
Parallax Inc. - PBASIC2/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic2-p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic2-p-4425564
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Contents

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 3

DTMFOUT...179
EEPROM...183
END...187
EXIT ..189
FOR…NEXT ...191
FREQOUT...199
GET...203
GOSUB ...209
GOTO..213
HIGH ...215
I2CIN...217
I2COUT...225
IF…THEN..231
INPUT ...243
IOTERM ..247
LCDCMD...249
LCDIN ...257
LCDOUT ...263
LET..269
LOOKDOWN...271
LOOKUP ...277
LOW..281
MAINIO ...283
NAP...285
ON...289
OUTPUT ...293
OWIN ..295
OWOUT ..303
PAUSE..311
POLLIN ...313
POLLMODE ..319
POLLOUT ...325
POLLRUN ...331
POLLWAIT..335
POT...339
PULSIN ...343
PULSOUT ...347
PUT...351
PWM ...355
RANDOM ..359
RCTIME ..363
READ ..369

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 53

automatically opened by the editor, however, if manually opened, these
fields will be enabled to allow manual configuration. The signal status
LEDs turn bright green when activity on the indicated port line is
detected. The signal checkboxes (DTR and RTS) can be selected to set or
clear the respective output line on the port.

The Echo Off checkbox (bottom of window) causes the Receive pane to
throw away the characters that arrive in the port’s receive buffer
immediately after transmitting characters from the transmit buffer. This
produces a cleaner Receive pane display for interactive programs such as
the example above. Keep in mind, however, that this feature does not
verify that the character it throws away is actually a match to a character
that was just transmitted (because data collisions on the port can cause
echoed characters to be garbled). You should only use the Echo Off
feature in situations where it is required, as it may result in a strange
display in certain applications.

There are keyboard shortcuts for several coding functions, some of which
are unique to the BASIC Stamp Editor.

Table 3.6: Coding Function
Keyboard Shortcuts.

 Coding Functions
Shortcut Key(s) Function

Ctrl+J Show code templates.
F6 or Ctrl+I Identify BASIC Stamp firmware.

F7 or Ctrl+T
Perform a syntax check on the code and display any error
messages.

F8 or Ctrl+M Open Memory Map window.

F9 or Ctrl+R
Tokenize code, download to the BASIC Stamp and open
Debug window if necessary.

F11 or Ctrl+D Open a new Debug window.

F12
Switch to next window (Editor, Debug #1, Debug #2, Debug #3
or Debug #4)

Ctrl+1, Ctrl+2,
Ctrl+3, Ctrl+4

Switch to Debug Terminal #1, Debug Terminal #2, etc. if that
Terminal window is open.

Ctrl+` Switch to Editor window.
ESC Close current window.

The BASIC Stamp Editor includes searchable, indexed help files. Access
Help by selecting Help → Contents or Help → Index. Context sensitive
help (highlighting a word in the editor and pressing F1 key) is also
supported. The help file can remain open in a separate window while
using the BASIC Stamp Editor; simply press Alt+Tab to toggle back and
forth between the editor and the Help window.

HELP FILES.

KEYBOARD SHORTCUTS FOR CODING

FUNCTIONS.

Using the BASIC Stamp Editor

Page 74 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

#SELECT Expression
 #CASE Condition(s)
 Statement(s)
 { #CASE Condition(s)
 Statement(s)
 #CASE #ELSE
 Statement(s) }
#ENDSELECT

#SELECT…#CASE is a conditional compile structure similar to the run-
time SELECT…CASE command except that, at compile time,
#SELECT…#CASE evaluates Expression and then conditionally compiles a
block of code based on comparison to Condition(s). If no Conditions are
found to be True and a #CASE #ELSE block is included, the Statement(s) in
the #CASE #ELSE block will be compiled.

• Expression is a statement that can be evaluated as True or False
during compile-time.

• Condition is a statement, that when compared to Expression,
can be evaluated as True or False. Multiple conditions within
the same CASE can be separated by commas (,).

• Statement is any valid PBASIC instruction.
Example:

' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2e, BS2sx
 GOSUB LCD_Write
 #CASE #ELSE
 LCDOUT LCDpin, cmd, [char]
#ENDSELECT

This example checks the $STAMP directive at compile-time and either
compiles

GOSUB LCD_Write

- or –

LCDOUT LCDpin, cmd, [char] into the program.

#SELECT...#CASE SYNTAX.

4: BASIC Stamp Architecture – PIN Symbols

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 101

' {$PBASIC 2.5}

signal PIN 2 ' pin-type symbol representing I/O 2

OUTPUT signal ' set signal pin to output
signal = 1 ' set signal high

The OUTPUT command treats signal as a constant equal to 2 and the
signal = 1 statement treats signal as a variable equal to the output variable
for the defined pin (OUT2 in this case).

You might be wondering why “signal = 0” in the IF…THEN statement of
our first example treats signal as the input variable IN1 and yet “signal =
1” in our last example treats signal as the output variable OUT2. The
distinction is that the first example is a comparison and the second
example is an assignment. Comparisons need to “read” expressions and
then evaluate the comparison while assignments need to read expressions
and then “write” the results. Since signal is to the left of the equal sign (=)
in our assignment statement, it must be a variable we can write to, thus it
must be treated as OUT2, in this case.

What happens if our pin-type symbol is to the right of the equal sign in an
assignment statement? Example:

' {$PBASIC 2.5}

signal1 PIN 1 ' pin-type symbol representing I/O 1
signal2 PIN 2 ' pin-type symbol representing I/O 2

INPUT signal1 ' set signal1 pin to input
OUTPUT signal2 ' set signal2 pin to output
signal2 = signal1 ' set signal2 pin to signal1 pin’s state

In this case signal2 is treated as OUT2 and signal1 is treated as IN1; left side
must be written to and right side must be read from.

If a pin-type symbol is used in a command, but not in the Pin argument of
that command, it will be treated as an input variable (i.e.: INx). NOTE: It
is very rare that you’ll need to use a pin-type symbol in this way.

The following is a summary of behaviors and uses of pin-type symbols.

All 2

All 2

DEBUG – BASIC Stamp Command Reference

Page 170 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

DEBUGIN – BASIC Stamp Command Reference

Page 174 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (DEBUGIN.bs2)

' DEBUGIN.bs2
' This program demonstrates the ability to accept user input from the
' Debug Terminal, and to accept numeric entry in any valid format.

' {$STAMP BS2}
' {$PBASIC 2.5}

myNum VAR Word

Main:
 DO
 DEBUG CLS, "Enter any number: " ' prompt user
 DEBUGIN SNUM myNum ' retrieve number in any format

 DEBUG CLS, ' display number in all formats
 SDEC ? myNum,
 SHEX ? myNum,
 SBIN ? myNum
 PAUSE 3000
 LOOP ' do it again
 END

All 2
NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

IF…THEN – BASIC Stamp Command Reference

Page 232 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Quick Facts
 BS1 All BS2 Models

Comparison
Operators

=, <>, >, <, >=, <= =, <>, >, <, >=, <=

Conditional
 Logic Operators

AND, OR NOT, AND, OR, XOR

Format of
Condition

Variable Comparison Value;
where Value is a variable

or constant

Value1 Comparison Value2;
where Value1 and Value2 can by

any of variable, constant or
expression

Parentheses Not Allowed Allowed
Max nested
IF…THENs

n/a 16

Max ELSEIFs
per IF

n/a 16

Max ELSEs per IF n/a 1
Related Command None SELECT…CASE

Table 5.38: IF...THEN Quick Facts.

Explanation
IF...THEN is PBASIC's decision maker that allows one block of code or
another to run based on the value (True or False) of a condition. The
condition that IF...THEN tests is written as a mixture of comparison and
logic operators. The available comparison operators are:

Comparison Operator
Symbol

Definition

= Equal
<> Not Equal
> Greater Than
< Less Than

>= Greater Than or Equal To
<= Less Than or Equal To

Table 5.39: IF...THEN Comparison
Operators.

Comparisons are always written in the form: Value1 Comparison Value2.
The values to be compared can be any combination of variables (any size),
constants, or expressions.

The following example is an IF…THEN command with a simple
condition:

IF value < 4000 THEN Main

This code will compare the value of value to the number 4000. If value is
less than 4000, the condition is true and the program will jump (implied

NOTE: On the BS1, expressions
are not allowed as arguments.
Also, the Value1 (to the left of
comparison) must be a variable.

1

A SIMPLE FORM OF IF…THEN

1 All 2

IF…THEN – BASIC Stamp Command Reference

Page 234 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 Test:
 IF -99 < 100 THEN Is_Less
 DEBUG "Greater than or equal to 100"
 END

Is_Less:
 DEBUG "Less than 100"
 END

Although –99 is obviously less than 100, the program will say it is greater.
The problem is that –99 is internally represented as the two’s complement
value 65437, which (using unsigned math) is greater than 100. This
phenomena will occur whether or not the negative value is a constant,
variable or expression.

IF...THEN supports the conditional logic operators NOT, AND, OR, and
XOR to allow for more sophisticated conditions, such as multi-part
conditions. See Table 5.38 for a list of the operators and Table 5.40 for
their effects.

The NOT operator inverts the outcome of a condition, changing false to
true, and true to false. The following IF...THENs are equivalent:

IF x <> 100 THEN Not_Equal
IF NOT x = 100 THEN Not_Equal

The operators AND, OR, and XOR can be used to join the results of two
conditions to produce a single true/false result. AND and OR work the
same as they do in everyday speech. Run the example below once with
AND (as shown) and again, substituting OR for AND:

value1 VAR Byte
value2 VAR Byte

Setup:
 value1 = 5
 value2 = 9

Main:
 IF value1 = 5 AND value2 = 10 THEN Is_True
 DEBUG "Statement is False"
 END

Is_True:
 DEBUG "Statement is True"
 END

NOTE: For BS1's, change lines1 and 2
to:
SYMBOL value1 = B2
SYMBOL value2 = B3

LOGICAL OPERATORS (NOT, AND, OR

AND XOR).

NOTE: The NOT and XOR operators
are not available on the BS1.

1

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 241

' {$STAMP BS2}
' {$PBASIC 2.0}

sample VAR Word ' Random number to be tested
samps VAR Nib ' Number of samples taken
temp VAR Nib ' Temporary workspace

Setup:
 sample = 11500

Mult3:
 RANDOM sample ' Put a random number into sample
 temp = sample // 3
 IF temp <> 0 THEN Mult3 ' Not multiple of 3? -- try again
 DEBUG DEC5 sample, " divides by 3", CR
 samps = samps + 1 ' Count multiples of 3
 IF samps = 10 THEN Done ' Quit with 10 samples
 GOTO Mult3 ' keep checking

Done:
 DEBUG CR, "All done."
 END

Demo Program (IF-THEN-ELSE.bs2)

' IF-THEN-ELSE.bs2
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

' {$STAMP BS2}
' {$PBASIC 2.5} ' version 2.5 required

sample VAR Word ' Random number to be tested
hits VAR Nib ' Number of hits
misses VAR Word ' Number of misses

Setup:
 sample = 11500

Main:
 DO
 RANDOM sample ' Put a random number into sample
 IF ((sample // 3) = 0) THEN ' divisible by 3?
 DEBUG DEC5 sample, ' - yes, print value and message
 " is divisible by 3", CR

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – INPUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 245

 BIN1 IN7, CR

 OUT7 = 0 ' Write 0 to output latch
 DEBUG "After 0 written to OUT7: ",
 BIN1 IN7, CR

 OUTPUT 7 ' Make P7 an output
 DEBUG "After P7 changed to output: ",
 BIN1 IN7

5: BASIC Stamp Command Reference – LCDCMD

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 253

location 0. Figure 5.15 indicates the position numbers for characters on the
LCD screen.

Table 5.45: All LCD Commands
(for advanced users). These are
supported by LCDs with the
Hitachi 44780 controller.

 Command Code (in binary) Description
 7 6 5 4 3 2 1 0

Clear Display 0 0 0 0 0 0 0 1
Clear entire display and move
cursor home (address 0).

Home Display 0 0 0 0 0 0 1 0
Move cursor home and return
display to home position.

Entry Mode 0 0 0 0 0 1 M S
Sets cursor direction (M: 0=left,
1=right) and display scrolling (S:
0=no scroll, 1=scroll)

Display/Cursor 0 0 0 0 1 D U B
Sets display on/off (D), underline
cursor (U) and blinking block
cursor (B). (0=off, 1=on)

Scroll Display /
Shift Cursor

0 0 0 1 C M 0 0
Shifts display or cursor (C:
0=cursor, 1=display) left or right
(M: 0=left, 1=right).

Function Set 0 0 1 B L F 0 0

Sets buss size (B: 0=4-bits,
1=8-bits), number of lines (L:
0=1-line, 1=2-lines) and font size
(F: 0=5x8, 1=5x10)

Move To CGRAM
Address

0 1 A A A A A A
Move pointer to character RAM
location specified by address (A)

Move To DDRAM
Address

1 A A A A A A A
Move cursor to display RAM
location specified by address (A)

Note that Figure 5.15 shows the most common DDRAM mapping, though
some LCD's may have organized the DDRAM differently. A little
experimentation with your LCD may reveal this.

Figure 5.15: LCD Character
Positions.

NOTE: Many 1 x 16 displays
conform to the position numbers
shown on Line 1 of the 2 x 16
display.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

16

80

39

103

…

…
Line 1:

Line 2:

On-screen positions* Off-screen positions*

2 x 16 Display

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Line 1:

Line 2:

4 x 20 Display

Line 3:

Line 4:

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

16 17 18 19

80 81 83

36 37 38 39

100101102103

*Assuming the display is in the home position.

82

5: BASIC Stamp Command Reference – LOOKUP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 277

LOOKUP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LOOKUP Index, (Value0, Value1, ...ValueN), Variable
LOOKUP Index, [Value0, Value1, ...ValueN], Variable

Function
Find the value at location Index and store it in Variable. If Index exceeds the
highest index value of the items in the list, Variable is left unaffected.

• Index is a variable/constant/expression (0 – 255) indicating the list
item to retrieve.

• Values are variables/constants/expressions (0 – 65535).

• Variable is a variable that will be set to the value at the Index location.
If Index exceeds the highest location number, Variable is left
unaffected.

Quick Facts
Table 5.55: LOOKUP Quick Facts.

 BS1 and all BS2 Models
Limit of Value

Entries
256

Starting Index
Number

0

If index
 exceeds the

highest
location…

Variable is left unaffected

Related
Command

LOOKDOWN

Explanation
LOOKUP retrieves an item from a list based on the item’s position, Index,
in the list. For example:

SYMBOL index = B2
SYMBOL result = B3

index = 3
result = 255

LOOKUP index, (26, 177, 13, 1, 0, 17, 99), result
DEBUG "Item ", #index, "is: ", #result

-- or --

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

1

LOW – BASIC Stamp Command Reference

Page 282 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (LOW.bs2)

' LOW.bs2
' This simple program sets I/O pin 0 high for 1/2 second and low for
' 1/2 second in an endless loop. Connect an LED to P0 for a simple
' blinker.

' {$STAMP BS2}

Main:
 HIGH 0
 PAUSE 500
 LOW 0
 PAUSE 500
 GOTO Main
 END

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

1 All 2

NAP – BASIC Stamp Command Reference

Page 286 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

the actual timing to vary by as much as –50, +100 percent (i.e., a Duration
of 0, NAP can range from 9 to 36 ms). At room temperature with a fresh
battery or other stable power supply, variations in the length of a NAP
will be less than ±10 percent.

One great use for NAP is in a battery-powered application where at least a
small amount of time is spent doing nothing. For example, you may have
a program that loops endlessly, performing some task, that pauses for
approximately 100 ms each time through the loop. You could replace your
PAUSE 100 with NAP 3, as long as the timing of the 100 ms pause was
not critical. The NAP 3 would effectively pause your program for about
144 ms and, at the same time, would place the BASIC Stamp in low-power
mode, which would extend your battery life.

If your application is driving loads (sourcing or sinking current through
output-high or output-low pins) during a NAP, current will be interrupted
for about 18 ms (60 µs on the BS2pe) when the BASIC Stamp wakes up.
The reason is that the watchdog-timer reset that awakens the BASIC
Stamp also causes all of the pins to switch to input mode for
approximately 18 ms (60 µs on the BS2pe). When the interpreter firmware
regains control of the processor, it restores the I/O direction dictated by
your program.

If you plan to use END, NAP, POLLWAIT or SLEEP in your programs,
make sure that your loads can tolerate these power outages. The simplest
solution is often to connect resistors high or low (to +5V or ground) as
appropriate to ensure a continuing supply of current during the reset
glitch.

The demo program can be used to demonstrate the effects of the NAP
glitch with an LED and resistor as shown in Figure 5.18.

A GREAT USE FOR NAP; FREE POWER

SAVINGS.

TIPS FOR DRIVING LOADS DURING NAP.

5: BASIC Stamp Command Reference – ON

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 289

ON BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

ON Offset GOTO Address1, Address2, ...AddressN

ON Offset GOSUB Address1, Address2, ...AddressN

Function
GOTO or GOSUB to the Address specified by Offset (if in range). ON is
similar in operation to BRANCH with the exception that program
execution can optionally return to the line following ON (if using
ON…GOSUB).

• Offset is a variable/constant/expression (0 - 255) that specifies the
index (0 - N) of the address, in the list, to GOTO or GOSUB to.

• Address is a label that specifies where to go for a given Offset. ON
will ignore any list entries beyond offset 255.

Quick Facts
Table 5.61: ON Quick Facts.

 All BS2 Models
Limit of Address

Entries
256

Maximum GOSUBs
per Program

255 (each ON…GOSUB counts as one GOSUB,
regardless of number of address list entries)

Maximum Nested
GOSUBS

4

Related Commands BRANCH, GOTO and GOSUB

Explanation
The ON instruction is like saying, “Based ON the value of Offset, GOTO or
GOSUB to one of these Addresses.” ON is useful when you want to write
something like this:

IF (value = 0) THEN GOTO Case_0 ' "GOTO" jump table
IF (value = 1) THEN GOTO Case_1
IF (value = 2) THEN GOTO Case_2

- or -

IF (value = 0) THEN GOSUB Case_0 ' "GOSUB" jump table
IF (value = 1) THEN GOSUB Case_1
IF (value = 2) THEN GOSUB Case_2

NOTE: ON requires PBASIC 2.5. All 2

All 2

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 303

OWOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OWOUT Pin, Mode, [OutputData]

Function
Send data to a device using the 1-Wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-Wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWOUT command and will be set to input
mode by the end of the OWOUT command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• OutputData is a list of variables and modifiers that tells OWOUT
how to format outgoing data. OWOUT can transmit individual or
repeating bytes, convert values into decimal, hexadecimal or binary
text representations, or transmit strings of bytes from variable
arrays. These actions can be combined in any order in the
OutputData list.

Quick Facts
Table 5.68: OWOUT Quick
Facts.

 BS2p, BS2pe, and BS2px
Transmission Rate Approximately 20 kbits/sec (low speed, not including reset pulse)

Special Notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resistor.
The BS2pe is not capable of high-speed transfers.

Related Command OWIN

Explanation
The 1-Wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-Wire devices. The OWOUT
command allows the BASIC Stamp to send data to a 1-Wire device.

The following is an example of the OWOUT command:

OWOUT 0, 1, [$4E]

A SIMPLE OWOUT EXAMPLE.

PUT – BASIC Stamp Command Reference

Page 352 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

temp VAR byte

PUT 25, 100 ' put low byte
GET 25, temp ' read byte value
DEBUG DEC temp ' display byte value

When using the $PBASIC 2.5 directive, multiple sequential values may be
stored to SPRAM, starting at Location, and the WORD modifier may be
specified to store 16-bit values.

' {$PBASIC 2.5}

temp VAR Word

PUT 25, Word 2125 ' write word value
GET 25, Word temp ' read word value
DEBUG DEC temp ' display 2125

Most Scratch Pad RAM locations are available for general use. The highest
locations have a special, read-only purpose; see the GET command for
more information.

Demo Program (GET_PUT1.bsx)

' GET_PUT1.bsx
' This example demonstrates the use of the GET and PUT commands. First,
' slot location is read using GET to display the currently running program
' number. Then a set of values are written (PUT) into locations 0 TO 9.
' Afterwards, program number 1 is RUN. This program is a BS2SX project
' consisting of GET_PUT1.BSX and GET_PUT2.BSX, but will run on the BS2e,
' BS2p, BS2pe, and BS2px without modification.

' {$STAMP BS2sx, GET_PUT2.BSX}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2
 #ERROR "BS2e or greater required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

value VAR Byte
idx VAR Byte

Setup:
 GET Slot, value

SCRATCH PAD RAM LOCATIONS AND

THEIR PURPOSE.

NOTE: This is written for the BS2sx but
can be used with the BS2e, BS2p,
BS2pe and BS2px also. This program
uses conditional compilation
techniques; see Chapter 3 for more
information.

5: BASIC Stamp Command Reference – SHIFTOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 437

Here is a simple example:

SHIFTOUT 0, 1, MSBFIRST, [250]

Here, the SHIFTOUT command will write to I/O pin 0 (Dpin) and will
generate a clock signal on I/O pin 1 (Cpin). The SHIFTOUT command will
generate eight clock pulses while writing each bit (of the 8-bit value 250)
onto the data pin (Dpin). In this case, it will start with the most significant
bit first as indicated by the Mode value of MSBFIRST.

By default, SHIFTOUT transmits eight bits, but you can set it to shift any
number of bits from 1 to 16 with the Bits argument. For example:

SHIFTOUT 0, 1, MSBFIRST, [250\4]

Will output only the lowest (rightmost) four bits (%1010 in this case). But
what if you want to output the leftmost bits of a given value? By adding
the right-shift operator (>>) to the code you can adjust the output as
required:

SHIFTOUT 0, 1, MSBFIRST, [(250 >> 2)\6]

will output the upper six bits (%111110 in this case).

Some devices require more than 16 bits. To solve this, you can use a single
SHIFTOUT command with multiple values. Each value can be assigned a
particular number of bits with the Bits argument. As in:

SHIFTOUT 0, 1, MSBFIRST, [250\4, 1045\16]

The above code will first shift out four bits of the number 250 (%1010) and
then 16 bits of the number 1045 (%0000010000010101). The two values
together make up a 20 bit value.

In the examples above, specific numbers were entered as the data to
transmit, but, of course, the SHIFTOUT command will accept variables
and expressions for the OutputData and even for the Bits argument.

A SIMPLE SHIFTOUT EXAMPLE.

CONTROLLING THE NUMBER OF BITS

TRANSMITTED.

SHIFTOUT ACCEPTS VARIABLES AND
EXPRESSIONS FOR OUTPUTDATA AND

BITS ARGUMENTS.

5: BASIC Stamp Command Reference – SOUND

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 445

SOUND BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SOUND Pin, (Note, Duration { , Note, Duration…})
(See FREQOUT)

Function
Generate square-wave tones for a specified period.

• Pin is a variable/constant (0 – 7) that specifies the I/O pin to use.
This pin will be set to output mode.

• Note is a variable/constant (0 – 255) specifying the type and
frequency of the tone. 1 – 127 are ascending tones and 128 – 255 are
ascending white noises ranging from buzzing (128) to hissing (255).

• Duration is a variable/constant (1 - 255) specifying the amount of
time to generate the tone(s). The unit of time for Duration is 12 ms.

Quick Facts
Table 5.119: SOUND Quick
Facts.

 BS1
Units in Duration 12 ms
Available Sounds 256
Frequency Range 94.8 Hz to 10,550 Hz

Explanation
SOUND generates one of 256 square-wave frequencies on an I/O pin. The
output pin should be connected as shown in Figure 5.46.

The tones produced by SOUND can vary in frequency from 94.8 Hz (1) to
10,550 Hz (127). If you need to determine the frequency corresponding to a
given note value, or need to find the note value that will give you best
approximation for a given frequency, use the equations below.

Note = 127 – (((1/Frequency)-0.000095)/0.000083)

--and--

Frequency = (1/(0.000095 + ((127–Note)*0.000083))

In the above equations, Frequency is in Hertz (Hz).

All 2

1

TOGGLE – BASIC Stamp Command Reference

Page 456 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

guarantee that the state actually changes, regardless of the initial input or
output mode, do this:

PIN2 = PIN2 ' make output driver match input
TOGGLE 2 ' then toggle

- or -

OUT2 = IN2 ' make output driver match input
TOGGLE 2 ' then toggle

Figure 5.47: Example LED Circuit
for TOGGLE Demo Programs.

Demo Program (TOGGLE.bs1)

' TOGGLE.bs1
' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command descrip-
' tion in the manual and run this program. The TOGGLE command will treat
' you to a light show. You may also run the demo without LEDs. The Debug
' window will show you the states of pins 0 through 3.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL thePin = B0 ' pin 0 - 3

Setup:
 DIRS = %1111 ' make LEDs output, low

Main:
 FOR thePin = 0 TO 3 ' loop through pins
 TOGGLE thePin ' toggle current pin
 DEBUG CLS, %PINS ' show on Debug
 PAUSE 100 ' short delay
 NEXT
 GOTO Main ' repeat forever
 END

All 2

1

1

