
Parallax Inc. - BS2PX24 Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microcontroller,
Microprocessor, FPGA Modules

Embedded - Microcontroller, Microprocessor, and FPGA
Modules are fundamental components in modern
electronic systems, offering a wide range of functionalities
and capabilities. Microcontrollers are compact integrated
circuits designed to execute specific control tasks within
an embedded system. They typically include a processor,
memory, and input/output peripherals on a single chip.
Microprocessors, on the other hand, are more powerful
processing units used in complex computing tasks, often
requiring external memory and peripherals. FPGAs (Field
Programmable Gate Arrays) are highly flexible devices that
can be configured by the user to perform specific logic
functions, making them invaluable in applications requiring
customization and adaptability.

Applications of Embedded - Microcontroller,
Microprocessor, FPGA Modules

These modules are integral to numerous applications
across various industries. Microcontrollers are commonly
used in consumer electronics, automotive systems,
industrial automation, and home appliances, providing
efficient control and processing capabilities.
Microprocessors power more complex systems such as
personal computers, servers, and advanced
communication devices. FPGAs find their applications in
fields requiring high-performance computation and real-
time processing, including telecommunications, medical
devices, aerospace, and defense systems. Their versatility
allows for rapid prototyping and the implementation of
custom hardware solutions, making them ideal for
innovative and cutting-edge applications.

Common Subcategories of Embedded -
Microcontroller, Microprocessor, FPGA Modules

Embedded modules can be categorized based on their
functionalities and intended applications. Microcontrollers
are often classified by their bit-width (8-bit, 16-bit, 32-bit)
and their integrated features, such as ADCs (Analog-to-
Digital Converters) and communication interfaces.
Microprocessors are categorized by their architecture (x86,
ARM, RISC-V) and performance metrics like clock speed
and core count. FPGAs are classified based on their logic
element count, speed grade, and the presence of
integrated features like DSP (Digital Signal Processing)
blocks and high-speed transceivers. These subcategories
help designers choose the right module for their specific
application requirements.

Types of Embedded - Microcontroller,
Microprocessor, FPGA Modules

There are various types of modules available, each tailored
to different application needs. Basic microcontrollers, such
as the 8-bit AVR series from Microchip, are ideal for simple
control tasks. More advanced 32-bit microcontrollers, like
the STM32 series from STMicroelectronics, offer higher
performance and greater peripheral integration. In the
realm of microprocessors, the ARM Cortex-A series is
popular for its balance of power efficiency and

Details

Product Status Active

Module/Board Type MCU Core

Core Processor SX48AC

Co-Processor -

Speed 32MHz

Flash Size 16KB EEPROM

RAM Size 38B

Connector Type -

Size / Dimension 1.2" x 0.6" (30mm x 15mm)

Operating Temperature 0°C ~ 70°C

Purchase URL https://www.e-xfl.com/product-detail/parallax/bs2px24

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/bs2px24-4509833
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules
https://www.e-xfl.com/product/filter/embedded-microcontroller-microprocessor-fpga-modules

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 23

Basic Stamp 2px

Figure 1.12: BASIC Stamp 2px
(Rev. A) (Stock# BS2px-IC)

The BASIC Stamp 2px is available in the above 24-pin DIP physical
package.

Table 1.7: BASIC Stamp 2px Pin
Descriptions.

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25 pin 3)
for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin 2)
for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25 pin
20) for programming.

4 VSS
System ground: (same as pin 23), connects to PC serial port GND pin
(DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin groups
P0 – P7 or P8 – 15 should not exceed 100 mA (source or sink) if
using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the VIN
pin, then this pin will output 5 volts. If no voltage is applied to the VIN
pin, then a regulated voltage between 4.5V and 5.5V should be
applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can be
driven low to force a reset. This pin is internally pulled high and may
be left disconnected if not needed. Do not drive high.

23 VSS
System ground: (same as pin 4) connects to power supply’s ground
(GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left unconnected
if 5 volts is applied to the VDD (+5V) pin.

Using the BASIC Stamp Editor

Page 36 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

editor will have its own tab at the top of the page labeled with the name of
the file, as seen in Figure 3.2. The full file path of the currently displayed
source code appears in the title bar. Source code that has never been saved
to disk will default to “Untitled#”; where # is an automatically generated
number. A user can switch between source code files by simply pointing
and clicking on a file’s tab or by pressing Ctrl+Tab or Ctrl+Shift+Tab while
the main edit pane is active.

Figure 3.2: Example Editor Tabs.
Shown with 6 separate files open;
Title Bar shows current code’s file
path.

The status of the active source code is indicated in the status bar below the
main edit pane and integrated explorer panel. The status bar contains
information such as cursor position, file save status, download status and
syntax error/download messages. The example in Figure 3.3 indicates
that the source code tokenized successfully.

Figure 3.3: Status Bar beneath the
Main Edit Pane.

Each editor pane can be individually split into two views of the same
source code. This can be done via the Split button on the toolbar, pressing
Ctrl-L, or clicking and dragging the top or bottom border of the editor
pane with the mouse.

Once split, the top and bottom edit controls allow viewing of different
areas of the same source code; this can be handy when needing to keep
variable declarations or a particular routine in view while modifying a
related section of code elsewhere. Note that the Split button and Ctrl+L
shortcut act like a toggle function, splitting or un-splitting the edit pane.

SPLIT WINDOW VIEW.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 51

The EEPROM map is shown in two scales. The main view is the detailed
EEPROM map, which displays the data in hexadecimal format in each
location. The condensed EEPROM map is the vertical region on the left
that shows a small-scale view of the entire EEPROM; the red square over it
corresponds to the scroll bar handle in the detailed EEPROM map and
indicates the portion of the EEPROM that is currently visible in the
detailed EEPROM map.

Checking the Display ASCII checkbox switches the detailed EEPROM
display from hexadecimal to ASCII. In this program, the textual data can
be read right off the EEPROM map when using this option.

Two important points to remember about this map are: 1) it only indicates
how your program will be downloaded to the BASIC Stamp module; it
does not "read" the BASIC Stamp memory, and 2) for all BS2 models, fixed
variables like B3 and W1 and any aliases do not show up on the memory
map as memory used. The editor ignores fixed variables when it arranges
automatically allocated variables in memory. Remember, fixed and
allocated variables can overlap.

The Debug Terminal window provides a convienent display for data
received from a BASIC Stamp during run-time, and also allows for the
transmission of characters from the PC keyboard to the BASIC Stamp. The
Debug Terminal is automatically opened and configured when a PBASIC
program, containing a DEBUG command, is downloaded. You can
manually open a Debug Terminal one of three ways: select
Run → Debug → New, press Ctrl+D on the keyboard, or click on the
Debug Terminal toolbar button. Up to four (4) Debug Terminals can be
open at once (on four different ports) and all can be left open while editing
and downloading source code.

Figure 3.14 below shows the demo program DEBUG_DEBUGIN.bs2 in the
edit pane, and the Debug Terminal that opens when this program is run.

THE DEBUG TERMINAL.

THE EEPROM MAP.

Using the BASIC Stamp Editor

Page 80 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp Architecture – Defining Arrays

Page 88 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

myBytes VAR Byte(10) ' Define 10-byte array
idx VAR Nib ' Define 4-bit var

FOR idx = 0 TO 9 ' Repeat with idx = 0, 1, 2...9
 myBytes(idx) = idx * 13 ' Write idx * 13 to each cell
NEXT

FOR idx = 0 TO 9 ' Repeat with idx = 0, 1, 2...9
 DEBUG ? myBytes(idx) ' Show contents of each cell
NEXT
STOP

If you run this program, DEBUG will display each of the 10 values stored
in the elements of the array: myBytes(0) = 0*13 = 0, myBytes(1) = 1*13 = 13,
myBytes(2) = 2*13 = 26 ... myBytes(9) = 9*13 = 117.

A word of caution about arrays: If you’re familiar with other BASICs and
have used their arrays, you have probably run into the “subscript out of
range” error. Subscript is another term for the index value. It is
out-of-range when it exceeds the maximum value for the size of the array.
For instance, in the example above, myBytes is a 10-cell array. Allowable
index numbers are 0 through 9. If your program exceeds this range,
PBASIC will not respond with an error message. Instead, it will access the
next RAM location past the end of the array. If you are not careful about
this, it can cause all sorts of bugs.

If accessing an out-of-range location is bad, why does PBASIC allow it?
Unlike a desktop computer, the BASIC Stamp doesn’t always have a
display device connected to it for displaying error messages. So it just
continues the best way it knows how. It’s up to the programmer (you!) to
prevent bugs. Clever programmers, can take advantage of this feature,
however, to perform tricky effects.

Another unique property of PBASIC arrays is this: You can refer to the 0th
cell of the array by using just the array’s name without an index value. For
example:

myBytes VAR Byte(10) ' Define 10-byte array

myBytes(0) = 17 ' Store 17 to 0th cell
DEBUG ? myBytes(0) ' Display contents of 0th cell
DEBUG ? myBytes ' Also displays 0th cell

All 2

5: BASIC Stamp Command Reference – AUXIO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 129

AUXIO BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

AUXIO

Function
Switch from control of main I/O pins to auxiliary I/O pins (on the BS2p40
only).

Quick Facts

Table 5.2: AUXIO Quick Facts.

 BS2p, BS2pe, and BS2px

I/O pin IDs 0 – 15 (just like main I/O, but after AUXIO command, all references affect
physical pins 21 – 36).

Special Notes The BS2p, BS2pe, and BS2px 24-pin modules accept this command,
however, only the BS2p40 gives access to the auxiliary I/O pins.

Related
Commands

MAINIO and IOTERM

Explanation
The BS2p, BS2pe, and BS2px are available as 24-pin modules that are pin
compatible with the BS2, BS2e and BS2sx. Also available is a 40-pin
module called the BS2p40, with an additional 16 I/O pins (for a total of
32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in the same
manner as the main I/O pins (by using the IDs 0 to 15) but only after
issuing an AUXIO or IOTERM command. The AUXIO command causes
the BASIC Stamp to affect the auxiliary I/O pins instead of the main I/O
pins in all further code until the MAINIO or IOTERM command is
reached, or the BASIC Stamp is reset or power-cycled. AUXIO is also used
when setting the DIRS register for auxiliary I/O pins on the BS2p40.

When the BASIC Stamp module is reset, all RAM variables including DIRS
and OUTS are cleared to zero. This affects both main and auxiliary I/O
pins. On the BS2p24, BS2pe, and BS2px, the auxiliary I/O pins from the
interpreter chip are not connected to physical I/O pins on the BASIC
Stamp module. While not connected to anything, these pins do have
internal pull-up resistors activated, effectively connecting them to Vdd.
After reset, reading the auxiliary I/O from a BS2p24, BS2pe24, or BS2px24
will return all 1s.

CONFIGPIN – BASIC Stamp Command Reference

Page 146 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

For the CONFIGPIN command’s SCHMITT mode, a high bit (1) in the
PinMask argument enables the Schmitt Trigger on the corresponding I/O
pin and a low bit (0) disables the Schmitt Trigger. The following example
sets Schmitt Triggers on I/O pins 7, 6, 5, and 4, and sets all other I/O pins
to normal mode.

CONFIGPIN SCHMITT, %0000000011110000

Schmitt Trigger mode can be activated for all pins, regardless of pin
direction, but really matters only when the associated pin is set to input
mode.

Demo Program (CONFIGPIN.bpx)

' CONFIGPIN.BPX
' This example demonstrates the use of the CONFIGPIN command.
' All I/O pins are set to inputs with various combinations of
' Pull-Up Resistor, Logic Threshold and Schmitt-Trigger properties.
' While running, this program will constantly display the state of all
' input pins along with an indication of the configuration for each group
' of pins. Try connecting different input signals to the I/O pins (such as
' buttons, a function generator with a slowing sweeping signal (0 to 5
' VDC)) or simply running your fingers across the I/O pins and note how
' they react based upon their configured property.

' {$STAMP BS2px}
' {$PBASIC 2.5}

#IF $STAMP <> BS2PX #THEN
 #ERROR "This program requires a BS2px."
#ENDIF

Setup:
 CONFIGPIN DIRECTION, %0000000000000000 'Set all I/O pins to inputs
 CONFIGPIN PULLUP, %1111111111110000 'Enable pull-ups on pins 4 - 15
 CONFIGPIN THRESHOLD, %0000111100000000 'Set P8-P11 to CMOS, others TTL
 CONFIGPIN SCHMITT, %1111000000000000 'Enable Schmitt-Triggers P12-P15

 DEBUG CLS
 DEBUG " BS2px INPUT PIN CONFIGURATION TEST", CR,
 "===", CR,
 " P15-P12: Pull-Up Resistors, TTL & Schmitt-Triggers", CR,
 " /", CR,
 " / P11-P8: Pull-Up Resistors & CMOS", CR,
 " / /", CR,
 " | / P7-P4: Pull-Up Resistors & TTL", CR,
 " | | /", CR,
 " | | | P3-P0: Normal", CR,
 " | | | /", CR,

NOTE: This example program can be
used only with the BS2px.

5: BASIC Stamp Command Reference – DO...LOOP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 175

DO…LOOP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DO { WHILE | UNTIL Condition(s) }
 Statement(s)
LOOP { WHILE | UNTIL Condition(s) }

Function
Create a repeating loop that executes the Statement(s), one or more
program lines that form a code block, between DO and LOOP, optionally
testing Condition(s) before or after the Statement(s).

• Condition is an optional variable/constant/expression (0 - 65535)
which determines whether the loop will run or terminate. Condition
must follow WHILE or UNTIL.

• Statement is any valid PBASIC instruction.

Quick Facts
Table 5.18: DO...LOOP Quick
Facts.

 All BS2 Models
Maximum Nested Loops 16

WHILE Condition Evaluation Run loop if Condition evaluates as true
UNTIL Condition Evaluation Terminate loop if Condition evaluates as true

Related Commands FOR...NEXT and EXIT

Explanation
DO...LOOP loops let a program execute a series of instructions indefinitely
or until a specified condition terminates the loop. The simplest form is
shown here:

' {$PBASIC 2.5}

DO
 DEBUG "Error...", CR
 PAUSE 2000
LOOP

In this example the error message will be printed on the Debug screen
every two seconds until the BASIC Stamp is reset. Simple DO...LOOP
loops can be terminated with EXIT.

All 2
NOTE: DO...LOOP requires the
PBASIC 2.5 compiler directive.

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 237

In addition to supporting everything discussed above, PBASIC 2.5
provides enhancements to the IF…THEN command that allow for more
powerful, structured programming. In prior examples we’ve only used
the first syntax form of this command: IF Condition(s) THEN Address. That
form, while handy in some situations, can be quite limiting in others. For
example, it is common to need to perform a single instruction based on a
condition. Take a look at the following code:

' {$PBASIC 2.5}

x VAR Byte

FOR x = 1 TO 20 ' count to 20
 DEBUG CR, DEC x ' display num
 IF (x // 2) = 0 THEN DEBUG " EVEN" ' even num?
NEXT

This example prints the numbers 1 through 20 on the screen but every
even number is also marked with the text “ EVEN.” The IF…THEN
command checks to see if x is even or odd and, if it is even (i.e.: x // 2 = 0),
then it executes the statement to the right of THEN: DEBUG “ EVEN.” If it
was odd, it simply continued at the following line, NEXT.

Suppose you also wanted to mark the odd numbers. You could take
advantage of the optional ELSE clause, as in:

' {$PBASIC 2.5}

x VAR Byte

FOR x = 1 TO 20 ' count to 20
 DEBUG CR, DEC x
 IF (x // 2) = 0 THEN DEBUG " EVEN" ELSE DEBUG “ ODD”
NEXT

This example prints the numbers 1 through 20 with “ EVEN” or “ ODD”
to the right of each number. For each number (each time through the
loop) IF…THEN asks the question, “Is the number even?” and if it is it
executes DEBUG “ EVEN” (the instruction after THEN) or, if it is not even
it executes DEBUG “ ODD” (the instruction after ELSE). It’s important to
note that this form of IF…THEN always executes code as a result of
Condition(s); it either does “this” (THEN) or “that” (ELSE).

IF…THEN WITH A SINGLE STATEMENT

5: BASIC Stamp Command Reference – INPUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 243

INPUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

INPUT Pin

Function
Make the specified pin an input.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set to input mode.

Quick Facts
Table 5.41: INPUT Quick Facts.

 BS1 All BS2 Models
Input Pin
Variables

PINS; PIN0 through PIN7 INS; IN0 through IN15

Related
Commands

OUTPUT and REVERSE

Explanation
There are several ways to make a pin an input. When a program begins,
all of the BASIC Stamp's pins are inputs. Commands that rely on input
pins, like PULSIN and SERIN, automatically change the specified pin to
input. Writing 0s to particular bits of the variable DIRS makes the
corresponding pins inputs. And then there’s the INPUT command.

When a pin is an input, your program can check its state by reading the
corresponding INS variable (PINS on the BS1). For example:

INPUT 4

Hold:
 IF IN4 = 0 THEN Hold ' stay here until P4 = 1

The code above will read the state of P4 as set by external circuitry. If
nothing is connected to P4, it will alternate between states (1 or 0)
apparently at random.

What happens if your program writes to the OUTS bit (PINS bit on the
BS1) of a pin that is set up as an input? The value is stored in OUTS (PINS
on the BS1), but has no effect on the outside world. If the pin is changed to
output, the last value written to the corresponding OUTS bit (or PINS bit

1 All 2

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the PIN argument on the BS1 is 0 – 7.

1

All 2

5: BASIC Stamp Command Reference – LCDIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 259

value VAR Byte(13)
LCDIN 0, 128, [value] 'receive the ASCII value for "V"
LCDIN 0, 128, [DEC value] 'receive the number 3.
LCDIN 0, 128, [HEX value] 'receive the number $3A.
LCDIN 0, 128, [BIN value] 'receive the number %101.
LCDIN 0, 128, [STR value\13] 'receive the string "Value: 3A:101"

Table 5.47 and Table 5.48 list all the special formatters and conversion
formatters available to the LCDIN command. See the SERIN command for
additional information and examples of their use.

Some possible uses of the LCDIN command are 1) in combination with the
LCDOUT command to store and read data from the unused DDRAM or
CGRAM locations (as extra variable space), 2) to verify that the data from
a previous LCDOUT command was received and processed properly by
the LCD, and 3) to read character data from CGRAM for the purposes of
modifying it and storing it as a custom character.

Table 5.47: LCDIN Special
Formatters.

Special Formatter Action

SPSTR L
Input a character string of length L bytes (up to 126) into Scratch
Pad RAM, starting at location 0. Use GET to retrieve the
characters.

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified, an
end character E causes the string input to end before reaching
length L. Remaining bytes are filled with 0s (zeros).

WAIT (Value)

Wait for a sequence of bytes specified by value. Value can be
numbers separated by commas or quoted text (ex: 65, 66, 67 or
“ABC”). The WAIT formatter is limited to a maximum of six
characters.

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array
variable, optionally limited to L characters. If the optional L
argument is left off, the end of the array-string must be marked
by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

5: BASIC Stamp Command Reference – LCDIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 261

Demo Program (LCDIN.bsp)

' LCDIN.bsp
' This program demonstrates initialization, printing and reading
' from a 2 x 16 character LCD display.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "Program requires BS2p, BS2pe or BS2px."
#ENDIF

Lcd PIN 0

LcdCls CON $01 ' clear the LCD
LcdHome CON $02 ' move cursor home
LcdCrsrL CON $10 ' move cursor left
LcdCrsrR CON $14 ' move cursor right
LcdDispL CON $18 ' shift chars left
LcdDispR CON $1C ' shift chars right
LcdDDRam CON $80 ' Display Data RAM
LcdCGRam CON $40 ' Character Generator RAM
LcdLine1 CON $80 ' DDRAM address of line 1
LcdLine2 CON $C0 ' DDRAM address of line 2

char VAR Byte(16)

Init_LCD:
 PAUSE 1000 ' allow LCD to self-initialize first
 LCDCMD Lcd, %00110000 ' send wakeup sequence to LCD
 PAUSE 5 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00110000
 PAUSE 0 ' pause required by LCD specs
 LCDCMD Lcd, %00100000 ' set data bus to 4-bit mode
 LCDCMD Lcd, %00101000 ' set to 2-line mode with 5x8 font
 LCDCMD Lcd, %00001100 ' display on without cursor
 LCDCMD Lcd, %00000110 ' auto-increment cursor

Main:
 DO
 LCDOUT Lcd, LcdCls, ["Hello!"]
 GOSUB Read_LCD_Screen
 PAUSE 3000
 LCDOUT Lcd, LcdCls, ["I'm a 2x16 LCD!"]
 GOSUB Read_LCD_Screen
 PAUSE 3000
 LOOP

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 295

OWIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OWIN Pin, Mode, [InputData]

Function
Receive data from a device using the 1-Wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-Wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWIN command and will be set to input
mode by the end of the OWIN command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• InputData is a list of variables and modifiers that tells OWIN what to
do with incoming data. OWIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
Table 5.63: OWIN Quick Facts.

 BS2p, BS2pe, and BS2px
Receive Rate Approximately 20 kbits/sec (low speed, not including reset pulse)

Special Notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resistor.
The BS2pe is not capable of high-speed transfers.

Related Commands OWOUT

Explanation
The 1-Wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-Wire devices. The OWIN command
allows the BASIC Stamp to receive data from a 1-wire device.

The following is an example of the OWIN command:

result VAR Byte

OWIN 0, 1, [result]

A SIMPLE OWIN EXAMPLE.

5: BASIC Stamp Command Reference – POLLMODE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 323

Table 5.77: Special Purpose
Scratch Pad RAM Locations.

Location BS2p and BS2pe

127
Bits 0-3, Active program slot #. Bits 4-7, program slot for READ and WRITE
operations.

128
Polled input trigger status of Main I/O pins 0-7
(0 = not triggered, 1 = triggered).

129
Polled input trigger status of Main I/O pins 8-15
(0 = not triggered, 1 = triggered).

130
Polled input trigger status of Auxiliary I/O pins
0-7 (0 = not triggered, 1 = triggered).

131
Polled input trigger status of Auxiliary I/O pins
8-15 (0 = not triggered, 1 = triggered).

132 Bits 0-3: Polled-interrupt mode, set by POLLMODE
133 Bits 0-2: Polled-interrupt “run” slot, set by POLLRUN.

134
Bit 0: Active I/O group; 0 = Main I/O,
1 = Auxiliary I/O.

135

Bit 0: Polled-output status (set by POLLMODE); 0 = disabled, 1= enabled.
Bit 1: Polled-input status; 0 = none defined, 1 = at least one defined.
Bit 2: Polled-run status (set by POLLMODE); 0 = disabled, 1 = enabled.
Bit 3: Polled-output latch status; 0 = real-time mode, 1 = latch mode.
Bit 4: Polled-input state; 0 = no trigger, 1 = triggered.
Bit 5: Polled-output latch state; 0 = nothing latched, 1 = signal latched.
Bit 6: Poll-wait state; 0 = No Event, 1 = Event Occurred.
 (Cleared by POLLMODE only).
Bit 7: Polling status; 0 = not active, 1 = active.

Demo Program (POLL.bsp)

' POLL.bsp
' This program demonstrates POLLIN, POLLOUT, and the use of the POLLMODE
' instruction. Connect active-low inputs to pins 0, 1, 2, and 3. Then
' connect an LED to pin 7. The program will print "." to the Debug
' window until one of the alarm buttons are pressed. This will cause
' the termination of the main loop. At this point the program will
' save the latched bits, clear them (and the polling process), then
' report the input(s) that triggered the alarm.

' {$STAMP BS2p}
' {$PBASIC 2.5}

FDoor PIN 0
BDoor PIN 1
Patio PIN 2
Rst PIN 3
AlarmLed PIN 7

alarms VAR Byte ' alarm bits
idx VAR Nib ' loop control

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

RANDOM – BASIC Stamp Command Reference

Page 360 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

SYMBOL result = W1

Setup:
 result = 11000

Main:
 RANDOM result
 DEBUG result
 GOTO Main

-- or --

result VAR Word

Setup:
 result = 11000

Main:
 RANDOM result
 DEBUG DEC ? result
 GOTO Main

Here, result is only initialized once, before the loop. Each time through the
loop, the previous value of result, generated by RANDOM, is used as the
next seed value. This generates a more desirable set of pseudorandom
numbers.

In applications requiring more apparent randomness, it's necessary to
"seed" RANDOM with a more random value every time. For instance, in
the demo program below, RANDOM is executed continuously (using the
previous resulting number as the next seed value) while the program
waits for the user to press a button. Since the user can’t control the timing
of button presses very accurately, the results approach true randomness.

Figure 5.32: RANDOM Button
Circuit.

1

All 2

SERIN - BASIC Stamp Command Reference

Page 400 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

2) Serial input: 123 (with no characters following it)
Result: The BASIC Stamp halts at the SERIN command. It
recognizes the characters “1”, “2” and “3” as the number one
hundred twenty three, but since no characters follow the “3”, it
waits continuously, since there’s no way to tell whether 123 is the
entire number or not.

3) Serial input: 123 (followed by a space character)
Result: Similar to example 2, above, except once the space
character is received, the BASIC Stamp knows the entire number
is 123, and stores this value in serData. The SERIN command then
ends, allowing the next line of code, if any, to run.

4) Serial input: 123A
Result: Same as example 3, above. The “A” character, just like the
space character, is the first non-decimal text after the number 123,
indicating to the BASIC Stamp that it has received the entire
number.

5) Serial input: ABCD123EFGH
Result: Similar to examples 3 and 4 above. The characters
“ABCD” are ignored (since they’re not decimal text), the
characters “123” are evaluated to be the number 123 and the
following character, “E”, indicates to the BASIC Stamp that it has
received the entire number.

For examples of all formatters and how they process incoming data, see
Appendix C.

Of course, as with all numbers in the BASIC Stamp, the final result is
limited to 16 bits (up to the number 65535). If a number larger than this is
received by the decimal formatter, the end result will look strange because
the result rolled-over the maximum 16-bit value.

The BS1 is limited to the decimal formatter shown above, however all the
BS2 models have many more conversion formatters available for the
SERIN command. If not using a BS1, see the “Additional Conversion
Formatters” section below for more information.

WATCH OUT FOR ROLLOVER ERRORS.

SHIFTOUT – BASIC Stamp Command Reference

Page 436 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

serial protocol is commonly called Synchronous Peripheral Interface (SPI)
and is used by controller peripherals like ADCs, DACs, clocks, memory
devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers;
trains of flip-flops that receive data bits in a bucket brigade fashion from a
single data input pin. Another bit is input each time the appropriate edge
(rising or falling, depending on the device) appears on the clock line.

The SHIFTOUT instruction first causes the clock pin to output low and the
data pin to switch to output mode. Then, SHIFTOUT sets the data pin to
the next bit state to be output and generates a clock pulse. SHIFTOUT
continues to generate clock pulses and places the next data bit on the data
pin for as many data bits as are required for transmission.

Making SHIFTOUT work with a particular device is a matter of matching
the mode and number of bits to that device’s protocol. Most
manufacturers use a timing diagram to illustrate the relationship of clock
and data. One of the most important items to look for is which bit of the
data should be transmitted first; most significant bit (MSB) or least
significant bit (LSB). Table 5.117 shows the values and symbols available
for Mode and Figure 5.43 shows SHIFTOUT’s timing.

Symbol Value Meaning
LSBFIRST 0 Data is shifted out lsb-first
MSBFIRST 1 Data is shifted out msb-first

Table 5.117: SHIFTOUT Mode
Values and Symbols.

(Msb is most-significant bit; the highest or leftmost bit of a nibble, byte, or word. Lsb is the
least-significant bit; the lowest or rightmost bit of a nibble, byte, or word.)

t h
Cloc k
(cpin)

Data
(dpin)

t l

SHIFTOUT begins,
makes Cpin output low =previous state of pin unknown

t a t a
tb

Figure 5.43: SHIFTOUT Timing
Diagram. Refer to the SHIFTOUT
Quick Facts table for timing
information on th, tl, ta and tb.

SHIFTOUT OPERATION.

STORE – BASIC Stamp Command Reference

Page 450 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (STORE0.bsp)

' STORE0.bsp
' This program demonstrates the STORE command and how it affects the READ
' and WRITE commands. This program "STORE0.BSP" is intended to be down-
' loaded into program slot 0. It is meant to work with STORE1.BSP and
' STORE2.BSP. Each program is very similar (they display the current
' Program Slot and READ/WRITE Slot numbers and the values contained in the
' first five EEPROM locations. Each program slot will have different data
' due to different DATA commands in each of the programs downloaded.

' {$STAMP BS2p, STORE1.BSP, STORE2.BSP}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "This program requires BS2p, BS2pe, or BS2px."
#ENDIF

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 1, 2, 3, 4, 5

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 1 ' point READ/WRITE to Slot 1
 GOSUB Show_Slot_Info
 PAUSE 2000
 RUN 1 ' run program in Slot 1
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

STORE – BASIC Stamp Command Reference

Page 454 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – TOGGLE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 457

Demo Program (TOGGLE.bs2)

' TOGGLE.bs2
' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command descrip-
' tion in the manual and run this program. The TOGGLE command will treat
' you to a light show. You may also run the demo without LEDs. The Debug
' window will show you the states of pins 0 through 3.

' {$STAMP BS2}
' {$PBASIC 2.5}

thePin VAR Nib ' pin 0 - 3

Setup:
 DIRA = %1111 ' make LEDs output, low

Main:
 DO
 FOR thePin = 0 TO 3 ' loop through pins
 TOGGLE thePin ' toggle current pin
 DEBUG HOME, BIN4 OUTA ' show on Debug
 PAUSE 250 ' short delay
 NEXT
 LOOP ' repeat forever
 END

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

