
Parallax Inc. - PBASIC1XT/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic1xt-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic1xt-ss-4416553
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


Introduction to the BASIC Stamp 

Page 10 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

BASIC Stamp 1 
 

 

Figure 1.1:  BASIC Stamp 1  
(Rev B) (Stock# BS1-IC). 

  
 
 

 

Figure 1.2: BASIC Stamp 1 OEM 
(Rev. A) (Stock# 27295). 
 
 
 

 

 



3: Using the BASIC Stamp Editor 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 49 

to the BASIC Stamp module (assuming the code is correct and the BASIC 
Stamp is properly connected).  The Download Progress window looks 
similar to the Identify window with the exception of the additional 
Download Status progress bar,  and the indicator LED by the port 
transmitting the data.   
 

Figure 3.11: The Download 
Progress Window. 
 

 
 
If any errors occur, such as communication failure or inability to detect a 
BASIC Stamp module, you will be prompted appropriately.  One possible 
error occurs when the BASIC Stamp your PBASIC program is targeting 
does not appear to be connected to the PC (see Figure 3.12). This may be 
caused, for example, by opening up a BASIC Stamp 1 program (usually 
has a .bas or .bs1 extension) and trying to download it to a BASIC Stamp 2 
module, instead.   
 

Figure 3.12:  A Download Error 
message. 

 
When this happens, you’ll be prompted to correct the situation, quickly 
done by clicking on the BS2 button (if you really intended to download to 
the BS2 in the first place).  Keep in mind that programs written for one 
BASIC Stamp model may not function properly on a different BASIC 
Stamp model.  Click on the More Info button for more detail.  NOTE: If 
you select the BS2 button, as in this example, the editor will modify the 



4: BASIC Stamp Architecture – PIN Symbols 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 99 

expression 100+90 into a compile-time expression like OneNinety  CON  
100+90.  
 
To sum up: compile-time expressions are those that involve only 
constants; once a variable is involved, the expression must be solved at 
run-time. That’s why the line “NotWorking  CON  3 * result” would 
generate an error message. The CON directive works only at compile-time 
and result is a variable; variables are not allowed in compile-time 
expressions. 
 
Now we know now to create variables and constants (with VAR and 
CON) but there is a third option if you’re using PBASIC 2.5; pin-type 
symbols (with PIN).  PIN is like VAR and CON put together and 
represents an I/O pin. 
 
There are some situations where it is handy to refer to a pin using a 
variable (like IN2 or OUT2) and also as a constant (2, in this case).  The 
PIN directive lets you define a context-sensitive symbol representing an 
I/O pin.  Depending on where and how this pin-type symbol is used 
determines whether it is treated as an I/O pin input variable, and I/O pin 
output variable or as a constant representing the pin number. 
 
Let’s explore a simple example to see where this is useful.  It is common 
practice to define constants for any number used in many places so that 
changing that number doesn’t create a maintenance hassle later on.  If we 
were to use a constant symbol to represent an I/O pin, we might do 
something like this: 
 
' {$PBASIC 2.5} 
 
signal CON 1               ' constant-type symbol representing I/O 1 
 
INPUT  signal                   ' set signal pin to input 
 
Wait: 
  IF signal = 0 THEN Wait       ' wait until signal pin = 1 

 
Here we define signal to represent our desired I/O pin, then we use the 
INPUT command to set it to the input direction and later we check the 
state of the signal pin and loop (wait) while it is equal to logic 0.  This code 
has a common bug, however; the INPUT command works as expected, 
because its Pin argument requires a number representing the I/O pin, but 

DEFINING AND USING PINS WITH THE PIN 

DIRECTIVE. 
All 2



4: BASIC Stamp Architecture – NCD, SIN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 107 

result          VAR     Word 
 
result = 99                            ' Put -99 into result 
                                       ' ...(2's complement format) 
DEBUG SDEC ? result                    ' Display as a signed # 
result = -result                       ' Negate the value 
DEBUG SDEC ? result                    ' Display as a signed # 
 

The Encoder operator (NCD) is a "priority" encoder of a 16-bit value. NCD 
takes a 16-bit value, finds the highest bit containing a 1 and returns the bit 
position plus one (1 through 16). If the input value is 0, NCD returns 0. 
NCD is a fast way to get an answer to the question “what is the largest 
power of two that this value is greater than or equal to?” The answer NCD 
returns will be that power, plus one. Example:  
 
result          VAR     Word 
 
result = %1101                         ' Highest bit set is bit 3 

DEBUG ? NCD result                     ' Show the NCD of result (4)The 
Sine operator (SIN) returns the two’s complement, 16-bit sine of an angle 
specified as an 8-bit binary radian (0 to 255) angle.  
 
To understand the SIN operator more completely, let’s look at a typical 
sine function. By definition: given a circle with a radius of 1 unit (known 
as a unit circle), the sine is the y-coordinate distance from the center of the 
circle to its edge at a given angle. Angles are measured relative to the 3-
o'clock position on the circle, increasing as you go around the circle 
counterclockwise.  
 
At the origin point (0 degrees) the sine is 0, because that point has the 
same y (vertical) coordinate as the circle center. At 45 degrees the sine is 
0.707.  At 90 degrees, sine is 1. At 180 degrees, sine is 0 again.  At 270 
degrees, sine is  -1.  
 
The BASIC Stamp SIN operator breaks the circle into 0 to 255 units instead 
of 0 to 359 degrees. Some textbooks call this unit a “binary radian” or 
“brad.” Each brad is equivalent to 1.406 degrees. And instead of a unit 
circle, which results in fractional sine values between 0 and 1, BASIC 
Stamp SIN is based on a 127-unit circle. Results are given in two’s 
complement form in order to accommodate negative values. So, at the 
origin, SIN is 0.  At 45 degrees (32 brads), sine is 90.  At 90 degrees (64 
brads), sine is 127.  At 180 degrees (128 brads), sine is 0. At 270 degrees 
(192 brads), sine is -127.  

ENCODER: NCD 

SINE: SIN 

All 2

All 2

All 2



BASIC Stamp Architecture – &/, |/  

Page 120 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

DEBUG BIN8 ? %00001111 ^ %10101001     ' Show result of XOR (%10100110) 

 
The And Not operator (&/) returns the bitwise AND NOT of two values. 
Each bit of the values is subject to the following logic:  

 
0 AND NOT 0 = 0 
0 AND NOT 1 = 0 
1 AND NOT 0 = 1 
1 AND NOT 1 = 0 

 
The result returned by &/ will contain 1s in any bit positions in which the 
first value is 1 and the second value is 0. Example: 
 
SYMBOL  value1          = B2 
SYMBOL  value2          = B3 
SYMBOL  result          = B4 
 
value1 = %00001111 
value2 = %10101001 
result = value1 &/ value2 
DEBUG %result                         ' Show result of AND NOT (%00000110) 
 

The Or Not operator (|/) returns the bitwise OR NOT of two values. Each 
bit of the values is subject to the following logic:  

 
0 OR NOT 0 = 1 
0 OR NOT 1 = 0 
1 OR NOT 0 = 1 
1 OR NOT 1 = 1 

 
The result returned by |/ will contain 1s in any bit positions in which the 
first value is 1 or the second value is 0. Example: 
 
SYMBOL  value1          = B2 
SYMBOL  value2          = B3 
SYMBOL  result          = B4 
 
value1 = %00001111 
value2 = %10101001 
result = value1 |/ value2 
DEBUG %result                           ' Show result of OR NOT (%01011111) 

  

AND NOT: &/ 

OR NOT: |/ 

All 2

1

1

1

1



4: BASIC Stamp Command Reference – ^/  

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 121 

The Xor Not operator (^/) returns the bitwise XOR NOT of two values. 
Each bit of the values is subject to the following logic:  

 
0 XOR NOT 0 = 1 
0 XOR NOT 1 = 0 
1 XOR NOT 0 = 0 
1 XOR NOT 1 = 1 

 
The result returned by ^/ will contain 1s in any bit positions in which the 
first value and second values are equal.  
 
Example: 
 
SYMBOL  value1          = B2 
SYMBOL  value2          = B3 
SYMBOL  result          = B4 
 
value1 = %00001111 
value2 = %10101001 
result = value1 ^/ value2 
DEBUG %result                           ' Show result of OR NOT (%01011001) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

XOR NOT: ̂ / 1

1



5: BASIC Stamp Command Reference – AUXIO 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 131 

    IOTERM port                         ' Switch to main or aux I/Os 
                                        ' -- depending on port 
    TOGGLE 3                            ' Toggle state of I/O pin 3 
                                        ' -- on main and aux, alternately 
    port = ~port                        ' Invert port 
    PAUSE 1000                          ' 1 second delay 
  LOOP 
  END 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5: BASIC Stamp Command Reference – DEBUG 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 161 

After running the above code, "x = $4B" and "x = %01001011" should 
appear on the screen.   To display hexadecimal or binary values without 
the "symbol = " preface, use the value formatter (#) before the $ and %, as 
shown below: 
 
SYMBOL  x = B2 
 
x = 75 
DEBUG #x, "as HEX is ", #$x       ' displays "75 as HEX is $4B" 
DEBUG #x, "as BINARY is ", #%x    ' displays "75 as BINARY is %01001011" 

 
To display a number as its ASCII character equivalent, use the ASCII 
formatter (@).   
 
SYMBOL  x = B2 
 
x = 75 
DEBUG @x 
 

Table 5.10: DEBUG Formatters for 
the BASIC Stamp 1. 
  
 

Formatter Description 

# 
Suppresses  the "symbol = x" format and displays only the 'x' value. 
The default format is decimal but may be combined with any of the 
formatters below (ex: #x to display: x value) 

@ 
Displays "symbol = 'x'" + carriage return; where x is an ASCII 
character. 

$ Hexadecimal text. 
% Binary text.  

 

Two pre-defined symbols, CR and CLS, can be used to send a carriage-
return or clear-screen command to the Debug Terminal.  The CR symbol 
will cause the Debug Terminal to start a new line and the CLS symbol will 
cause the Debug Terminal to clear itself and place the cursor at the top-left 
corner of the screen.  The following code demonstrates this. 
 
DEBUG  "You can not see this.", CLS, "Here is line 1", CR, "Here is line 2" 

 
When the above is run, the final result is "Here is line 1" on the first line of 
the screen and "Here is line 2" on the second line.  You may or may not 
have seen "You can not see this." appear first.  This is because it was 
immediately followed by a clear-screen symbol, CLS, which caused the 
display to clear the screen before displaying the rest of the information. 
 
NOTE:  The rest of this discussion does not apply to the BASIC Stamp 1. 
 

USING CR AND CLS (BS1). 

DISPLAYING ASCII CHARACTERS  (BS1). 



EXIT – BASIC Stamp Command Reference 

Page 190 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

row             VAR     Nib 
 
Setup: 
  col = 0 
 
Main: 
  DO WHILE (col < 10)                   ' attempt 10 iterations 
    FOR row = 0 TO 15                   ' attempt 16 iterations 
      IF (row > 9) THEN EXIT            ' terminate when row > 9 
      DEBUG CRSRXY, (col * 8), row,     ' print col/row at location 
            DEC col, "/", DEC row, CR 
    NEXT 
    col = col + 1                       ' update column 
    IF (col = 3) THEN EXIT              ' terminate when col = 3 
  LOOP 
  END 

 



5: BASIC Stamp Command Reference – I2CIN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 217 

I2CIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px 

I2CIN  Pin, SlaveID, { Address { \LowAddress }, } [ InputData ] 
 
Function  
Receive data from a device using the I2C protocol.  

• Pin  is a variable/constant/expression (0 or 8) that specifies which 
I/O pins to use.  I2C devices require two I/O pins to communicate.  
The Pin argument serves a double purpose; specifying the first pin 
(for connection to the chip's SDA pin) and, indirectly, the other 
required pin (for connection to the chip's SCL pin).  See explanation 
below.  Both I/O pins will be toggled between output and input 
mode during the I2CIN command and both will be set to input 
mode by the end of the I2CIN command. 

• SlaveID  is a variable/constant/expression (0 – 255) indicating the 
unique ID of the I2C chip. 

• Address  is an optional variable/constant/expression (0 – 255) 
indicating the desired address within the I2C chip to receive data 
from.  The Address argument may be used with the optional 
LowAddress argument to indicate a word-sized address value.   

• LowAddress  is an optional variable/constant/expression (0 – 255) 
indicating the low-byte of the word-sized address within the I2C 
chip to receive data from.  This argument must be used along with 
the Address argument. 

• InputData  is a list of variables and modifiers that tells I2CIN what to 
do with incoming data.  I2CIN can store data in a variable or array, 
interpret numeric text (decimal, binary, or hex) and store the 
corresponding value in a variable, wait for a fixed or variable 
sequence of bytes, or ignore a specified number of bytes.  These 
actions can be combined in any order in the InputData list. 

 
 
 
 
 
 



5: BASIC Stamp Command Reference – I2CIN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 223 

 
addr            VAR     Word            ' internal address 
block           VAR     Nib             ' block address in 24LC16 
value           VAR     Byte            ' value to write 
check           VAR     Nib             ' for checking retuned values 
result          VAR     Byte(16)        ' array for returned value 
 
 
Write_To_EEPROM: 
  DEBUG "Writing...", CR 
  PAUSE 2000 
  FOR addr = 0 TO 2047 STEP 16          ' loop through all addresses 
    block = addr.NIB2 << 1              ' calculate block address 
    value = addr >> 4                   ' create value from upper 8 bits 
    ' write 16 bytes 
    I2COUT SDA, $A0 | block, addr, [REP value\16] 
    PAUSE 5 
    DEBUG "Addr: ", DEC4 addr, "-", DEC4 addr + 15, "  ", 
          "Value: ", DEC3 value, CR 
  NEXT 
  PAUSE 2000 
 
Read_From_EEPROM: 
  DEBUG CR, "Reading...", CR 
  PAUSE  2000 
  FOR addr = 0 TO 2047 STEP 16 
    block = addr.NIB2 << 1 
    value = addr >> 4 
    I2CIN SDA, $A1 | block, addr, [STR result\16] 
    FOR check = 0 TO 15 
      IF (result(check) <> value) THEN Error 
    NEXT 
    DEBUG "Addr: ", DEC4 addr, "-", DEC4 addr + 15, "  ", 
          "Value: ", DEC3 result, CR 
  NEXT 
  PAUSE 100 
  DEBUG CR, "All locations passed" 
  END 
 
 
Error: 
  DEBUG "Error at location: ", DEC4 addr + check, CR, 
        "Found: ", DEC3 result(check), ", Expected: ", DEC3 value 
  END 
 
 
 
 
 
 
 



5: BASIC Stamp Command Reference – LCDIN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 259 

value VAR  Byte(13) 
LCDIN  0, 128, [value]  'receive the ASCII value for "V" 
LCDIN  0, 128, [DEC  value]   'receive the number 3. 
LCDIN  0, 128, [HEX  value] 'receive the number $3A. 
LCDIN  0, 128, [BIN  value] 'receive the number %101. 
LCDIN  0, 128, [STR value\13] 'receive the string "Value: 3A:101" 
 

Table 5.47 and Table 5.48 list all the special formatters and conversion 
formatters available to the LCDIN command.  See the SERIN command for 
additional information and examples of their use. 
 
Some possible uses of the LCDIN command are 1) in combination with the 
LCDOUT command to store and read data from the unused DDRAM or 
CGRAM locations (as extra variable space), 2) to verify that the data from 
a previous LCDOUT command was received and processed properly by 
the LCD, and 3) to read character data from CGRAM for the purposes of 
modifying it and storing it as a custom character. 
 

Table 5.47: LCDIN Special 
Formatters. 
 

Special Formatter Action 

SPSTR  L 
Input a character string of length L bytes (up to 126) into Scratch
Pad RAM, starting at location 0. Use GET to retrieve the 
characters. 

STR ByteArray  \L  {\E} 
Input a character string of length L into an array.  If specified, an 
end character E causes the string input to end before reaching 
length L.  Remaining bytes are filled with 0s (zeros). 

WAIT (Value) 

Wait for a sequence of bytes specified by value.  Value can be 
numbers separated by commas or quoted text (ex: 65, 66, 67  or 
“ABC”).  The WAIT formatter is limited to a maximum of six 
characters. 

WAITSTR  ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array 
variable, optionally limited to L characters.  If the optional L 
argument is left off, the end of the array-string must be marked 
by a byte containing a zero (0). 

SKIP  Length Ignore Length bytes of characters.  
 
 



OWIN – BASIC Stamp Command Reference 

Page 298 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

\Conversion  
Formatter 

Type of Number Numeric 
Characters 
Accepted 

Notes 

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1 
SDEC{1..5} Signed decimal, optionally limited to 1 – 5 

digits 
-, 0 through 9 1,2 

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A 
through F 

1,3,5 

SHEX{1..4} Signed hexadecimal, optionally limited to  
1 – 4 digits  

-, 0 through 9, 
A through F 

1,2,3 

IHEX{1..4} Indicated hexadecimal, optionally limited to  
1 – 4 digits 

$, 0 through 9, 
A through F 

1,3,4 

ISHEX{1..4} Signed, indicated hexadecimal, optionally 
limited to 1 – 4 digits 

-, $, 0 through 
9, A through F 

1,2,3,4 

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1 
SBIN{1..16} Signed binary, optionally limited to 1 – 16 

digits 
-, 0, 1 1,2 

IBIN{1..16} Indicated binary, optionally limited to 1 – 16 
digits 

%, 0, 1 1,4 

ISBIN{1..16} Signed, indicated binary, optionally limited  
to 1 – 16 digits 

-, %, 0, 1 1,2,4 

NUM 
Generic numeric input (decimal, hexadecimal 
or binary); hexadecimal or binary number 
must be indicated 

$, %, 0 through 
9, A through F 

1, 3, 4 

SNUM 
Similar to NUM with value treated as signed  
with range -32768 to +32767 

-, $, %,  
0 through 9,  
A through F 

1,2,3,4 

 

Table 5.66: OWIN Conversion 
Formatters 
 

1  All numeric conversions will continue to accept new data until receiving either the specified 
number of digits (ex: three digits for DEC3) or a non-numeric character. 

2 To be recognized as part of a number, the minus sign (-) must immediately precede a 
numeric character.  The minus sign character occurring in non-numeric text is ignored and 
any character (including a space) between a minus and a number causes the minus to be 
ignored. 

3  The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A” 
through “F”. 

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics, 
until they receive the appropriate prefix ($ for hexadecimal, % for binary).  The indicated 
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted 
by HEX as a number but IHEX would ignore it unless expressed as $ABC).  Likewise, the 
binary version can distinguish the decimal number 10 from the binary number %10.  A 
prefix occurring in non-numeric text is ignored, and any character (including a space) 
between a prefix and a number causes the prefix to be ignored.  Indicated, signed 
formatters require that the minus sign come before the prefix, as in -$1B45. 

5 The HEX modifier can be used for Decimal to BCD Conversion.  See “Hex to BCD 
Conversion” on page 97. 

 
For examples of all conversion formatters and how they process incoming 
data, see Appendix C. 
 



5: BASIC Stamp Command Reference – OWOUT 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 307 

Figure 5.24:  OWOUT Reset and 
Presence Pulse. 
 

BASIC Stamp’s
Reset Pulse
Apx. 564 sµ

Device’s
Presence

 Pulse
60 - 240 sµ

Resting State
15 - 60 sµ

driven by BASIC Stamp
driven by 1-wire device

+5 (vdd)

0 (vss)

 
 
This reset pulse is controlled by the lowest two bits of the Mode argument 
in the OWOUT command.  It can be made to appear before the ROM 
Function Command (ex: Mode = 1), after the Transaction/Data portion (ex: 
Mode = 2), before and after the entire transaction (ex: Mode = 3) or not at all 
(ex: Mode = 0).  See the section on Mode, above, for more information. 
 
Following the Initialization part is the ROM Function Command.  The 
ROM Function Command is used to address the desired 1-Wire device.  
Table 5.72 shows common ROM Function Commands.  If only a single 
1-wire device is connected, the Skip ROM command may be used to 
address it.  If more than one 1-wire device is attached, the BASIC Stamp 
will ultimately have to address them individually using the Match ROM 
command. 
 

Table 5.72: OWOUT ROM 
Function Commands. 
 

Command Value (in Hex) Action 

Read ROM $33 
Reads the 64-bit ID of the 1-Wire device.  This command 
can only be used if there is a single 1-Wire device on the 
line. 

Match ROM $55 
This command, followed by a 64-bit ID, allows the BASIC 
Stamp to address a specific 1-Wire device. 

Skip ROM $CC 
Address a 1-Wire device without its 64-bit ID.  This 
command can only be used if there is a single 1-wire 
device on the line. 

Search ROM $F0 
Reads the 64-bit IDs of all the 1-Wire devices on the line.  
A process of elimination is used to distinguish each 
unique device.  

 
The third part, the Memory Function Command, allows the BASIC Stamp 
to address specific memory locations, or features, of the 1-wire device.  



POLLIN – BASIC Stamp Command Reference 

Page 314 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

user program; giving the appearance that it is polling "in the background".  
This feature should not be confused with the concept of interrupts, as the 
BASIC Stamp does not support true interrupts. 
 
The following is an example of the POLLIN command: 
 
POLLIN 0, 0 
POLLMODE 2 
 

The POLLIN command in the above code will cause the BASIC Stamp to 
set I/O pin 0 to an input mode and get ready to poll it for a low (0) state.  
The BASIC Stamp will not actually start polling until it is set to the 
appropriate mode, however.  The second line, POLLMODE, initiates the 
polling process (see the POLLMODE description for more information).  
From then on, as the BASIC Stamp executes the rest of the program, it will 
check for a low level (logic 0) on I/O pin 0, in-between instructions.   
 
In the code above, no obvious action will be noticed since we didn't tell the 
BASIC Stamp what to do when it detects a change on the I/O pin.  One 
possible action the BASIC Stamp can be instructed to take is to change the 
state of an output, called a polled-output.  Take a look at the next example: 
 
POLLIN 0, 0 
POLLOUT 1, 1 
POLLMODE 2 
 
Main: 
  DEBUG "Looping...", CR 
  GOTO Main 
 

In this example, in addition to an endless loop, we've added another 
polling command called POLLOUT (see the POLLOUT description for 
more information).  Our POLLOUT command tells the BASIC Stamp to set 
I/O pin 1 to an output mode and set it high (1) when it detects the desired 
poll state.  The poll state is the low (0) level on I/O pin 0 that POLLIN told 
it to look for.  If the polled-input pin is high, it will set polled-output pin 0 
to low (0), instead. 
 
Once the program reaches the endless loop, at Main, it will continuously 
print "Looping…" on the PC screen.  In between reading the DEBUG 
command and the GOTO command (and vice versa) it will check polled-
input pin 0 and set polled-output pin 1 accordingly.  In this case, when 
I/O pin 0 is set low, the BASIC Stamp will set I/O pin 1 high.  When I/O 

A SIMPLE POLLIN EXAMPLE. 

SETTING ONE OF THE POSSIBLE ACTIONS: 
POLLED-OUTPUTS 



PWM – BASIC Stamp Command Reference 

Page 358 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

' as the capacitor discharges. Try varying the interval between PWM bursts 
' (by changing the PAUSE value) and the number of PWM cycles to see their 
' effect. 
 
' {$STAMP BS1} 
' {$PBASIC 1.0} 
 
 
Main: 
  PWM 0, 100, 10                        ' PWM at 100/255 duty (~50 ms) 
  PAUSE 1000                            ' wait one second 
  GOTO Main 
  END 

 
 Demo Program (PWM.bs2) 
 
' PWM.bs2 
' Connect a voltmeter (such as a digital multimeter set to its voltage 
' range) to the output of the circuit shown in the figure for the PWM 
' command (in the manual).  Run the program and observe the readings on 
' the meter. They should come very close to 1.96V, then decrease slightly 
' as the capacitor discharges. Try varying the interval between PWM bursts 
' (by changing the PAUSE value) and the number of PWM cycles to see their 
' effect. 
 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
#SELECT $STAMP 
  #CASE BS2, BS2E 
    CycAdj      CON     $100            ' x 1.0, cycle adjustment (for ms) 
  #CASE BS2SX 
    CycAdj      CON     $280            ' x 2.5 
  #CASE BS2P 
    CycAdj      CON     $187            ' x 1.53 
  #CASE BS2PE 
    CycAdj      CON     $09E            ' x 0.62 
  #CASE BS2PX 
    CycAdj      CON     $280            ' x 2.5 
#ENDSELECT 
 
Cycles          CON     50 
 
Main: 
  PWM 0, 100, (Cycles */ CycAdj)        ' PWM at 100/255 duty (~50 ms) 
  PAUSE 1000                            ' wait one second 
  GOTO Main 
  END

All 2

NOTE:  This example program can be 
used with all BS2 models. This program 
uses conditional compilation techniques; 
see Chapter 3 for more information. 
 



5: BASIC Stamp Command Reference – WRITE 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 463 

Demo Program (WRITE.bs2) 
 
' WRITE.bs2 
' This program writes some data to EEPROM and then reads them back out 
' and displays the data in the Debug window. 
 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
idx             VAR     Byte            ' loop control 
value           VAR     Word(3)         ' value(s) 
 
 
Main: 
  WRITE 0, 100                          ' single byte 
  WRITE 1, Word 1250                    ' single word 
  WRITE 3, 45, 90, Word 725             ' multi-value write 
 
Read_EE: 
  FOR idx = 0 TO 6                      ' show raw bytes in EE 
    READ idx, value 
    DEBUG DEC1 idx, " : ", DEC value, CR 
  NEXT 
  DEBUG CR 
 
  ' read values as stored 
 
  READ 0, value 
  DEBUG DEC value, CR 
  READ 1, Word value 
  DEBUG DEC value, CR 
  READ 3, value(0), value(1), Word value(2) 
  FOR idx = 0 TO 2 
    DEBUG DEC value(idx), CR 
  NEXT 
  END  

 
 
 
 
 
 
 
 
 
 
 
 

All 2

NOTE:  This example program can be 
used with all BS2 models by changing 
the $STAMP directive accordingly. 



5: BASIC Stamp Command Reference – XOUT 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 467 

Table 5.125 lists the XOUT command codes and their functions:  
 

Table 5.125: XOUT Commands 
and Their Function. 
 

Command Value Function 
UNITON %10010 Turn on the currently selected unit. 
UNITOFF %11010 Turn off the currently selected unit. 
UNITSONf %11100 Turn off all modules in this house code. 
LIGHTSON %10100 Turn on all lamp modules in this house code. 

DIM %11110 Reduce brightness of currently selected lamp. 
BRIGHT %10110 Increase brightness of currently selected lamp.  

Note: In most applications, it’s not necessary to know the code for a given X-10 instruction. 
Just use the command constant (UnitOn, Dim, etc.) instead. But knowing the codes leads to 
some interesting possibilities. For example, XORing a UnitOn command with the value 
%1000 turns it into a UnitOff command, and vice-versa. This makes it possible to write the 
equivalent of an X-10 “toggle” instruction.  
 
Here is an example of the XOUT instruction:  
 
Mpin            PIN     0               ' modulation pin 
Zpin            PIN     1               ' zero-cross input 
 
HouseA          CON     0               ' House code A = 0 
Unit1           CON     0               ' Unit code 1 = 0 
 
XOUT Mpin, Zpin, [HouseA\Unit1]         ' get Unit1's attention 
XOUT Mpin, Zpin, [HouseA\UNITON]        ' turn it on 
 

You can combine those two XOUT instructions into one like so:  
 
XOUT  Mpin, Zpin, [HouseA\Unit1\2, HouseA\UNITON]          ' Unit 1 on.  
 

Note that to complete the attention-getting code HouseA\Unit1 we tacked 
on the normally optional cycles entry \2 to complete the command before 
beginning the next one. Always specify two cycles in multiple commands 
unless you’re adjusting the brightness of a lamp module.  
 
Here is an example of a lamp-dimming instruction:  
 
Mpin            PIN     0               ' modulation pin 
Zpin            PIN     1               ' zero-cross input 
 
HouseA          CON     0               ' House code A = 0 
Unit1           CON     0               ' Unit code 1 = 0 
 
XOUT Mpin, Zpin, [HouseA\Unit1]         ' get Unit1's attention 
XOUT Mpin, Zpin, [HouseA\UNITOFF\2]     ' turn it off 
XOUT Mpin, Zpin, [HouseA\DIM\10]        ' dim half way 
 

COMBINING MULTIPLE COMMANDS. 

DIMMING LIGHTS. 

A SIMPLE XOUT EXAMPLE: TURNING AN 

APPLIANCE ON. 



Index 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 493 

—  F  — 
Favorite Directories, 63 
Features for Developers, 75 
File Associations, 42, 61 
File List, 40, 41 
File Management 

.obj file, 76 
Backup Copy, 61 
Directory List, 41 
Favorite Directories, 63 
File Associations, 42, 61 
File List, 41 
Files and Directories Preferences, 63 
Filter List, 40, 41 
Initial Directory, 62 
Keyboard Shortcuts, 42 
Module Directories, 62 
Open From, 41 
Recent List, 40 
Save To, 41 
Single Executable File, 76 
Templates, 62 

Filter List, 40, 41 
Find/Replace Function, 39 
Firmware, 3 
Fixed plus Smart Tabs, 59 
Fixed Tabs, 58 
Flow Control, 409, 423 
Font Size 

Debug Terminal, 63 
Editor Pane, 56 

FOR...NEXT, 189 
Increment/Decrement, 193 
Variables as Arguments, 194 

FOR…NEXT, 191–97 
Formatters, Conversion. See 

Conversion Formatters 
Formatters, DEBUG. See DEBUG 

Formatters 
Formatters, Special. See Special 

Formatters 
FPin, 409, 423 

FREQOUT, 199–201 

—  G  — 
Generating Pulses, 347–49 
Generating Random Numbers, 359–61 
Generating Sound (BS1), 445–46 
Generating Sound (Non-BS1), 199–201 
GET, 203–6 
GOSUB, 209–12, 289, 375 
GOTO, 209, 213–14, 213, 289 
GUI Interface Development, 78 
Guidelines and Precautions, 25 

—  H  — 
Hardware 

BASIC Stamp, 7 
BS1, 10 
BS2, 13 
BS2e, 15 
BS2p, 19 
BS2pe, 21 
BS2px, 23 
BS2sx, 17 

Help Files, 53–54 
HEX, 162, 163, 173, 220, 227, 260, 

265, 298, 306, 403, 422 
Hex to BCD Conversion, 97 
Hexadecimal Notation, 96 
HIGH, 215–16, 281, 455 
Hitachi 44780 Controller, 249, 258, 263 
HOME, 168 
HYP, 109, 115 
Hypotenuse (HYP), 109, 115 

—  I  — 
I/O pin 

Voltage comparator (BS2px), 141 
I/O pin properties (BS2px), 143 
I/O Pins 



Index 
 

Page 498 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

—  S  — 
Save To, 41 
SBIN, 163, 173, 220, 227, 260, 265, 

298, 306, 403, 422 
Schematic 

BS1, 481 
BS2, 482 
BS2e, 483 
BS2p24, 485 
BS2p40, 486 
BS2pe, 487 
BS2px, 488 
BS2sx, 484 

Schmitt Trigger, 143, 145, 150 
(diagram), 145 

Scratch Pad Ram 
Registers, 93 

Scratch Pad RAM, 92, 203, 351–52 
Registers, 205 
Special Purpose Locations 

(POLLMODE), 323 
SDEC, 163, 173, 220, 227, 260, 265, 

298, 306, 403, 422 
SELECT...CASE, 387–90 
SELECT…CASE, 387 
Serial Port Diagram, 395 
Serial Timeout, 408, 425 
Serial Troubleshooting, 410, 427 
SERIN, 171, 393–412 
SEROUT, 415–28 
SHEX, 163, 173, 220, 227, 260, 265, 

298, 306, 403, 422 
Shift Left (<<), 109, 117 
Shift Right (>>), 109, 117 
SHIFTIN, 431–34 
SHIFTOUT, 435–40 
Shortcuts. See Keyboard Shortcuts 
SIN, 105, 107 
SIN (pin), 14, 15, 18, 20, 21, 23 
Sine (SIN), 105, 107 
Single Executable File, 76 
SKIP, 172, 219, 259, 297, 404 

SLEEP, 187, 335, 441–42 
SNUM, 173, 220, 260, 298, 403 
SOUND. See also  SOUND, FREQOUT, 

DTMFOUT 
SOUND, 445–46 
Sound, Generation (BS1), 445–46 
Sound, Generation (Non-BS1), 199–201 
SOUT, 14, 15, 18, 20, 21, 23 
Speaker, 180, 200, 446 
Special Formatters 

DEBUGIN, 172 
I2CIN, 219 
I2COUT, 228 
LCDIN, 259 
OWIN, 297 
OWOUT, 305 
SERIN, 404 
SEROUT, 422 

Split Window View, 36 
SPRAM. See Scratch Pad RAM 
SPSTR, 219, 297, 404 
SPSTR  L, 172 
SQR, 105, 108 
Square Root (SQR), 105, 108 
STAMP Directive. See $STAMP 

Directive 
StampLoader.exe program, 76 
Static Sensitive Devices, 25 
STEP. See FOR...NEXT 
STOP, 447 
STORE, 449, 459 
STR, 163, 166, 172, 219, 228, 259, 

297, 305, 404, 422 
Strings 

Displaying, 166 
Subroutines, 209, 375 
Subtract (-), 109, 110 
Switching Program Slots, 381–85 
Symbol Name Rules, 86 
Symbols (Characters). See + 

#, 161 
$, 161 
%, 161 


