
Parallax Inc. - PBASIC1/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic1-p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic1-p-4416552
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2: Quick Start Guide

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 31

Figure 2.2: BS2-IC and Board of
Education

1) Insert the BASIC Stamp module
into its socket, being careful to
orient it properly.

2) Connect the 9-pin female end of
the serial cable to an available serial
port on your computer, and then
connect the male end to the Board
of Education. Note: you cannot use
a null modem cable.

3) Plug in the 6-9 V 300mA center-
positive power supply into the barrel
jack.

OR

4) Plug a 9 volt battery into the 9
VDC battery clip.

A
lk

al
in

e
Ba

tte
ry

Po
w

er
ce

ll

2

1

www.stampsinclass.com

Reset

STAMPS CLASS
in

Board of Education

Pwr

9 Vdc
Battery

6-9VDC

Sout
Sin
ATN
Vss
P0
P1
P2
P3
P4
P5
P6
P7

P11

P9
P8

Vin

P10

P15
P14
P13
P12

Vdd
Rst
Vss

Black
Red

X4 X5

15 14 13 12

1

X1

Vss
P1
P3
P5
P7
P9
P11
P13
P15
Vin

Vss
P0
P2
P4
P6
P8
P10
P12
P14
Vdd

U1

TM

0 1 2

© 2000-2003

Vdd

P15
P14
P13
P12
P11
P10
P9
P8
P7
P6
P5
P4
P3
P2
P1
P0

X2

X3
Vdd VssVin

3 4or

3) Install and run the BASIC Stamp Editor software.

a) If using the Parallax CD, go to the Software → BASIC Stamp →
Windows section to locate the latest version. Click the Install
button and follow the prompts to install and run.

b) If using the Parallax website, go to www.parallax.com →

Downloads → Basic Stamp Software and look in the Software for
Windows section for the latest version. Click the Download icon
and follow the prompts to install and run.

c) Test your PC’s connection to the BASIC Stamp by selecting Run →

Identify from the menu bar, as shown in Figure 2.3. If the BASIC
Stamp module is not found, check your power and cable
connections and retry.

BASIC Stamp Architecture – COS, DCD, ~, -

Page 106 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

result VAR Word

result = -99 ' Put -99 into result
 ' ...(2's complement format)
DEBUG SDEC ? result ' Display as a signed #
DEBUG SDEC ? ABS result ' Display as a signed #

The Cosine operator (COS) returns the two’s complement, 16-bit cosine of
an angle specified as an 8-bit “binary radian” (0 to 255) angle. COS is the
same as SIN in all respects, except that the cosine function returns the x
distance instead of the y distance. See “Sine: SIN”, below, for a code
example and more information.

The Decoder operator (DCD) is a 2n-power decoder of a four-bit value.
DCD accepts a value from 0 to 15, and returns a 16-bit number with the
bit, described by value, set to 1. For example:

result VAR Word

result = DCD 12 ' Set bit 12
DEBUG BIN16 ? result ' Display result (%0001000000000000)

The Inverse operator (~) complements (inverts) the bits of a number. Each
bit that contains a 1 is changed to 0 and each bit containing 0 is changed to
1. This process is also known as a “bitwise NOT” and “ones complement”.
For example:

result VAR Byte

result = %11110001 ' Store bits in byte result.
DEBUG BIN8 ? result ' Display in binary (%11110001)
result = ~ result ' Complement result
DEBUG BIN8 ? Result ' Display in binary (%00001110)

The Negative operator (-) negates a 16-bit number (converts to its twos
complement).

SYMBOL result = W1

result = -99 ' Put -99 into result
 ' ...(2's complement format)
result = result + 100 ' Add 100 to it
DEBUG result ' Display result (1)

-- or --

COSINE: COS

DECODER: DCD

NEGATIVE: -

All 2

All 2

1

INVERSE: ~

5: BASIC Stamp Command Reference

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 123

Introduction
This chapter provides details on all three versions of the PBASIC
Programming Language. A categorical listing of all available PBASIC
commands is followed by an alphabetized command reference with
syntax, functional descriptions, and example code for each command.

PBASIC LANGUAGE VERSIONS
There are three forms of the PBASIC language: PBASIC 1.0 (for the BS1),
PBASIC 2.0 (for all BS2 models) and PBASIC 2.5 (for all BS2 models). You
may use any version of the language that is appropriate for your BASIC
Stamp module; however, when using any BS2 model, we suggest you use
PBASIC 2.5 for any new programs you write because of the advanced
control and flexibility it allows. PBASIC 2.5 is backward compatible with
almost every existing PBASIC 2.0-based program, and code that is not
100% compatible can easily be modified to work in PBASIC 2.5.

This chapter gives details on every command for every BASIC Stamp
model. Be sure to pay attention to any notes in the margins and body text
regarding supported models and PBASIC language versions wherever
they apply.

The BASIC Stamp Editor for Windows defaults to using PBASIC 1.0 (for
the BS1) or PBASIC 2.0 (for all BS2 models). If you wish to use the default
language for your BASIC Stamp model you need not do anything special.
If you wish to use PBASIC 2.5, you must specify that fact, using the
$PBASIC directive in your source code, for example:

' {$PBASIC 2.5}

Review the Compiler Directives section of Chapter 3 for more details on
this directive. Note: you may also specify either 1.0 or 2.0 using the
$PBASIC directive if you wish to explicitly state those desired languages.

Please note that the reserved word set will vary with each version of
PBASIC, with additional reserved words for some BASIC Stamp models.
Please see the reserved words tables in Appendix B for the complete lists.
PBASIC 2.5 features many enhancements. Table 5.1 gives a brief summary
of these items, with references to more information given elsewhere.

5: BASIC Stamp Command Reference – COUNT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 149

COUNT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

COUNT Pin, Duration, Variable

Function
Count the number of cycles (0-1-0 or 1-0-1) on the specified pin during the
Duration time frame and store that number in Variable.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be set to input mode.

• Duration is a variable/constant/expression (1 – 65535) specifying the
time during which to count. The unit of time for Duration is
described in Table 5.6.

• Variable is a variable (usually a word) in which the count will be
stored.

Quick Facts
Table 5.6: COUNT Quick Facts.

NOTE: All timing values are
approximate.

 BS2, BS2e BS2sx BS2p BS2pe BS2px
Units in Duration 1 ms 400 µs 287 µs 720 µs 287 µs

Duration range 1 ms to
65.535 s

400 µs to
26.214 s

287 µs to
18.809 s

720 µs to
47.18 s

287 µs to
18.809 s

Minimum pulse
width

4.16 µs 1.66 µs 1.20 µs 3.0 µs 1.20 µs

Maximum
frequency

(square wave)
120,000 Hz 300,000 Hz 416,700 Hz 166,667 Hz 416,700 Hz

Related
Command

PULSIN

Explanation
The COUNT instruction makes the Pin an input, then for the specified
Duration of time, counts cycles on that pin and stores the total in Variable.
A cycle is a change in state from 1 to 0 to 1, or from 0 to 1 to 0.

According to Table 5.6, COUNT on the BS2 can respond to transitions
(pulse widths) as small as 4.16 microseconds (µs). A cycle consists of two
transitions (e.g., 0 to 1, then 1 to 0), so COUNT (on the BS2) can respond to
square waves with periods as short as 8.32 µs; up to 120 kilohertz (kHz) in
frequency. For non-square waves (those whose high time and low time are
unequal), the shorter of the high and low times must be at least 4.16 µs in

All 2

COUNT – BASIC Stamp Command Reference

Page 152 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 165

but typing the name of the variables in quotes (for the display) can get a
little tedious. A special formatter, the question mark (?), can save you a lot
of time. The code below does exactly the same thing (with less typing):

x VAR Byte
y VAR Byte

x = 100
y = 250
DEBUG DEC ? x ' Show decimal value of x
DEBUG DEC ? y ' Show decimal value of y

The display would look something like this:

x = 100
y = 250

The ? formatter always displays data in the form "symbol = value"
(followed by a carriage return). In addition, it defaults to displaying in
decimal, so we really only needed to type: DEBUG ? x for the above
code. You can, of course, use any of the three number systems. For
example: DEBUG HEX ? x or DEBUG BIN ? y.

It's important to note that the "symbol" it displays is taken directly from
what appears to the right of the ?. If you were to use an expression, for
example: DEBUG ? x*10/2+3 in the above code, the display would
show: "x*10/2+3 = 503".

A special formatter, ASC, is also available for use only with the ? formatter
to display ASCII characters, as in: DEBUG ASC ? x.

What if you need to display a table of data; multiple rows and columns?
The Signed/Unsigned code (above) approaches this but, if you notice, the
columns don't line up. The number formatters (DEC, HEX and BIN) have
some useful variations to make the display fixed-width (see Table 5.12).
Up to 5 digits can be displayed for decimal numbers. To fix the value to a
specific number of decimal digits, you can use DEC1, DEC2, DEC3, DEC4
or DEC5. For example:

x VAR Byte

x = 165
DEBUG DEC5 x ' Show decimal value of x in 5 digits

DISPLAYING FIXED-WIDTH NUMBERS.

5: BASIC Stamp Command Reference – GOTO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 213

GOTO BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

GOTO Address

Function
Go to the point in the program specified by Address.

• Address is a label that specifies where to go.

Quick Facts
Table 5.30: GOTO Quick Facts.

 BS1 All BS2 Models
Related

Commands
BRANCH and GOSUB ON...GOTO, BRANCH and GOSUB

Max. GOTOs
per Program

Unlimited, but good programming practices
suggest using the least amount possible.

Explanation
The GOTO command makes the BASIC Stamp execute the code that starts
at the specified Address location. The BASIC Stamp reads PBASIC code
from left to right / top to bottom, just like in the English language. The
GOTO command forces the BASIC Stamp to jump to another section of
code.

A common use for GOTO is to create endless loops; programs that repeat a
group of instructions over and over. For example:

Start:
 DEBUG "Hi", CR
GOTO Start

The above code will print "Hi" on the screen, over and over again. The
GOTO Start line simply tells it to go back to the code that begins with the
label Start. Note: colons (:) are placed after labels, as in “Start:” to further
indicate that they are labels, but the colon is not used on references to
labels such as in the “GOTO Start” line.

Demo Program (GOTO.bs2)

' GOTO.bs2
' This program is not very practical, but demonstrates the use of GOTO to
' jump around the code. This code jumps between three different routines,
' each of which print something different on the screen. The routines are
' out of order for this example.

1 All 2

1 All 2

NOTE: This is written for the BS2 but
can be used for the BS1 and all other
BS2 models as well, by modifying the
$STAMP directive accordingly.

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 219

Figure 5.8: Example Circuit for the
I2CIN command and a 24LC16B
EEPROM.

Note: The 4.7 kΩ
resistors are required for the
I2CIN command to function
properly.

Vss

P1
Vdd

4.7 kΩ

P0

24LC16B
(DIP)

4.7 kΩ

SDA

SCL

1
2
3
4

8
7
6
5

The I2CIN command's InputData argument is similar to the SERIN
command's InputData argument. This means data can be received as
ASCII character values, decimal, hexadecimal and binary translations and
string data as in the examples below. (Assume the 24LC16B EEPROM is
used and it has the string, "Value: 3A:101" stored, starting at location 0).

value VAR Byte(13)

I2CIN 0, $A1, 0, [value] ' receive the ASCII value for "V"
I2CIN 0, $A1, 0, [DEC value] ' receive the number 3
I2CIN 0, $A1, 0, [HEX value] ' receive the number $3A
I2CIN 0, $A1, 0, [BIN value] ' receive the number %101
I2CIN 0, $A1, 0, [STR value\13] ' receive the string "Value: 3A:101"

Table 5.33 and Table 5.34 below list all the available special formatters and
conversion formatters available to the I2CIN command. See the SERIN
command for additional information and examples of their use.

Table 5.33: I2CIN Special
Formatters.

Special Formatter Action
SKIP Length Ignore Length bytes of characters.

SPSTR L
Input a character stream of length L bytes (up to 126) into
Scratch Pad RAM, starting at location 0. Use GET to retrieve
the characters.

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified,
an end character E causes the string input to end before
reaching length L. Remaining bytes are filled with 0s (zeros).

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an
array variable, optionally limited to L characters. If the
optional L argument is left off, the end of the array-string must
be marked by a byte containing a zero (0).

RECEIVING FORMATTED DATA.

5: BASIC Stamp Command Reference – I2COUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 229

depending on the I2C device. Note that every device has different
limitations regarding how may contiguous bytes they can receive or
transmit in one session. Be aware of this, and program accordingly.

Every I2C transmission session begins with a Start Condition and ends
with a Stop Condition. Additionally, immediately after every byte is
transmitted, an extra clock cycle is used to send or receive an
acknowledgment signal (ACK). All of these operations are automatically
taken care of by the I2COUT command so that you need not be concerned
with them. The general I2C transmission format is shown in Figure 5.13.

Figure 5.13: I2C Transmission
Format

S P

S
T
A
R
T

SlaveID A
C
K

Address A
C
K

Data A
C
K

S
T
O
P

B
U
S

F
R
E
E

a6 a5 a4 a3 a2 a1 a0 rw a6 a5 a4 a3 a2 a1 a0a7 d6 d5 d4 d3 d2 d1 d0d7

NOTES:
S = Start Condition
P = Stop Condition
a = id or address bit
d = data bit (transmitted by the BASIC Stamp or the I C device)
ACK = Acknowledge signal. (Most acknowledge signals are generated by the I C device)

2

2

Since the I2COUT command is intended for output only, it actually
overrides the "R/W" bit (bit 0) in the SlaveID argument. This is done to
avoid device conflicts should the value be mistyped. Put simply, this
means commands such as: I2COUT 0, $A0, 10, [0] and I2COUT 0, $A1,
10, [0] both transmit the same thing ($A0, then 10, then the data). Even
though the I2COUT command really doesn't care what the value of the
SlaveID's LSB is, it is suggested that you still set it appropriately for clarity.

Also note that the I2COUT command does not support multiple I2C
masters and the BASIC Stamp cannot operate as an I2C slave device.

Demo Program (I2C.bsp)

' I2C.bsp
' This program demonstrates writing and reading every location in a 24LC16B
' EEPROM using the BS2p/BS2pe's I2C commands. Connect the BS2p, BS2pe, or
' BS2px to the 24LC16B DIP EEPROM as shown in the diagram in the I2CIN or

SPECIAL NOTE ABOUT I2COUT

INPLIMENTATION.

START AND STOP CONDITIONS AND

ACKNOWLEDGMENTS.

NOTE: This example program can be
used with the BS2p, BS2pe and
BS2px. This program uses conditional
compilation techniques; see Chapter 3 .

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 271

LOOKDOWN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LOOKDOWN Target, (Value0, Value1, ...ValueN), Variable
LOOKDOWN Target, { ComparisonOp } [Value0, Value1, ...ValueN], Variable

Function
Compare Target value to a list of values and store the index number of the
first value that matches into Variable. If no value in the list matches,
Variable is left unaffected. On all BS2 models, the optional ComparisonOp is
used as criteria for the match; the default criteria is "equal to."

• Target is a variable/constant/expression (0 – 65535) to be compared
to the values in the list.

• ComparisonOp is an optional comparison operator (as described in
Table 5.53) to be used as the criteria when comparing values. When
no ComparisonOp is specified, equal to (=) is assumed. This
argument is not available on the BS1.

• Values are variables/constants/expressions (0 – 65535) to be
compared to Target.

• Variable is a variable (usually a byte) that will be set to the index (0 –
255) of the matching value in the Values list. If no matching value is
found, Variable is left unaffected.

Quick Facts
Table 5.52: LOOKDOWN Quick
Facts.

 BS1 and all BS2 Models
Limit of Value

Entries
256

Starting Index
Number

0

If value list
contains no

match…
Variable is left unaffected

Related
Command

LOOKUP

Explanation
LOOKDOWN works like the index in a book. In an index, you search for a
topic and get the page number. LOOKDOWN searches for a target value
in a list, and stores the index number of the first match in a variable. For
example:

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

All 2

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 273

value VAR Byte
result VAR Nib

value = "f"
result = 255

LOOKDOWN value, ["The quick brown fox"], result
DEBUG "Value matches item ", DEC result, " in list"

DEBUG prints, “Value matches item 16 in list” because the character at
index item 16 is "f" in the phrase, “The quick brown fox”.

The examples above show LOOKDOWN working with lists of constants,
but it also works with variables and expressions also. Note, however, that
expressions are not allowed as argument on the BS1.

On all BS2 models, the LOOKDOWN command can also use another
criteria (other than "equal to") for its list. All of the examples above use
LOOKDOWN’s default comparison operator, =, that searches for an exact
match. The entire list of ComaprisonOps is shown in Table 5.53. The
"greater than" comparison operator (>) is used in the following example:

value VAR Byte
result VAR Nib

value = 17
result = 15

LOOKDOWN value, >[26, 177, 13, 1, 0, 17, 99], result
DEBUG "Value greater than item ", DEC result, " in list"

DEBUG prints, “Value greater than item 2 in list” because the first item the
value 17 is greater than is 13 (which is item 2 in the list). Value is also
greater than items 3 and 4, but these are ignored, because LOOKDOWN
only cares about the first item that matches the criteria. This can require a
certain amount of planning in devising the order of the list. See the demo
program below.

LOOKDOWN comparison operators (Table 5.53) use unsigned 16-bit
math. They will not work correctly with signed numbers, which are
represented internally as two’s complement (large 16-bit integers). For
example, the two’s complement representation of -99 is 65437. So
although -99 is certainly less than 0, it would appear to be larger than zero

LOOKDOWN CAN USE VARIABLES AND

EXPRESSIONS IN THE VALUE LIST.

USING LOOKDOWN'S COMPARISON

OPERATORS.

WATCH OUT FOR UNSIGNED MATH
ERRORS WHEN USING THE COMPARISON

OPERATORS.

All 2

All 2

5: BASIC Stamp Command Reference – POLLRUN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 333

Demo Program (POLLRUN0.bsp)

' POLLRUN0.bsp
' This program demonstrates the POLLRUN command. It is intended to be
' downloaded to program slot 0, and the program called POLLRUN1.bsp
' should be downloaded to program slot 1. I/O pin 0 is set to watch for
' a low signal. Once the Main routine starts running, the program
' continuously prints it's program slot number to the screen. If I/O
' pin 0 goes low, the program in program slot 1 (which should be
' POLLRUN1.bsp) is run.

' {$STAMP BS2p, POLLRUN1.BSP}
' {$PBASIC 2.5}

pgmSlot VAR Byte

Setup:
 POLLIN 0, 0 ' polled-input, look for 0
 POLLRUN 1 ' run slot 1 on polled activation
 POLLMODE 3 ' enable polling

Main:
 GET 127, pgmSlot
 DEBUG "Running Program #", DEC pgmSlot.LOWNIB, CR
 GOTO Main
 END

Demo Program (POLLRUN1.bsp)

' POLLRUN1.bsp
' This program demonstrates the POLLRUN command. It is intended to be
' downloaded to program slot 1, and the program called POLLRUN0.bsp
' should be downloaded to program slot 0. This program is run when
' program 0 detects a low on I/O pin 0 via the polled commands.

' {$STAMP BS2p}
' {$PBASIC 2.5}

pgmSlot VAR Byte

Main:
 GET 127, pgmSlot
 DEBUG "Running Program #", DEC pgmSlot.LOWNIB, CR
 GOTO Main
 END

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

RANDOM – BASIC Stamp Command Reference

Page 360 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

SYMBOL result = W1

Setup:
 result = 11000

Main:
 RANDOM result
 DEBUG result
 GOTO Main

-- or --

result VAR Word

Setup:
 result = 11000

Main:
 RANDOM result
 DEBUG DEC ? result
 GOTO Main

Here, result is only initialized once, before the loop. Each time through the
loop, the previous value of result, generated by RANDOM, is used as the
next seed value. This generates a more desirable set of pseudorandom
numbers.

In applications requiring more apparent randomness, it's necessary to
"seed" RANDOM with a more random value every time. For instance, in
the demo program below, RANDOM is executed continuously (using the
previous resulting number as the next seed value) while the program
waits for the user to press a button. Since the user can’t control the timing
of button presses very accurately, the results approach true randomness.

Figure 5.32: RANDOM Button
Circuit.

1

All 2

5: BASIC Stamp Command Reference – READ

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 373

Demo Program (READ.bs2)

' READ.bs2
' This program reads a string of data stored in EEPROM. The EEPROM data is
' downloaded to the BS2 at compile-time and remains there (even with the
' power off) until overwritten. Put ASCII characters into EEPROM, followed
' by 0, which will serve as the end-of-message marker.

' {$STAMP BS2}
' {$PBASIC 2.5}

strAddr VAR Word
char VAR Byte

Msg1 DATA "BS2", CR, "EEPROM Storage!", 0

Main:
 strAddr = Msg1 ' set to start of message
 GOSUB String_Out
 END

String_Out:
 DO
 READ strAddr, char ' read byte from EEPROM
 strAddr = strAddr + 1 ' point to next character
 IF (char = 0) THEN EXIT ' if 0, exit routine
 DEBUG char ' otherwise print char
 LOOP
 RETURN

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – RUN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 385

 FOR idx = 0 TO 4 ' read/display table values
 READ (slotNum * 5) + idx, value
 DEBUG DEC3 value, " "
 NEXT
 DEBUG CR
 PAUSE 1000

 RUN 1 ' run Slot 1 pgm

 Demo Program (RUN2.bsx)

' RUN2.bsx
' This example demonstrates the use of the RUN command. First, the SPRAM
' location that holds the current slot is read using the GET command to
' display the currently running program number. Then a set of values
' (based on the program number) are displayed on the screen. Afterwards,
' program number 0 is run. This program is a BS2sx project consisting of
' RUN1.BSX and RUN2.BSX, but will run on all multi-slot BASIC Stamp models.

' {$STAMP BS2sx}
' {$PBASIC 2.5}

#SELECT $STAMP ' set SPRAM of slot number
 #CASE BS2
 #ERROR "Multi-slot BASIC Stamp required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

slotNum VAR Nib ' current slot
idx VAR Nib ' loop counter
value VAR Byte ' value from EEPROM

EEtable DATA 100, 40, 80, 32, 90
 DATA 200, 65, 23, 77, 91

Setup:
 GET Slot, slotNum ' read current slot
 DEBUG "Program #", DEC slotNum, CR ' display

Main:
 FOR idx = 0 TO 4 ' read/display table values
 READ (slotNum * 5) + idx, value
 DEBUG DEC3 value, " "
 NEXT
 DEBUG CR
 PAUSE 1000

 RUN 0 ' back to Slot 0 pgm

NOTE: This example program was
written for the BS2sx but can be used
with the BS2e, BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 397

Table 5.96: Baudmode calculation
for all BS2 models. Add the
results of steps 1, 2 and 3 to
determine the proper value for the
Baudmode argument.

Step 1: Determine the
bit period

(bits 0 – 11).

BS2, BS2e and BS2pe: = INT(1,000,000 / baud rate) – 20
BS2sx and BS2p: = INT(2,500,000 / baud rate) – 20
BS2px: = INT(4,000,000 / baud rate) – 20
Note: INT means 'convert to integer;' drop the numbers to the right of the decimal
point.

Step 2: Set data bits
and parity (bit 13).

8-bit/no-parity = 0
7-bit/even-parity = 8192

Step 3: Select
polarity (bit 14).

True (noninverted) = 0
Inverted = 16384

Table 5.97: BS2, BS2e, and
BS2pe common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
300 19697 3313 27889 11505
600 18030 1646 26222 9838

1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800* 16572 188 24764 8380
9600* 16468 84 24660 8276

*The BS2, BS2e and BS2pe may have trouble synchronizing with the incoming serial stream
at this rate and higher due to the lack of a hardware input buffer. Use only simple variables
and no formatters to try to solve this problem.

Table 5.98: BS2sx and BS2p
common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800* 16884 500 25076 8692
9600* 16624 240 24816 8432

*The BS2sx and BS2p may have trouble synchronizing with the incoming serial stream at this
rate and higher due to the lack of a hardware input buffer. Use only simple variables and no
formatters to try to solve this problem.

Table 5.99: BS2px common baud
rates and corresponding
Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 19697 3313 27889 11505
2400 18030 1646 26222 9838
4800 17197 813 25389 9005
9600 16780 396 24792 8588

If you’re communicating with existing software or hardware, its speed(s)
and mode(s) will determine your choice of baud rate and mode. In
general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity
(8N) for byte-oriented data. Note: the most common mode is
8-bit/no-parity, even when the data transmitted is just text. Most devices

CHOOSING THE PROPER BAUD MODE.

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 413

 T38K4 CON 6
 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000
Open CON $8000
Baud CON T38K4 + Inverted

Main:
 DO
 SEROUT SO\FC, Baud, ["Hello!", CR] ' send the greeting
 PAUSE 2500 ' wait 2.5 seconds
 LOOP ' repeat forever
 END

Demo Program (SERIN_SEROUT2.bs2)

' SERIN_SEROUT2.bs2
' Using two BS2-IC's, connect the circuit shown in the SERIN command
' description and run this program on the BASIC Stamp designated as the
' Receiver. This program demonstrates the use of Flow Control (FPin).
' Without flow control, the sender would transmit the whole word "Hello!"
' in about 1.5 ms. The receiver would catch the first byte at most; by the
' time it got back from the first 1-second PAUSE, the rest of the data
' would be long gone. With flow control, communication is flawless since
' the sender waits for the receiver to catch up.

' {$STAMP BS2}
' {$PBASIC 2.5}

SI PIN 0 ' serial input
FC PIN 1 ' flow control pin

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 T1200 CON 813
 T2400 CON 396
 T9600 CON 84
 T19K2 CON 32
 T38K4 CON 6

NOTE: This example program was
written for the BS2 but it can be used
with the BS2e, BS2sx, BS2p, BS2pe,
and BS2px. This program uses
conditional compilation techniques; see
Chapter 3 for more information.

All 2

5: BASIC Stamp Command Reference – STORE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 451

Demo Program (STORE1.bsp)

' STORE1.bsp

' {$STAMP BS2p}
' {$PBASIC 2.5}

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 6, 7, 8, 9, 10

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 0 ' point READ/WRITE to Slot 0
 GOSUB Show_Slot_Info
 PAUSE 2000
 RUN 2 ' run program in Slot 2
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

Demo Program (STORE2.bsp)

' STORE2.bsp

' {$STAMP BS2p}
' {$PBASIC 2.5}

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 11, 12, 13, 14, 15

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 0 ' point READ/WRITE to Slot 0

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

BASIC Stamp Schematics

Page 488 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 2px Schematic (Rev A)

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 499

&, 118
&/, 120
*, 110
*, 109
**, 109, 111
*/, 109, 112
/, 109, 113
//, 109, 113
?, 163, 165, 228, 305, 422
@, 154, 161
^, 119
^/, 121
|, 118
|/, 120
~, 105, 106
+, 96, 109
<, 232
<<, 117
<=, 232
<>, 232
=, 232
>, 232
>=, 232
>>, 117

SYNCHRONOUS SERIAL, 431–34, 435–
40, See also SHIFTIN, SHIFTOUT<
I2CIN, I2COUT

Syntax Conventions, 128
Syntax Enhancements for PBASIC 2.5,

124
Syntax Highlighting, 37, 56

Customized, 57
PBASIC versions, 45

— T —
TAB, 168
Tables, 153–58, 183–86, 271–76, 277–

80
Tabs

(diagram), 59
Character, 57
Fixed plus Smart Tabs, 59

Fixed Tab Positions List, 60
Fixed Tabs, 58
in Debug Terminal, 65
Smart Tabs, 58
Tab Behavior, 58–59

Telephone Touch Tones, 179
Templates, 62
Text Wrapping

Debug Terminal, 64
Theory of Operation, 7
TIME. See PAUSE, POLLWAIT
Timeout, 393, 408, 415, 425
Tip of the Day, 55
TO. See FOR...NEXT
TOGGLE, 281, 455–57
Tone Generation, 179–82, 199–201,

445–46
Transmit Pane, 52
Troubleshooting Serial, 410, 427
Truth Table

IF...THEN, 235
POLLIN, 316
POLLOUT, 327

Two's Compliment, 104

— U —
Unary Operators, 104, 105–9

Absolute Value (ABS), 105
Cosine (COS), 105, 106
Decoder (DCD), 105, 106
Encoder (NCD), 105, 107
Inverse (~), 105, 106
Negative (-), 105, 106
Sine (SIN), 105, 107
Square Root (SQR), 105, 108

Unit Circle, 107, 114
UNITOFF, 467, See XOUT
UNITON, 467, See XOUT
UNITSONf, 467, See XOUT
UNTIL. See DO...LOOP
Untitled#, 36
USB Port

