
Parallax Inc. - PBASIC2C/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic2c-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic2c-ss-4425565
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 41

Figure 3.7: The Integrated Explorer
Panel’s Recent list (top), Directory
list (middle), and File list (bottom).

The Directory list, right below the Recent list, displays drives and
directories in a hierarchical tree fashion. If a directory is selected, the
Folders list displays the files in that directory.

The File list, below the Directory list, displays all the files in the selected
directory that match the selected filter (from the Filter list at the bottom.
see Figure 3.8). You can select one or more files from this list and double-
click, or drag-and-drop them over the editor pane, to open those files.

You may also open files with the Open From... option by selecting File →
Open From, or by pressing Ctrl+Shift+O. This allows quick access to any
directory for the default and favorite directories set within Preferences (see
page 60) as well as any recently used directory. The Save To... option
works similarly; select File → Save To or press Ctrl+Shift+S. These
features can be very helpful if you organize your files in many different
directories.

The Filter list at the bottom of the explorer panel (Figure 3.8), is a drop-
down list of file extension filters to apply to the File list. It works just like
the “Save as type:” field of a standard Open or Save dialog.

OPEN FROM... AND SAVE TO... OPTIONS.

THE DIRECTORY LIST.

THE FILTERS LIST.

THE FILE LIST.

COUNT – BASIC Stamp Command Reference

Page 152 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

DEBUG – BASIC Stamp Command Reference

Page 168 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The upper-left cursor position is 0,0 (that is column 0, row 0). The right-
most cursor positions depend on the size of the Debug Terminal window
(which is user adjustable). If a character position that is out of range is
received, the Debug Terminal wraps back around to the opposite side of
the screen.

The Move To Column (x) and Move To Row (y) control characters work
similarly to Move To (x,y) except they only expect a singe position value to
follow.
The Clear Right (CLREOL) control character clears the characters that
appear to the right of, and on, the cursor's current position. The cursor is
not moved by this action.

The Clear Down (CRLDN) control character clears the characters that
appear below, and on, the cursor's current line. The cursor is not moved
by this action.

Name Symbol ASCII
Value

Description

Clear Screen CLS 0 Clear the screen and place cursor at home
position.

Home HOME 1 Place cursor at home in upper-left corner of
the screen.

Move To (x,y) CRSRXY 2.5 2 Move cursor to specified location. Must be
followed by two values (x and then y)

Cursor Left CRSRLF2.5 3 Move cursor one character to left.
Cursor Right CRSRRT2.5 4 Move cursor one character to right.
Cursor Up CRSRUP2.5 5 Move cursor one character up.
Cursor Down CRSRDN2.5 6 Move cursor one character down.
Bell BELL 7 Beep the PC speaker.
Backspace BKSP 8 Back up cursor to left one space.
Tab TAB 9 Tab to the next column.
Line Feed LF2.5 10 Move cursor down one line.
Clear Right CLREOL2.5 11 Clear line contents to the right of cursor.
Clear Down CLRDN2.5 12 Clear screen contents below cursor.
Carriage Return CR 13 Move cursor to the first column of the next

line (shift any data on the right down to that
line as well).

Move To
Column X

CRSRX2.5 14 Move cursor to specified column. Must be
followed by byte value (x) for the column (0
is the left-most column).

Move To Row Y CRSRY2.5 15 Move cursor to specified row. Must be
followed by byte value (y) for the row (0 is
the top-most row).

Table 5.13: Special DEBUG Control
Characters for all BS2 models.

NOTE: (2.5) indicates this control
character requires the PBASIC 2.5
compiler directive.

DEBUG – BASIC Stamp Command Reference

Page 170 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

DEBUGIN – BASIC Stamp Command Reference

Page 172 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

is exactly like:

' {$STAMP BS2}

SERIN 16, $4054, [DEC1 myNum]

in terms of function on a BS2. The DEBUGIN line actually takes less
program space, and is obviously easier to type. Example:

' {$PBASIC 2.5}

myNum VAR Nib

DEBUG CLS, "Enter a number (1 - 5)? --> "
DEBUGIN DEC1 myNum
IF ((myNum >= 1) AND (myNum <= 5)) THEN
 DEBUG CLS, "You entered: ", DEC1 myNum
ELSE
 DEBUG CLS, "Sorry, number out of range"
ENDIF
END

The tables below list all the special formatters and conversion formatters
available to the DEBUGIN command. See the SERIN instruction for
additional information and examples of their use.

Special Formatter Action

STR ByteArray \L {\E}
Input a character string of length L into an array. If specified, an
end character E causes the string input to end before reaching
length L. Remaining bytes are filled with 0s (zeros).

WAIT (Value)

Wait for a sequence of bytes specified by value. Value can be
numbers separated by commas or quoted text (ex: 65, 66, 67 or
“ABC”). The WAIT formatter is limited to a maximum of six
characters.

WAITSTR ByteArray {\L}

Wait for a sequence of bytes matching a string stored in an array
variable, optionally limited to L characters. If the optional L
argument is left off, the end of the array-string must be marked
by a byte containing a zero (0).

SKIP Length Ignore Length bytes of characters.

Table 5.15: DEBUGIN Special
Formatters.

There is an additional special formatter for the BS2p, BS2pe, and BS2px:

Special Formatter Action

SPSTR L
Input a character string of length L bytes (up to 126) into Scratch
Pad RAM, starting at location 0. Use GET to retrieve the
characters.

Table 5.16: DEBUGIN Additional
Special Formatter for the BS2p,
BS2pe, and BS2px.

5: BASIC Stamp Command Reference – DEBUGIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 173

Table 5.17: DEBUGIN Conversion
Formatters.

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to 1 – 4
digits

-, 0 through 9, A
through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to 1 –
4 digits

$, 0 through 9, A
through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through 9,
A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited
to 1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number must
be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

1 All numeric conversions will continue to accept new data until receiving either the specified

number of digits (ex: three digits for DEC3) or a non-numeric character.
2 To be recognized as part of a number, the minus sign (-) must immediately precede a

numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data, see Appendix C.

5: BASIC Stamp Command Reference – DO...LOOP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 175

DO…LOOP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DO { WHILE | UNTIL Condition(s) }
 Statement(s)
LOOP { WHILE | UNTIL Condition(s) }

Function
Create a repeating loop that executes the Statement(s), one or more
program lines that form a code block, between DO and LOOP, optionally
testing Condition(s) before or after the Statement(s).

• Condition is an optional variable/constant/expression (0 - 65535)
which determines whether the loop will run or terminate. Condition
must follow WHILE or UNTIL.

• Statement is any valid PBASIC instruction.

Quick Facts
Table 5.18: DO...LOOP Quick
Facts.

 All BS2 Models
Maximum Nested Loops 16

WHILE Condition Evaluation Run loop if Condition evaluates as true
UNTIL Condition Evaluation Terminate loop if Condition evaluates as true

Related Commands FOR...NEXT and EXIT

Explanation
DO...LOOP loops let a program execute a series of instructions indefinitely
or until a specified condition terminates the loop. The simplest form is
shown here:

' {$PBASIC 2.5}

DO
 DEBUG "Error...", CR
 PAUSE 2000
LOOP

In this example the error message will be printed on the Debug screen
every two seconds until the BASIC Stamp is reset. Simple DO...LOOP
loops can be terminated with EXIT.

All 2
NOTE: DO...LOOP requires the
PBASIC 2.5 compiler directive.

FOR…NEXT – BASIC Stamp Command Reference

Page 198 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – HIGH

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 215

HIGH BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px BS2px

HIGH Pin

Function
Make the specified pin output high.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set high. This pin will be placed into output mode.

Quick Facts
Table 5.31: HIGH Quick Facts.

 BS1 and all BS2 Models
Related

Commands
LOW and TOGGLE

Explanation
The HIGH command sets the specified pin to 1 (a +5 volt level) and then
sets its mode to output. For example,

HIGH 6

does exactly the same thing as:

OUT6 = 1
DIR6 = 1

Using the HIGH command is faster and more concise, in this case.

Connect an LED and a resistor as shown in Figure 5.7 for demo program
HIGH.bs2, below.

Figure 5.7: Example LED Circuit. P0

470 Ω

LED

Vss

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

1

1 All 2

All 2

LOW – BASIC Stamp Command Reference

Page 282 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (LOW.bs2)

' LOW.bs2
' This simple program sets I/O pin 0 high for 1/2 second and low for
' 1/2 second in an endless loop. Connect an LED to P0 for a simple
' blinker.

' {$STAMP BS2}

Main:
 HIGH 0
 PAUSE 500
 LOW 0
 PAUSE 500
 GOTO Main
 END

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

1 All 2

5: BASIC Stamp Command Reference – ON

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 289

ON BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

ON Offset GOTO Address1, Address2, ...AddressN

ON Offset GOSUB Address1, Address2, ...AddressN

Function
GOTO or GOSUB to the Address specified by Offset (if in range). ON is
similar in operation to BRANCH with the exception that program
execution can optionally return to the line following ON (if using
ON…GOSUB).

• Offset is a variable/constant/expression (0 - 255) that specifies the
index (0 - N) of the address, in the list, to GOTO or GOSUB to.

• Address is a label that specifies where to go for a given Offset. ON
will ignore any list entries beyond offset 255.

Quick Facts
Table 5.61: ON Quick Facts.

 All BS2 Models
Limit of Address

Entries
256

Maximum GOSUBs
per Program

255 (each ON…GOSUB counts as one GOSUB,
regardless of number of address list entries)

Maximum Nested
GOSUBS

4

Related Commands BRANCH, GOTO and GOSUB

Explanation
The ON instruction is like saying, “Based ON the value of Offset, GOTO or
GOSUB to one of these Addresses.” ON is useful when you want to write
something like this:

IF (value = 0) THEN GOTO Case_0 ' "GOTO" jump table
IF (value = 1) THEN GOTO Case_1
IF (value = 2) THEN GOTO Case_2

- or -

IF (value = 0) THEN GOSUB Case_0 ' "GOSUB" jump table
IF (value = 1) THEN GOSUB Case_1
IF (value = 2) THEN GOSUB Case_2

NOTE: ON requires PBASIC 2.5. All 2

All 2

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 305

bitOne VAR Bit
bitTwo VAR Bit

bitOne = 0
bitTwo = 1
OWOUT 0, 5, [bitOne, bitTwo]

In the code above, we chose the value "5" for Mode. This sets Bit transfer
and Front-End Reset modes. Also, we could have chosen to make the
bitOne and bitTwo variables each a byte in size, but the BASIC Stamp
would still only use the their lowest bit (BIT0) as the value to transmit in
the OWOUT command (due to the Mode we chose).

The OWOUT command's OutputData argument is similar to the DEBUG
and SEROUT command's OutputData argument. This means data can be
sent as literal text, ASCII character values, repetitive values, decimal,
hexadecimal and binary translations and string data as in the examples
below. (Assume a 1-wire device is used and that it transmits the string,
"Value: 3A:101" every time it receives a Front-End Reset pulse).

value VAR Byte
value = 65

OWOUT 0, 1, [value] ' send "A"
OWOUT 0, 1, [REP value\5] ' send "AAAAA"
OWOUT 0, 1, [DEC value] ' send "6" and "5"
OWOUT 0, 1, [HEX value] ' send "4" and "1"
OWOUT 0, 1, [BIN value] ' send "1000001"

Table 5.70 and Table 5.71 list all the special formatters and conversion
formatters available to the OWOUT command. See the DEBUG and
SEROUT commands for additional information and examples of their use.

Table 5.70: OWOUT Special
Formatters.

Special Formatter Action

?

Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with
conversion formatters (ex: BIN ? x to display "x =
binary_number").

ASC ?
Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end
of RAM space is reached.

REP Byte \L
Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

SENDING AND FORMATTING DATA.

5: BASIC Stamp Command Reference – RANDOM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 361

Demo Program (RANDOM.bs1)

' RANDOM.bs1
' Connect a button to I/O pin 7 as shown in the figure in the RANDOM
' command description and run this program. This program uses RANDOM to
' simulate a coin toss. After 100 trials, it reports the total number of
' heads and tails thrown.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL Btn = 7 ' button input

SYMBOL flip = W0 ' a random number
SYMBOL coin = BIT0 ' a bit from random number
SYMBOL trials = B2 ' number of flips
SYMBOL heads = B3 ' throws that come up heads
SYMBOL tails = B4 ' throws that come up tails
SYMBOL btnWrk = B5 ' workspace for BUTTON

Start:
 DEBUG CLS, "Press the button to toss coin.", CR

Main:
 FOR trials = 1 TO 100 ' flip coin 100 times

Hold:
 RANDOM flip ' randomize while waiting
 BUTTON Btn, 0, 250, 100, btnWrk, 0, Hold ' wait for button press
 BRANCH coin, (Head, Tail) ' 0 = heads, 1 = tails

Head:
 DEBUG CR, "Heads!"
 heads = heads + 1 ' increment heads counter
 GOTO Next_Toss

Tail:
 DEBUG CR, "Tails..."
 tails = tails + 1 ' increment heads counter

Next_Toss:
 NEXT

 DEBUG CR, CR, "Heads: ", #heads, CR, "Tails: ", #tails
 END

Demo Program (RANDOM.bs2)

' RANDOM.BS2
' Connect a button to I/O pin 7 as shown in the figure in the RANDOM
' command description and run this program. This program uses RANDOM to
' simulate a coin toss. After 100 trials, it reports the total number of

All 2

1

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 363

RCTIME BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

(See POT)

RCTIME Pin, State, Variable

Function
Measure time while Pin remains in State; usually to measure the
charge/discharge time of resistor/capacitor (RC) circuit.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be placed into input mode.

• State is a variable/constant/expression (0 - 1) that specifies the
desired state to measure. Once Pin is not in State, the command
ends and stores the result in Variable.

• Variable is a variable (usually a word) in which the time
measurement will be stored. The unit of time for Variable is
described in Table 5.87.

Quick Facts
Table 5.87: RCTIME Quick Facts.

 BS2 BS2e BS2sx BS2p BS2pe BS2px
Units in
Variable

2 µs 2 µs 0.8 µs 0.75 µs 2 µs 0.75 µs

Maximum
Pulse Width

131.07 ms 131.07 ms 52.428 ms 49.151 ms 131.07 ms 49.151 ms

Explanation
RCTIME can be used to measure the charge or discharge time of a
resistor/capacitor circuit. This allows you to measure resistance or
capacitance; use R or C sensors such as thermistors or capacitive humidity
sensors or respond to user input through a potentiometer. In a broader
sense, RCTIME can also serve as a fast, precise stopwatch for events of
very short duration.

When RCTIME executes, it makes Pin an input, then starts a counter
(who's unit of time is shown in Table 5.87). It stops this counter as soon as
the specified pin is no longer in State (0 or 1). If pin is not in State when
the instruction executes, RCTIME will return 1 in Variable, since the
instruction requires one timing cycle to discover this fact. If pin remains in
State longer than 65535 timing cycles RCTIME returns 0.

HOW RCTIME'S TIMER WORKS.

1

All 2

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 367

Figure 5.34: Relay Circuit for
Demo Program RCTIME2.bs2.

Demo Program (RCTIME2.bs2)

' RCTIME2.BS2
' This program illustrates the use of RCTIME as a fast stopwatch. The
' program energizes a relay coil, then measures how long it takes for the
' relay contacts to close. The circuit for this program can be found in
' the manual. Note that RCTIME doesn't start timing instantly -- as with
' all PBASIC instructions, it must be fetched from program EEPROM before
' it can execute.

' {$STAMP BS2}
' {$PBASIC 2.5}

Coil PIN 6
RC PIN 7

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 Adjust CON $200 ' x 2 us per unit
 #CASE BS2SX
 Adjust CON $0CC ' x 0.8 us per unit
 #CASE BS2P, BS2PX
 Adjust CON $0C0 ' x 0.75 us per unit
#ENDSELECT

result VAR Word

Main:
 DO
 LOW Coil ' energize relay coil
 RCTIME RC, 1, result ' measure time to contact closure
 result = result */ Adjust ' adjust for device
 DEBUG "Time to close: ",

relay contact

relay coil

10 kΩ

P6

P7

Vss

Vdd

Vdd

Relay: 5 VDC reed
relay with 20 mA
coil, eg., Radio
Shack #275-232

All 2

NOTE: This example program can be
used with all BS2 models. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

RETURN – BASIC Stamp Command Reference

Page 376 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

it would see the RETURN again (although it didn't GOSUB to that routine
this time) and because there wasn't a previous place to return to, the
BASIC Stamp will start the entire program over again. This would cause
an endless loop. The important thing to remember here is to always make
sure your program doesn't allow itself to "fall into" a subroutine.

Demo Program (RETURN.bs2)

' RETURN.BS2
' This program demonstrates a potential bug caused by allowing a program to
' "fall into" a subroutine. The program was intended to indicate that it
' is "Starting...", then "Executing Subroutine,", then "Returned..." from
' the subroutine and stop. Since we left out the END command (indicated in
' the comments), the program then falls into the subroutine, displays
' "Executing..." again and then RETURNs to the start of the program and
' runs continuously in an endless loop.

' {$STAMP BS2}

Reset:
 DEBUG "Starting Program", CR ' show start-up

Main:
 PAUSE 1000
 GOSUB Demo_Sub ' call the subroutine
 PAUSE 1000
 DEBUG "Returned from Subroutine", CR ' show that we're back
 PAUSE 1000
 ' <-- Forgot to put END here

Demo_Sub:
 DEBUG " Executing Subroutine", CR ' show subroutine activity
 RETURN

1 All 2

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

RUN – BASIC Stamp Command Reference

Page 386 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 401

The SERIN command can also be configured to wait for specified data
before it retrieves any additional input. For example, suppose a device
that is attached to the BASIC Stamp is known to send many different
sequences of data, but the only data you desire happens to appear right
after the unique characters, “XYZ”. The BS1 has optional Qualifier
arguments for this purpose. On all BS2 models, a special formatter called
WAIT can be used for this.

SYMBOL serData = B2

SERIN 1, N2400, ("XYZ"), #serData

-- or --

serData VAR Byte

SERIN 1, 16780, [WAIT("XYZ"), DEC serData]

The above code waits for the characters “X”, “Y” and “Z” to be received,
in that order, and then it looks for a decimal number to follow. If the
device in this example were to send the characters “XYZ100” followed by
a carriage return or some other non-decimal numeric character, the serData
variable would end up with the number 100 after the SERIN line finishes.
If the device sent some data other than “XYZ” followed by a number, the
BASIC Stamp would continue to wait at the SERIN command.

The BS1 will accept an unlimited number of Qualifiers. All BS2 models will
only accept up to six bytes (characters) in the WAIT formatter.

Keep in mind that when we type “XYZ” into the SERIN command, the
BASIC Stamp actually uses the ASCII codes for each of those characters for
its tasks. We could also have typed: 88, 89, 90 in place of “XYZ” and the
code would run the same way since 88 is the ASCII code for the “X”
character, 89 is the ASCII code for the “Y” character, and so on. Also note,
serial communication with the BASIC Stamp is case sensitive. If the device
mentioned above sent, “xYZ” or “xyZ”, or some other combination of
lower and upper-case characters, the BASIC Stamp would have ignored it
because we told it to look for “XYZ” (all capital letters).

The BS1’s SERIN command is limited to above-mentioned features. If you
are not using a BS1, please continue reading about the additional features
below.

USING SERIN TO WAIT FOR SPECIFIC

DATA BEFORE PROCESSING.

USING ASCII CODES AND CASE

SENSITIVITY.

All 2
This is written with the BS2's Baudmode
value. Be sure to adjust the value for
your BASIC Stamp.

1

1

STOP – BASIC Stamp Command Reference

Page 448 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp Schematics

Page 488 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 2px Schematic (Rev A)

