
Parallax Inc. - PBASIC2CI/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Active

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic2ci-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic2ci-ss-4431454
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embeddicroconicrocontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

2: Quick Start Guide

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 33

6) Type the line DEBUG “Hello World!” below the compiler directives:

' {$STAMP BS2}
' {$PBASIC 2.5}
DEBUG "Hello World!"

7) Download this program into the BASIC Stamp. You may select Run

ĺ Run from the menu bar, press CTRL-R from the keyboard, or click
on the Run Ź icon on the toolbar.

Figure 2.5: To run your program,
you may use the task bar menu or
the Run icon.

 Selecting Run → Run Using the Run toolbar icon

a) If the program is typed correctly, a progress bar window should

appear (perhaps very briefly) showing the download progress.
Then a Debug Terminal window should appear and display
"Hello World!"

Figure 2.6: Debug Terminal
displaying program output

b) If there is a syntax error in the program, the editor will highlight

the text in question and display an error message. Review the
error, fix the code and then try downloading again.

Quick Start Guide

Page 34 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

c) If the error reported a connection problem with the BASIC Stamp,
make sure the first line of code indicates the proper module name
and verify the programming cable connections, module
orientation (in the socket) and that it is properly powered, then try
downloading again.

8) Congratulations! You've just written and downloaded your first

BASIC Stamp program! The "Hello World!" text that appeared on the
screen was sent from the BASIC Stamp, back up the programming
cable, to the PC.

BASIC Stamp Architecture – Defining Arrays

Page 88 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

myBytes VAR Byte(10) ' Define 10-byte array
idx VAR Nib ' Define 4-bit var

FOR idx = 0 TO 9 ' Repeat with idx = 0, 1, 2...9
 myBytes(idx) = idx * 13 ' Write idx * 13 to each cell
NEXT

FOR idx = 0 TO 9 ' Repeat with idx = 0, 1, 2...9
 DEBUG ? myBytes(idx) ' Show contents of each cell
NEXT
STOP

If you run this program, DEBUG will display each of the 10 values stored
in the elements of the array: myBytes(0) = 0*13 = 0, myBytes(1) = 1*13 = 13,
myBytes(2) = 2*13 = 26 ... myBytes(9) = 9*13 = 117.

A word of caution about arrays: If you’re familiar with other BASICs and
have used their arrays, you have probably run into the “subscript out of
range” error. Subscript is another term for the index value. It is
out-of-range when it exceeds the maximum value for the size of the array.
For instance, in the example above, myBytes is a 10-cell array. Allowable
index numbers are 0 through 9. If your program exceeds this range,
PBASIC will not respond with an error message. Instead, it will access the
next RAM location past the end of the array. If you are not careful about
this, it can cause all sorts of bugs.

If accessing an out-of-range location is bad, why does PBASIC allow it?
Unlike a desktop computer, the BASIC Stamp doesn’t always have a
display device connected to it for displaying error messages. So it just
continues the best way it knows how. It’s up to the programmer (you!) to
prevent bugs. Clever programmers, can take advantage of this feature,
however, to perform tricky effects.

Another unique property of PBASIC arrays is this: You can refer to the 0th
cell of the array by using just the array’s name without an index value. For
example:

myBytes VAR Byte(10) ' Define 10-byte array

myBytes(0) = 17 ' Store 17 to 0th cell
DEBUG ? myBytes(0) ' Display contents of 0th cell
DEBUG ? myBytes ' Also displays 0th cell

All 2

BRANCH – BASIC Stamp Command Reference

Page 134 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (BRANCH.bs1)

' BRANCH.bs1
' This program shows how the value of idx controls the destination of the
' BRANCH instruction.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL idx = B2

Main:
 DEBUG "idx: ", #idx, " "
 BRANCH idx, (Task_0, Task_1, Task_2) ' branch to task
 DEBUG "BRANCH target error...", CR, CR ' ... unless out of range

Next_Task:
 idx = idx + 1 // 4 ' force idx to be 0..3
 GOTO Main

Task_0:
 DEBUG "BRANCHed to Task_0", CR
 GOTO Next_Task

Task_1:
 DEBUG "BRANCHed to Task_1", CR
 GOTO Next_Task

Task_2:
 DEBUG "BRANCHed to Task_2", CR
 GOTO Next_Task

Demo Program (BRANCH.bs2)

' BRANCH.bs2
' This program shows how the value of idx controls the destination of the
' BRANCH instruction.

' {$STAMP BS2}
' {$PBASIC 2.5}

idx VAR Nib

Main:
 DEBUG "idx: ", DEC1 idx, " "
 BRANCH idx, [Task_0, Task_1, Task_2] ' branch to task
 DEBUG "BRANCH target error...", CR, CR ' ... unless out of range

Next_Task:
 idx = idx + 1 // 4 ' force idx to be 0..3

1

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – CONFIGPIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 143

CONFIGPIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

CONFIGPIN Mode, PinMask

Function
Configure special properties of I/O pins.

• Mode is a variable/constant/expression (0 – 3), or one of four
predefined symbols, that specifies the I/O pin property to configure:
Schmitt Trigger, Logic Threshold, Pull-up Resistor or Output
Direction. See Table 5.5 for an explanation of Mode values.

• PinMask is a variable/constant/expression (1 – 65535) that indicates
how Mode is applied to I/O pins. Each bit of PinMask corresponds
to an individual I/O pin. A high bit (1) enables the Mode and a low
bit (0) disables the Mode on the corresponding I/O pin.

Quick Facts
Table 5.5: CONFIGPIN Quick
Facts.

 BS2px
0 (or SCHMITT): Schmitt Trigger
1 (or THRESHOLD): Logic Threshold
2 (or PULLUP): Pull-up Resistor

Mode Values

3 (or DIRECTION): Output Direction
Related Commands

(For DIRECTION Mode)
INPUT and OUTPUT, and the DIRx = # assignment statement

Explanation
The CONFIGPIN command enables or disables special I/O pin properties
on all 16 I/O pins at once. There are four properties, or modes, available:
Schmitt Trigger, Logic Threshold, Pull-up Resistor, and Output Direction.
Each I/O pin on the BS2px contains special hardware dedicated to each of
these properties.

By default, all BASIC Stamp I/O pins are set to inputs. Enabling the
Output Direction mode sets an I/O pin’s direction to output. Disabling
the Output Direction mode sets an I/O pin’s direction to input. This has
the same effect as using the OUTPUT or INPUT commands, or the
DIRx = # assignment statement to configure I/O pin directions. The
following is an example of the CONFIGPIN command using the Output
Direction mode:

CONFIGPIN DIRECTION, %0000000100010011

OUTPUT DIRECTION.

DATA – BASIC Stamp Command Reference

Page 154 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

DATA uses a counter, called a pointer, to keep track of available EEPROM
addresses. The value of the pointer is initially 0. When a program is
downloaded, the DATA directive stores the first byte value at the current
pointer address, then increments (adds 1 to) the pointer. If the program
contains more than one DATA directive, subsequent DATAs start with the
pointer value left by the previous DATA. For example, if the program
contains:
DATA 72, 69, 76, 76, 79
DATA 104, 101, 108, 108, 111

The first DATA directive will start at location 0 and increment the pointer
for each data value it stores (1, 2, 3, 4 and 5). The second DATA directive
will start with the pointer value of 5 and work upward from there. As a
result, the first 10 bytes of EEPROM will look like the following:

 EEPROM Location (address)
 0 1 2 3 4 5 6 7 8 9
Contents 72 69 76 76 79 104 101 108 108 111

Table 5.8: Example EEPROM
Storage.

What if you don’t want to store values starting at location 0? Fortunately,
the DATA directive has an option to specify the next location to use. You
can specify the next location number (to set the pointer to) by inserting a
DataItem in the form @x ;where x is the location number. The following
code writes the same data in Table 5.8 to locations 100 through 109:

DATA @100, 72, 69, 76, 76, 79, 104, 101, 108, 108, 111

In this example, the first DataItem is @100. This tells the DATA directive to
store the following DataItem(s) starting at location 100. All the DataItems to
the right of the @100 are stored in their respective locations (100, 101,
102… 109).

In addition, the DATA directive allows you to specify new starting
locations at any time within the DataItem list. If, for example, you wanted
to store 56 at location 100 and 47 at location 150 (while leaving every other
location intact), you could type the following:

DATA @100, 56, @150, 47

If you have multiple DATA directives in your program, it may be difficult
to remember exactly what locations contain the desired data. For this
reason, the DATA directive can optionally be prefixed with a unique

THE DATA POINTER (COUNTER).

WRITING DATA TO OTHER LOCATIONS.

AUTOMATIC CONSTANTS FOR DEFINED
DATA.

5: BASIC Stamp Command Reference – DATA

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 155

symbol name. This symbol becomes a constant that is set equal to the
location number of the first byte of data within the directive. For example,

MyNumbers DATA @100, 72, 73

This would store the values 72 and 73 starting with location 100 and will
create a constant, called MyNumbers, which is set equal to 100. Your
program can then use the MyNumbers constant as a reference to the start of
the data within a READ or WRITE command. Each DATA directive can
have a unique symbol preceding it, allowing you to reference the data
defined at different locations.

There may be a time when you wish to reserve a section of EEPROM for
use by your BASIC code, but not necessarily store data there to begin with.
To do this, simply specify a DataItem within parentheses, as in:

DATA @100, (20)

The above DATA directive will reserve 20 bytes of EEPROM, starting with
location 100. It doesn’t store any values there, rather it simply leaves the
data as it is and increments DATA’s location pointer by 20. A good reason
to do this is when you have a program already downloaded into the
BASIC Stamp that has created or manipulated some data in EEPROM. To
protect that section of EEPROM from being overwritten by your next
program (perhaps a new version of the same program) you can reserve the
space as shown above. The EEPROM’s contents from locations 100 to 119
will remain intact. NOTE: This only "reserves" the space for the program
you are currently downloading; the BASIC Stamp does not know to
"reserve" the space for future programs. In other words, make sure use
this feature of the DATA directive in every program you download if you
don't want to risk overwriting valuable EEPROM data.

It is important to realize that EEPROM is not overwritten during
programming unless it is needed for program storage, or is filled by a
DATA directive specifying data to be written. During downloading,
EEPROM is always written in 16-byte sections if, and only if, any
location within that section needs writing.

DATA can also store the same number in a block of consecutive locations.
This is similar to reserving a block of EEPROM, above, but with a value
added before the first parenthesis.

RESERVING EEPROM LOCATIONS.

WRITING A BLOCK OF THE SAME VALUE.

IMPORTANT CONCEPT: HOW DATA AND
PROGRAMS ARE DOWNLOADED INTO
EEPROM.

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 161

After running the above code, "x = $4B" and "x = %01001011" should
appear on the screen. To display hexadecimal or binary values without
the "symbol = " preface, use the value formatter (#) before the $ and %, as
shown below:

SYMBOL x = B2

x = 75
DEBUG #x, "as HEX is ", #$x ' displays "75 as HEX is $4B"
DEBUG #x, "as BINARY is ", #%x ' displays "75 as BINARY is %01001011"

To display a number as its ASCII character equivalent, use the ASCII
formatter (@).

SYMBOL x = B2

x = 75
DEBUG @x

Table 5.10: DEBUG Formatters for
the BASIC Stamp 1.

Formatter Description

Suppresses the "symbol = x" format and displays only the 'x' value.
The default format is decimal but may be combined with any of the
formatters below (ex: #x to display: x value)

@
Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

$ Hexadecimal text.
% Binary text.

Two pre-defined symbols, CR and CLS, can be used to send a carriage-
return or clear-screen command to the Debug Terminal. The CR symbol
will cause the Debug Terminal to start a new line and the CLS symbol will
cause the Debug Terminal to clear itself and place the cursor at the top-left
corner of the screen. The following code demonstrates this.

DEBUG "You can not see this.", CLS, "Here is line 1", CR, "Here is line 2"

When the above is run, the final result is "Here is line 1" on the first line of
the screen and "Here is line 2" on the second line. You may or may not
have seen "You can not see this." appear first. This is because it was
immediately followed by a clear-screen symbol, CLS, which caused the
display to clear the screen before displaying the rest of the information.

NOTE: The rest of this discussion does not apply to the BASIC Stamp 1.

USING CR AND CLS (BS1).

DISPLAYING ASCII CHARACTERS (BS1).

5: BASIC Stamp Command Reference – DO...LOOP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 177

Note that the WHILE test (loop runs WHILE Condition is True) and UNTIL
test (loop runs UNTIL Condition is True) can be interchanged, but they are
generally used as illustrated above.

Demo Program (DO-LOOP.bs2)

' DO-LOOP.bs2
' This program creates a little guessing game. It starts by creating
' a (pseudo) random number between 1 and 10. The inner loop will run
' until the answer is guessed or 10 tries have been attempted. The
' outer loop has no condition and will cause the inner loop code to
' run until the BASIC Stamp is reprogrammed.

' {$STAMP BS2}
' {$PBASIC 2.5}

rVal VAR Word ' random value
answer VAR Byte ' game answer
guess VAR Byte ' player guess
tries VAR Nib ' number of tries

Main:
 DO
 RANDOM rVal
 answer = rVal.LOWBYTE */ 10 + 1 ' create 1 - 10 answer
 tries = 0

 DO ' get answer until out of tries
 DEBUG CLS,
 "Guess a number (1 - 10): "
 DEBUGIN DEC guess ' get new guess
 tries = tries + 1 ' update tries count
 LOOP UNTIL ((tries = 10) OR (guess = answer))

 IF (guess = answer) THEN ' test reason for loop end
 DEBUG CR, "You got it!"
 ELSE
 DEBUG CR, "Sorry ... the answer was ", DEC answer, "."
 ENDIF
 PAUSE 1000
 LOOP ' run again
 END

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

All 2

I2CIN – BASIC Stamp Command Reference

Page 220 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to
1 – 4 digits

-, 0 through 9,
A through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to
1 – 4 digits

$, 0 through 9,
A through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through
9, A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited to
1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number
must be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

Table 5.34: I2CIN Conversion
Formatters.

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data, see Appendix C.

5: BASIC Stamp Command Reference – I2CIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 221

The I2C protocol has a well-defined standard for the information passed at
the start of each transmission. First of all, any information sent must be
transmitted in units of 1 byte (8-bits). The first byte, we call the SlaveID, is
an 8-bit pattern whose upper 7-bits contain the unique ID of the device
you wish to communicate with. The lowest bit indicates whether this is a
write operation (0) or a read operation (1). Figure 5.9 shows this format.

Figure 5.9: Slave ID Format.

7

A6

6

A5

5

A4

4

A3

3

A2

2

A1

1

A0

0

R/W

The second byte, immediately following the SlaveID, is the optional
Address. It indicates the 8-bit address (within the device) containing the
data you would like to receive. Note that the Address argument is optional
and may be left unspecified for devices that don't require an Address
argument.

Some devices require more than 8 bits of address. For this case, the
optional LowAddress argument can be used for the low-byte of the required
address. When using the LowAddress argument, the Address argument is
effectively the high-byte of the address value. For example, if the entire
address value is 2050, use 8 for the Address argument and 2 for the
LowAddress argument (8 * 256 + 2 = 2050).

Following the last address byte is the first byte of data. This data byte may
be transmitted or received by the BASIC Stamp. In the case of the I2CIN
command, this data byte is transmitted by the device and received by the
BASIC Stamp. Additionally, multiple data bytes can follow the address,
depending on the I2C device. Note that every device has different
limitations regarding how may contiguous bytes they can receive or
transmit in one session. Be aware of these device limitations and program
accordingly.

Every I2C transmission session begins with a Start Condition and ends
with a Stop Condition. Additionally, immediately after every byte is
transmitted, an extra clock cycle is used to send or receive an
acknowledgment signal (ACK). All of these operations are automatically
taken care of by the I2CIN command so that you need not be concerned
with them. The general I2C transmission format is shown in Figure 5.10.

THE I2C PROTOCOL FORMAT.

USING LONG ADDRESSES.

START AND STOP CONDITIONS AND

ACKNOWLEDGMENTS.

5: BASIC Stamp Command Reference – ON

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 289

ON BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

ON Offset GOTO Address1, Address2, ...AddressN

ON Offset GOSUB Address1, Address2, ...AddressN

Function
GOTO or GOSUB to the Address specified by Offset (if in range). ON is
similar in operation to BRANCH with the exception that program
execution can optionally return to the line following ON (if using
ON…GOSUB).

• Offset is a variable/constant/expression (0 - 255) that specifies the
index (0 - N) of the address, in the list, to GOTO or GOSUB to.

• Address is a label that specifies where to go for a given Offset. ON
will ignore any list entries beyond offset 255.

Quick Facts
Table 5.61: ON Quick Facts.

 All BS2 Models
Limit of Address

Entries
256

Maximum GOSUBs
per Program

255 (each ON…GOSUB counts as one GOSUB,
regardless of number of address list entries)

Maximum Nested
GOSUBS

4

Related Commands BRANCH, GOTO and GOSUB

Explanation
The ON instruction is like saying, “Based ON the value of Offset, GOTO or
GOSUB to one of these Addresses.” ON is useful when you want to write
something like this:

IF (value = 0) THEN GOTO Case_0 ' "GOTO" jump table
IF (value = 1) THEN GOTO Case_1
IF (value = 2) THEN GOTO Case_2

- or -

IF (value = 0) THEN GOSUB Case_0 ' "GOSUB" jump table
IF (value = 1) THEN GOSUB Case_1
IF (value = 2) THEN GOSUB Case_2

NOTE: ON requires PBASIC 2.5. All 2

All 2

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 295

OWIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OWIN Pin, Mode, [InputData]

Function
Receive data from a device using the 1-Wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-Wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWIN command and will be set to input
mode by the end of the OWIN command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• InputData is a list of variables and modifiers that tells OWIN what to
do with incoming data. OWIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
Table 5.63: OWIN Quick Facts.

 BS2p, BS2pe, and BS2px
Receive Rate Approximately 20 kbits/sec (low speed, not including reset pulse)

Special Notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resistor.
The BS2pe is not capable of high-speed transfers.

Related Commands OWOUT

Explanation
The 1-Wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-Wire devices. The OWIN command
allows the BASIC Stamp to receive data from a 1-wire device.

The following is an example of the OWIN command:

result VAR Byte

OWIN 0, 1, [result]

A SIMPLE OWIN EXAMPLE.

5: BASIC Stamp Command Reference – RANDOM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 359

RANDOM BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

RANDOM Variable

Function
Generate a pseudo-random number.

• Variable is a variable (usually a word) whose bits will be scrambled
to produce a random number. Variable acts as RANDOM's input
and its result output. Each pass through RANDOM stores the next
number, in the pseudorandom sequence, in Variable.

Explanation
RANDOM generates pseudo-random numbers ranging from 0 to 65535.
They’re called “pseudo-random” because they appear random, but are
generated by a logic operation that uses the initial value in Variable to "tap"
into a sequence of 65535 essentially random numbers. If the same initial
value, called the "seed", is always used, then the same sequence of
numbers is generated. The following example demonstrates this:

SYMBOL result = W1

Main:
 result = 11000
 RANDOM result
 DEBUG result
 GOTO Main

-- or --

result VAR Word

Main:
 result = 11000
 RANDOM result
 DEBUG DEC ? result
 GOTO Main

In this example, the same number would appear on the screen over and
over again. This is because the same seed value was used each time;
specifically, the first line of the loop sets result to 11,000. The RANDOM
command really needs a different seed value each time. Moving the
"result =" line out of the loop will solve this problem, as in:

1 All 2

1

All 2

RANDOM – BASIC Stamp Command Reference

Page 360 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

SYMBOL result = W1

Setup:
 result = 11000

Main:
 RANDOM result
 DEBUG result
 GOTO Main

-- or --

result VAR Word

Setup:
 result = 11000

Main:
 RANDOM result
 DEBUG DEC ? result
 GOTO Main

Here, result is only initialized once, before the loop. Each time through the
loop, the previous value of result, generated by RANDOM, is used as the
next seed value. This generates a more desirable set of pseudorandom
numbers.

In applications requiring more apparent randomness, it's necessary to
"seed" RANDOM with a more random value every time. For instance, in
the demo program below, RANDOM is executed continuously (using the
previous resulting number as the next seed value) while the program
waits for the user to press a button. Since the user can’t control the timing
of button presses very accurately, the results approach true randomness.

Figure 5.32: RANDOM Button
Circuit.

1

All 2

5: BASIC Stamp Command Reference – REVERSE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 379

Main:
 PAUSE 250 ' 1/4th second pause
 REVERSE 0 ' reverse pin 0 I/O direction
 GOTO Main ' do forever

RUN – BASIC Stamp Command Reference

Page 386 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

SELECT...CASE – BASIC Stamp Command Reference

Page 388 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Explanation
SELECT…CASE is an advanced decision-making structure that is often
used to replace compound IF…THEN…ELSE structures. SELECT…CASE
statements are good for performing one of many possible actions
depending on the value of a single expression.

Upon reaching a SELECT…CASE statement, the BASIC Stamp will
evaluate Expression once and then compare it to the Condition(s) of each
CASE until it finds a “case” that evaluates to True, or it runs out of cases to
compare to. As soon as a True case is found, the BASIC Stamp executes
that CASE’s Statement(s) and then continues execution on the program line
following ENDSELECT.

To understand how SELECT…CASE statements work, it helps to review
how IF…THEN statements behave. The condition argument of IF…THEN
takes the form:

Value1 Comparison Value2

and Value1 is “compared” to Value2 using the Comparison operator.

In SELECT...CASE statements, the Value1 component is always Expression
and so the format of Condition(s) is simplified to:

 { Comparison } Value

Comparison is optional and can be any of the comparison operators shown
in Table 5.93. If Comparison is not specified, it is an implied Equal (=)
operator. Value can be a variable, constant or expression.

Comparison Operator Symbol Definition
= Equal

<> Not Equal
> Greater Than
< Less Than

>= Greater Than or Equal To
<= Less Than or Equal To

Table 5.93: Comparison Operators
for SELECT...CASE.

Condition(s) also has a special, additional format that can be used to
indicate a range of sequential values:

SERIN - BASIC Stamp Command Reference

Page 414 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000
Open CON $8000
Baud CON T38K4 + Inverted

letter VAR Byte

Main:
 DO
 SERIN SI\FC, Baud, [letter] ' receive one byte
 DEBUG letter ' display on screen
 PAUSE 1000 ' wait one second
 LOOP ' repeat forever
 END

5: BASIC Stamp Command Reference – SHIFTIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 433

Here is a simple example:

result VAR Byte

SHIFTIN 0, 1, MSBPRE, [result]

Here, the SHIFTIN command will read I/O pin 0 (Dpin) and will generate
a clock signal on I/O 1 (Cpin). The data that arrives on Dpin depends on
the device connected to it. Let's say, for example, that a shift register is
connected and has a value of $AF (10101111) waiting to be sent.
Additionally, let's assume that the shift register sends out the most
significant bit first, and the first bit is on Dpin before the first clock pulse
(MSBPRE). The SHIFTIN command above will generate eight clock pulses
and sample the data pin (Dpin) eight times. Afterward, the result variable
will contain the value $AF.

By default, SHIFTIN acquires eight bits, but you can set it to shift any
number of bits from 1 to 16 with the Bits argument. For example:

result VAR Byte

SHIFTIN 0, 1, MSBPRE, [result\4]

Will only input the first 4 bits. In the example discussed above, the result
variable will be left with %1010.

Some devices return more than 16 bits. For example, most 8-bit shift
registers can be daisy-chained together to form any multiple of 8 bits; 16,
24, 32, 40... To solve this, you can use a single SHIFTIN instruction with
multiple variables. Each variable can be assigned a particular number of
bits with the Bits argument. As in:

resultLo VAR Word
resultHi VAR Nib

SHIFTIN 0, 1, MSBPRE, [resultHi\4, resultLo\16]

The above code will first shift in four bits into resultHi and then 16 bits into
resultLo. The two variables together make up a 20 bit value.

A SIMPLE SHIFTIN EXAMPLE.

CONTROLLING THE NUMBER OF BITS

RECEIVED.

