SPRAM of slot number
 #CASE BS2
 #ERROR "Multi-slot BASIC Stamp required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

slotNum VAR Nib ' current slot
idx VAR Nib ' loop counter
value VAR Byte ' value from EEPROM

EEtable DATA 100, 40, 80, 32, 90
 DATA 200, 65, 23, 77, 91

Setup:
 GET Slot, slotNum ' read current slot
 DEBUG "Program #", DEC slotNum, CR ' display

Main:

NOTE: This example program was
written for the BS2sx but can be used
with the BS2e, BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 397

Table 5.96: Baudmode calculation
for all BS2 models. Add the
results of steps 1, 2 and 3 to
determine the proper value for the
Baudmode argument.

Step 1: Determine the
bit period

(bits 0 – 11).

BS2, BS2e and BS2pe: = INT(1,000,000 / baud rate) – 20
BS2sx and BS2p: = INT(2,500,000 / baud rate) – 20
BS2px: = INT(4,000,000 / baud rate) – 20
Note: INT means 'convert to integer;' drop the numbers to the right of the decimal
point.

Step 2: Set data bits
and parity (bit 13).

8-bit/no-parity = 0
7-bit/even-parity = 8192

Step 3: Select
polarity (bit 14).

True (noninverted) = 0
Inverted = 16384

Table 5.97: BS2, BS2e, and
BS2pe common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
300 19697 3313 27889 11505
600 18030 1646 26222 9838

1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800* 16572 188 24764 8380
9600* 16468 84 24660 8276

*The BS2, BS2e and BS2pe may have trouble synchronizing with the incoming serial stream
at this rate and higher due to the lack of a hardware input buffer. Use only simple variables
and no formatters to try to solve this problem.

Table 5.98: BS2sx and BS2p
common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800* 16884 500 25076 8692
9600* 16624 240 24816 8432

*The BS2sx and BS2p may have trouble synchronizing with the incoming serial stream at this
rate and higher due to the lack of a hardware input buffer. Use only simple variables and no
formatters to try to solve this problem.

Table 5.99: BS2px common baud
rates and corresponding
Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 19697 3313 27889 11505
2400 18030 1646 26222 9838
4800 17197 813 25389 9005
9600 16780 396 24792 8588

If you�re communicating with existing software or hardware, its speed(s)
and mode(s) will determine your choice of baud rate and mode. In
general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity
(8N) for byte-oriented data. Note: the most common mode is
8-bit/no-parity, even when the data tr ansmitted is just text. Most devices

CHOOSING THE PROPER BAUD MODE.

5: BASIC Stamp Command Reference � NAP

BASIC Stamp Syntax and Reference Manual 2.2 � www.parallax.com � Page 287

Figure 5.18: Example LED Circuit.

Deµo Prograµ (NAP.bs2)

’ NAP.bs2
’ The program below lights an LED by placing a low on pin 0. This completes
’ the circuit from +5V, through the LED and resistor, to ground. During the
’ NAP interval, the LED stays lit, but blinks off for a fraction of a sec.
’ This blink is caused by the NAP wakeup mechanism during wakeup, all pins
’ briefly slip into input mode, effectively disconnecting them from loads.

’ {$STAMP BS2}

Setup:
 LOW 0 ’ turn LED on

Snooze:
 NAP 4 ’ nap for 288 ms
 GOTO Snooze
 END

1 All 2

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

5: BASIC Stamp Command Reference � OWIN

BASIC Stamp Syntax and Reference Manual 2.2 � www.parallax.com � Page 299

The 1-Wire protocol has a well-defined standard for transaction sequences.
Every transaction sequence consists of four parts: 1) Initialization, 2) ROM
Function Command, 3) Memory Function Command, and 4)
Transaction/Data. Additionally, the ROM Function Command and
Memory Function Command are always 8 bits wide (1 byte in size) and is
sent least-significant-bit (LSB) first.

The Initialization part consists of a reset pulse (generated by the master)
and will be followed by a presence pulse (generated by all slave devices).
Figure 5.20 details the reset pulse generated by the BASIC Stamp and a
typical presence pulse generated by a 1-wire slave, in response.

Figure 5.20: OWIN Reset and
Presence Pulse.

BASIC Stamp�s
Reset Pulse
Apx. 564 sµ

Device�s
Presence

 Pulse
60 - 240 sµ

Resting State
15 - 60 sµ

driven by BASIC Stamp
driven by 1-wire device

+5 (vdd)

0 (vss)

This reset pulse is controlled by the lowest two bits of the Mode argument
in the OWIN command. It can be made to appear before the ROM
Function Command (ex: Mode = 1), after the Transaction/Data portion (ex:
Mode = 2), before and after the entire transaction (ex: Mode = 3) or not at all
(ex: Mode = 0). See the section on Mode, above, for more information.

Following the Initialization part is the ROM Function Command. The
ROM Function Command is used to address the desired 1-Wire device.
Table 5.67 shows common ROM Function Commands. If only a single
1-Wire device is connected, the Skip ROM command may be used to
address it. If more than one 1-Wire device is attached, the BASIC Stamp
will ultimately have to address them individually using the Match ROM
command.

THE 1-WIRE PROTOCOL FORMAT.

5: BASIC Stamp Command Reference � OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 � www.parallax.com � Page 309

Deµo Prograµ (OΩIN_OΩOUT.bsπ)

’ OWIN_OWOUT.bsp
’ This program demonstrates interfacing to a Dallas Semiconductor DS1822
’ 1-Wire Digital Thermometer chip using the BS2p’s 1-Wire commands. Connect
’ the BS2p, BS2pe or BS2px to the DS1822 as shown in the diagram in the
’ OWIN or OWOUT command description. This program uses a simplified
’ approach that ignores the fractional portion of the temperature.

’ {$STAMP BS2p}
’ {$PBASIC 2.5}

DQ PIN 0 ’ 1-Wire buss pin

RdROM CON $33 ’ read serial number
MatchROM CON $55 ’ match SN -- for multiple devices
SkipROM CON $CC ’ ignore SN -- use for one device
CvrtTmp CON $44 ’ start temperature conversion
RdSP CON $BE ’ read DS1822 scratch pad

tempIn VAR Word ’ raw temperature
sign VAR tempIn.BIT11 ’ 1 = negative temperature
tLo VAR tempIn.BYTE0
tHi VAR tempIn.BYTE1
tSign VAR Bit ’ saved sign bit
tempC VAR Word ’ final Celsius temp
tempF VAR Word ’ final Fahrenheit temp

Main:
 DO
 GOSUB Get_Temperature ’ read temperature from DS1822
 DEBUG HOME, ’ display
 "DS1822", CR,
 "------", CR,
 SDEC tempC, " C ", CR,
 SDEC tempF, " F "
 PAUSE 1000
 LOOP
 END

Get_Temperature:
 OWOUT DQ, 1, [SkipROM, CvrtTmp] ’ send convert temperatrue command
 DO ’ wait on conversion
 PAUSE 25 ’ small loop pad
 OWIN DQ, 4, [tempIn] ’ check status (bit transfer)
 LOOP UNTIL (tempIn) ’ 1 when complete
 OWOUT DQ, 1, [SkipROM, RdSP] ’ read DS1822 scratch pad
 OWIN DQ, 2, [tLo, tHi] ’ get raw temp data
 tSign = sign ’ save sign bit
 tempC = tempIn >> 4 ’ round to whole degrees
 tempC.BYTE1 = $FF * tSign ’ correct twos complement bits

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

PULSIN � BASIC Stamp Command Reference

Page 344 � BASIC Stamp Syntax and Reference Manual 2.2 � www.parallax.com

(greater than the Maximum Pulse Wi dth shown in Table 5.83) PULSIN
"times out" and store 0 in Variable. This operation keeps your program
from locking-up should the desired pulse never occur.

Regardless of the size of Variable, PULSIN internally uses a 16-bit timer.
Unless the pulse widths are known to be short enough to fit in an 8-bit
result, it is recommended to use a word-sized variable. Not doing so may
result in strange and misleading results as the BASIC Stamp will only
store the lower 8-bits into a byte variable.

Figure 5.28: R/C Pulse Generator.

Deµo Prograµ (PULSIN.bs1)

’ PULSIN.bs1
’ This program uses PULSIN to measure a pulse generated by discharging a
’ 0.1 uF capacitor through a 1k resistor. Pressing the switch generates
’ the pulse, which should ideally be approximately 120 us (12 PULSIN units
’ of 10 us) long. Variations in component values may produce results that
’ are up to 10 units off from this value. For more information on
’ calculating resistor-capacitor timing, see the RCTIME command.

’ {$STAMP BS1}
’ {$PBASIC 1.0}

SYMBOL Pulse = 7 ’ pulse input pin

SYMBOL time = W1 ’ pulse width (10 uS units)

HOW THE RESULT IS REPORTED.

1

RETURN � BASIC Stamp Command Reference

Page 376 � BASIC Stamp Syntax and Reference Manual 2.2 � www.parallax.com

it would see the RETURN again (although it didn’t GOSUB to that routine
this time) and because there wasn’t a previous place to return to, the
BASIC Stamp will start the entire program over again. This would cause
an endless loop. The important thing to remember here is to always make
sure your program doesn’t allow itself to "fall into" a subroutine.

Deµo Prograµ (RETURN.bs2)

’ RETURN.BS2
’ This program demonstrates a potential bug caused by allowing a program to
’ "fall into" a subroutine. The program was intended to indicate that it
’ is "Starting...", then "Executing Subroutine,", then "Returned..." from
’ the subroutine and stop. Since we left out the END command (indicated in
’ the comments), the program then falls into the subroutine, displays
’ "Executing..." again and then RETURNs to the start of the program and
’ runs continuously in an endless loop.

’ {$STAMP BS2}

Reset:
 DEBUG "Starting Program", CR ’ show start-up

Main:
 PAUSE 1000
 GOSUB Demo_Sub ’ call the subroutine
 PAUSE 1000
 DEBUG "Returned from Subroutine", CR ’ show that we’re back
 PAUSE 1000
 ’ <-- Forgot to put END here

Demo_Sub:
 DEBUG " Executing Subroutine", CR ’ show subroutine activity
 RETURN

1 All 2

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

