
Parallax Inc. - PBASIC2E/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic2e-p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic2e-p-4425562
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcoontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers


Using the BASIC Stamp Editor  

Page 46  �  BASIC Stamp Syntax and Reference Manual  2.2 �  www.parallax.com 

(such as two BS2s) on two ports and you have two different PBASIC 
programs to download (one to each BS2). Without this directive, 
developing and downloading in this case would be a tedious task of 
always answering the "which BASIC Stamp?" prompt.  
 
The $PORT directive can be automatically inserted or modified by 
selecting the appropriate port from the Directive �:  Port menu. The COM 
ports listed in the Directive �:  Port menu are automatically updated any 
time a change is made to the exiting computer hardware or to the available 
ports list.  See the Setting Preferences section which begins on page 55 for 
more information. 
 
Special Functions 
 
The Identify function will identify which BASIC Stamp model, if any, is 
detected on any available communications port.  This information is 
displayed in the Identification window  (Figure 3.10), which can greatly aid 
in troubleshooting your connection to your BASIC Stamp module.  
Activate this function by selecting Run �:  Identify, by pressing Ctrl-I, or 
pressing F6.    
 

 

Figure 3.10:  The Identification 
Window. 
 

 
The Port column shows the available ports (those that the BASIC Stamp 
Editor is trying to access).  You can modify the available Port List by 
clicking on the Edit Port List button.  Modifying this list only affects which 
ports the BASIC Stamp Editor tries to use; it does not affect which serial 
ports are installed on your computer.  It is recommended that you delete 
all known modem ports and any problematic ports from this list. 

THE IDENTIFICATION FUNCTION . 



3: Using the BASIC Stamp Editor 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 71 

Lets look at the syntax and examples for each conditional compile 
directive. For an explanation of syntax conventions, see page 128. 
 
#DEFINE Symbol { = Value } 
 
#DEFINE allows the programmer to create custom, compile-time, symbols 
for use within conditional compile control structures.  

• Symbol  is a unique symbol name that will optionally represent 
a Value. 

• Value  is an optional constant/expression specifying the value 
of Symbol.  If the value parameter is omitted, Symbol is defined 
as true (-1).  

Example: 
 
' {$PBASIC 2.5} 
 
#DEFINE DebugMode 
 
#IF DebugMode #THEN DEBUG "Debugging." 
STOP 

 
In the example above, the #DEFINE statement defines DebugMode to be 
“true” (-1), since there is no Value argument provided.  The second line is 
another conditional compile statement, #IF…#THEN (see below for more 
information) which evaluates the state of DebugMode, determines it is true 
and then allows the following DEBUG statement to be compiled into the 
program.  The last line, STOP, is compiled into the program afterwards.  
The result of compiling this example is a program with only two 
executable statements, DEBUG "Debugging", CR and STOP.  The real 
power of this example, however, is more obvious when you comment out, 
or remove, the #DEFINE line.  Look at the next example, below: 
 
' {$PBASIC 2.5} 
 
' #DEFINE DebugMode 
 
#IF DebugMode #THEN DEBUG "Dubugging." 
STOP 

 
Here we commented out the #DEFINE line, effectively removing that line 
from the program.  This means that the symbol DebugMode will be 
undefined, and undefined conditional compile symbols are treated as 

#DEFINE SYNTAX. 



Using the BASIC Stamp Editor  

Page 72 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

False (0).  Upon compiling this example, the #IF…#THEN statement will 
evaluate DebugMode, which is False (because it is undefined) and then will 
not allow the DEBUG statement to be compiled.   Only the STOP 
command will be compiled into the program in this example.  This is a 
very powerful feature for quickly removing many DEBUG statements (or 
other statements) from a program when you’re done developing it, but 
leaving the possibility of re-enabling all those statements should further 
maintenance be required at a later time. 
 
The optional Value argument can be used, for example, to select modes of 
operation: 
 
' {$PBASIC 2.5} 
 
#DEFINE SystemMode = 2 
 
#IF SystemMode = 1 #THEN 
  HIGH 1 
#ELSE 
  LOW 1 
#ENDIF 
 

In the example above, the first line defines SystemMode to be equal to 2.  
The #IF…#THEN statement evaluates the state of SystemMode, determines 
it is 2, so the condition is false, and then it skips the statement after #THEN 
and allows the statement following #ELSE to be compiled into the 
program. 
 
Note, conditional compile directives are evaluated just before the program 
is compiled, so variables and named constants cannot be referenced within 
a conditional compile definition.  Compile-time symbols created with 
#DEFINE can, however, be referenced by conditional compile commands. 
 

#IF Condition(s) #THEN 
     Statement(s) 
 { #ELSE 
     Statement(s) } 
#ENDIF 
 

#IF...#THEN SYNTAX. 



4: BASIC Stamp Architecture – *, ** 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 111 

 
SYMBOL value1  = W0 
SYMBOL value2  = W1 
 
value1 = 1000 
value2 = 19 
value1 = value1 * value2  ' Multiply value1 by value2  
DEBUG  value1    ' Show the result (19000)  
 

-- or -- 
 
value1 VAR Word 
value2 VAR Word 
value1 = 1000 
value2 = - 19 
value1 = value1 * value2  ' Multiply value1 by value2   
DEBUG  SDEC  ?  value1  ' Show the result (-19000) 
   

The Multiply High operator (**) multiplies variables and/or constants, 
returning the high 16 bits of the result. When you multiply two 16-bit 
values, the result can be as large as 32 bits. Since the largest variable 
supported by PBASIC is a word (16 bits), the highest 16 bits of a 32-bit 
multiplication result are normally lost. The ** (double-star) instruction 
gives you these upper 16 bits. For example, suppose you multiply 65000 
($FDE8) by itself. The result is 4,225,000,000 or $FBD46240. The * (star, or 
normal multiplication) instruction would return the lower 16 bits, $6240. 
The ** instruction returns $FBD4.  
 
SYMBOL value1  = W0 
SYMBOL value2  = W1 
 
value1 = $FDE8 
value2 = value1 ** value1 ' Multiply $FDE8 by itself 
DEBUG  $value2    ' Return high 16 bits ($FBD4)  
 

-- or -- 
 
value1 VAR Word 
value2 VAR Word 
 
value1 = $FDE8 
value2 = value1 ** value1 ' Multiply $FDE8 by itself 
DEBUG  HEX  ?  value2  ' Return high 16 bits  ($FBD4) 
  

An interesting application of the ** operator allows you no multiply a 
number by a fractional value less than one.  The fraction must be 
expressed in units of 1/65536.   To find the fractional ** argument, 

MULTIPLY HIGH: ** 

1

All 2

1 All 2

1

All 2



5: BASIC Stamp Command Reference – BRANCH 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 133 

BRANCH BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px 

BRANCH Offset, ( Address0, Address1, ...AddressN ) 
BRANCH Offset, [ Address0, Address1, ...AddressN ] 
 
Function  
Go to the address specified by offset (if in range).  

• Offset is a variable/constant/expression (0 – 255) that specifies the 
index of the address, in the list, to branch to  (0 – N).  

• Addresses are labels that specify where to go.  BRANCH will ignore 
any list entries beyond offset 255. 

Quick Facts 
Table 5.3: BRANCH Quick Facts.  BS1 All BS2 Models 

Limit of  
Address Entries 

Limited only by memory 256 

Related  
Commands 

None ON...GOTO 
 

 
Explanation 
The BRANCH instruction is useful when you want to write something like 
this:  
 
IF value = 0 THEN Case_0              ' when value is 0, jump to Case_0 
IF value = 1 THEN Case_1              ' when value is 1, jump to Case_1 
IF value = 2 THEN Case_2              ' when value is 2, jump to Case_2 
 

You can use BRANCH to organize this into a single statement:  
  
BRANCH value, [Case_0, Case_1, Case_2] 
 

This works exactly the same as the previous IF...THEN example. If the 
value isn’t in range (in this case if value is greater than 2), BRANCH does 
nothing and the program continues with the next instruction after 
BRANCH. 
  
BRANCH can be teamed with the LOOKDOWN instruction to create a 
simplified SELECT...CASE statement.  See LOOKDOWN for an example.  
 

BS1 syntax not shown here. 

NOTE:  Expressions are not allowed as 
arguments on the BS1. 

1

All 2

1

1



5: BASIC Stamp Command Reference – DATA 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 153 

DATA BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px 

(See EEPROM) 
{ Symbol } DATA DataItem  { , DataItem… } 
 
Function  
Write data to the EEPROM during program download.  

• Symbol is an optional, unique symbol name that will be 
automatically defined as a constant equal to the location number of 
the first data item. 

• DataItem is a constant/expression (0 – 65535) indicating a value, and 
optionally how to store the value. 

Quick Facts 
Table 5.7: DATA Quick Facts.  
 
 

 All BS2 Models 

Special Notes Writes values to EEPROM during download in blocks of 16 bytes.  Writes 
byte or word-sized values.  Can be used to decrease program size. 

Related 
Commands 

READ and WRITE 
 

 
Explanation 
When you download a program into the BASIC Stamp, it is stored in the 
EEPROM starting at the highest address (2047) and working towards the 
lowest address.  Most programs don’t use the entire EEPROM, so the 
lower portion is available for other uses.  The DATA directive allows you 
to define a set of data to store in the available EEPROM locations.  It is 
called a “directive” rather than a “command” because it performs an 
activity at compile-time rather than at run-time (i.e.: the DATA directive is 
not downloaded to the BASIC Stamp, but the data it contains is 
downloaded). 
 
The simplest form of the DATA directive is something like the following: 
 
DATA          100, 200, 52, 45 
 

This example, when downloaded, will cause the values 100, 200, 52 and 45 
to be written to EEPROM locations 0, 1, 2 and 3, respectively.  You can 
then use the READ and WRITE commands in your code to access these 
locations and the data you’ve stored there. 
 

WRITING SIMPLE, SEQUENTIAL DATA. 

1

All 2



DEBUG – BASIC Stamp Command Reference 

Page 166 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

displays "00165".  Notice that leading zeros?  The display is "fixed" to 5 
digits, no more and no less.  Any unused digits will be filled with zeros. 
 
Using DEC4 in the same code would display "0165".  DEC3 would display 
"165".  What would happen if we used DEC2?  Regardless of the number, 
the BASIC Stamp will ensure that it is always the exact number of digits 
you specified.  In this case, it would truncate the "1" and only display "65".  
 
Using the fixed-width version of the formatters in the Signed/Unsigned 
code above, may result in the following code: 
 
x       VAR     Word 
 
x = -65 
DEBUG "Signed:   ", SDEC5 x, "  ", ISHEX4 x, "  ", ISBIN16 x, CR 
DEBUG "Unsigned: ", DEC5 x, "  ", IHEX4 x, "  ", IBIN16 x 
 

and displays: 
 
Signed:    -00065    -$0041    -%0000000001000001 
Unsigned:  65471    $FFBF    %1111111110111111 

 
Note:  The columns don't line up exactly (due to the extra "sign" characters 
in the first row), but it certainly looks better than the alternative. 
 
If you have a string of characters to display (a byte array), you can use the 
STR formatter to do so.  The STR formatter has two forms (as shown in 
Table 5.11) for variable-width and fixed-width data.  The example below is 
the variable-width form. 
 
x       VAR     Byte(5) 
 
x(0) = "A" 
x(1) = "B" 
x(2) = "C" 
x(3) = "D" 
x(4) = 0 
DEBUG STR x 
 

This code displays "ABCD" on the screen.  In this form, the STR formatter 
displays each character contained in the byte array until it finds a 
character that is equal to 0 (value 0, not "0").  This is convenient for use 
with the SERIN command's STR formatter, which appends 0's to the end 
of variable-width character string inputs.  NOTE:  If your byte array 

DISPLAYING STRINGS (BYTE ARRAYS). 

VARIABLE-WIDTH STRINGS. 



5: BASIC Stamp Command Reference – I2CIN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 219 

Figure 5.8: Example Circuit for the 
I2CIN command and a 24LC16B 
EEPROM.   
 
Note: The 4.7 kΩ 
resistors  are required for the 
I2CIN command to function 
properly. 

Vss

P1
Vdd

4.7 kΩ

P0

24LC16B
(DIP)

4.7 kΩ

SDA

SCL

1
2
3
4

8
7
6
5

 
 
The I2CIN command's InputData argument is similar to the SERIN 
command's InputData argument.  This means data can be received as 
ASCII character values, decimal, hexadecimal and binary translations and 
string data as in the examples below. (Assume the 24LC16B EEPROM is 
used and it has the string, "Value: 3A:101" stored, starting at location 0). 
 
value   VAR     Byte(13) 
 
I2CIN 0, $A1, 0, [value]            ' receive the ASCII value for "V" 
I2CIN 0, $A1, 0, [DEC value]        ' receive the number 3 
I2CIN 0, $A1, 0, [HEX value]        ' receive the number $3A 
I2CIN 0, $A1, 0, [BIN value]        ' receive the number %101 
I2CIN 0, $A1, 0, [STR value\13]     ' receive the string "Value: 3A:101" 
 

Table 5.33 and Table 5.34 below list all the available special formatters and 
conversion formatters available to the I2CIN command.  See the SERIN 
command for additional information and examples of their use. 
 

Table 5.33: I2CIN Special 
Formatters. 
 

Special Formatter Action 
SKIP  Length Ignore Length bytes of characters. 

SPSTR  L 
Input a character stream of length L bytes (up to 126) into 
Scratch Pad RAM, starting at location 0. Use GET to retrieve 
the characters. 

STR ByteArray  \L  {\E} 
Input a character string of length L into an array.  If specified, 
an end character E causes the string input to end before 
reaching length L.  Remaining bytes are filled with 0s (zeros). 

WAITSTR  ByteArray {\L} 

Wait for a sequence of bytes matching a string stored in an 
array variable, optionally limited to L characters.  If the 
optional L argument is left off, the end of the array-string must 
be marked by a byte containing a zero (0).  

 
 
 

RECEIVING FORMATTED DATA. 



5: BASIC Stamp Command Reference – I2COUT 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 225 

I2COUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px 

I2COUT  Pin, SlaveID, { Address { \LowAddress }, } [ OutputData ] 
 
Function  
Send data to a device using the I2C protocol.  

• Pin  is a variable/constant/expression (0 or 8) that specifies which 
I/O pins to use.  I2C devices require two I/O pins to communicate.  
The Pin argument serves a double purpose; specifying the first pin 
(for connection to the chip's SDA pin) and, indirectly, the other 
required pin (for connection to the chip's SCL pin).  See explanation 
below.  Both I/O pins will be toggled between output and input 
mode during the I2COUT command and both will be set to input 
mode by the end of the I2COUT command. 

• SlaveID  is a variable/constant/expression (0 – 255) indicating the 
unique ID of the I2C chip. 

• Address  is an optional variable/constant/expression (0 – 255) 
indicating the desired address within the I2C chip to send data to.  
The Address argument may be used with the optional LowAddress 
argument to indicate a word-sized address value.   

• LowAddress  is an optional variable/constant/expression (0 – 255) 
indicating the low-byte of the word-sized address within the I2C 
chip to receive data from.  This argument must be used along with 
the Address argument. 

• OutputData  is a list of variables, constants, expressions and 
formatters that tells I2COUT how to format outgoing data.  I2COUT 
can transmit individual or repeating bytes, convert values into 
decimal, hexadecimal or binary text representations, or transmit 
strings of bytes from variable arrays.  These actions can be combined 
in any order in the OutputData list. 

 



5: BASIC Stamp Command Reference – POLLRUN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 331 

POLLRUN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px 

POLLRUN  ProgramSlot 
 
Function  
Specify a program to run upon a polled-input event.  

• ProgramSlot  is a variable/constant/expression (0 – 7) that specifies 
the program slot to run when a polled-input event occurs. 

Quick Facts 
Table 5.80: POLLRUN Quick 
Facts. 
 

 BS2p, BS2pe, and BS2px 

Default 
ProgramSlot 

The default polled-run slot is 0.  If no POLLRUN command is given and a 
poll mode of 3 or 4 is set, the program in slot 0 will run in response to a 
polled-input event. 

Special Notes • If both polled-outputs and polled-run are active, the polled-output event 
will occur before the polled-run event. 

Useful SPRAM 
locations 

Locations 128 – 135 hold polled interrupt status. See Table 5.77 in the 
POLLMODE command section for more information. 

Related 
commands 

POLLMODE, POLLIN, POLLOUT, POLLWAIT and RUN 
 

 
Explanation 
The POLLRUN command is used to specify a program slot to run in 
response to a polled event. This activity can occur in between any two 
instructions within the rest of the PBASIC program. 
 
The "polling" commands allow the BASIC Stamp to respond to certain I/O 
pin events at a faster rate than what is normally possible through manual 
PBASIC programming.  The term "poll" comes from the fact that the 
BASIC Stamp's interpreter periodically checks the state of the designated 
polled-input pins.  It "polls" these pins after the end of each PBASIC 
command and before it reads the next PBASIC command from the user 
program; giving the appearance that it is polling "in the background".  
This feature should not be confused with the concept of interrupts, as the 
BASIC Stamp does not support true interrupts. 
 



5: BASIC Stamp Command Reference – PULSOUT 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 347 

PULSOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px 

PULSOUT Pin, Duration 
 
Function  
Generate a pulse on Pin with a width of Duration.   

• Pin  is a variable/constant/expression (0 – 15) that specifies the I/O 
pin to use. This pin will be set to output mode. 

• Duration is a variable/constant/expression (0 – 65535) that specifies 
the duration of the pulse.  The unit of time for Duration is described 
in Table 5.84. 

Quick Facts 
Table 5.84: PULSOUT Quick 
Facts. 
 
 

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px 
Duration units 10 µs 2 µs 2 µs 0.8 µs 0.8 µs 2 µs 0.8 µs 

Maximum 
Pulse Width 

655.35 ms 131.07 ms 131.07 ms 52.428 ms 52.428 ms 131.07 ms 52.428 ms

Related 
Command 

PULSIN 
 

 
Explanation 
PULSOUT sets Pin to output mode, inverts the state of that pin; waits for 
the specified Duration; then inverts the state of the pin again; returning the 
bit to its original state.  The unit of Duration is described in Table 5.84.  The 
following example will generate a 100 µs pulse on I/O pin 7 (of the BS2):  
 
PULSOUT 7, 50                           ' generate 100 us pulse on P7 
 

The polarity of the pulse depends on the state of the pin before the 
command executes.  In the example above, if pin 7 was low, PULSOUT 
would produce a positive (high) pulse.  If the pin was high, PULSOUT 
would produce a negative (low) pulse. 
 
If the pin is an input, the output state bit, OUT7 (PIN7 on the BS1) won’t 
necessarily match the state of the pin. What happens then?  For example:  
pin 7 is an input (DIR7 = 0) and pulled high by a resistor as shown in 
Figure 5.29a.  Suppose that pin 7 is low when we execute the instruction:  
 
PULSOUT 7, 5                            ' generate pulse on P7 
 

NOTE:  Expressions are not allowed as 
arguments on the BS1.  The range of 
the Pin argument on the BS1 is 0 – 7. 

CONTROLLING THE POLARITY OF THE 

PULSE. 

WATCH OUT FOR UNDESIRABLE PULSE 

GLITCHES.  

1 All 2

1



RANDOM – BASIC Stamp Command Reference 

Page 362 • BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com 

' heads and tails thrown. 
 
' {$STAMP BS2} 
' {$PBASIC 2.5} 
 
Btn             PIN     7                       ' button input 
 
flip            VAR     Word                    ' a random number 
coin            VAR     flip.BIT0               ' Bit0 of the random number 
trials          VAR     Byte                    ' number of flips 
heads           VAR     Byte                    ' throws that come up heads 
tails           VAR     Byte                    ' throws that come up tails 
btnWrk          VAR     Byte                    ' workspace for BUTTON 
 
 
Start: 
  DEBUG CLS, "Press button to start" 
 
Main: 
  FOR trials = 1 TO 100                         ' flip coin 100 times 
 
Hold: 
    RANDOM flip                                 ' randomize while waiting 
    BUTTON Btin, 0, 250, 100, btnWrk, 0, Hold   ' wait for button press 
    IF (coin = 0) THEN                          ' 0 = heads, 1 = tails 
      DEBUG CR, "Heads!" 
      heads = heads + 1                         ' increment heads counter 
    ELSE 
      DEBUG CR, "Tails..." 
      tails = tails + 1                         ' increment tails counter 
    ENDIF 
  NEXT 
 
Done: 
  DEBUG CR, CR, "Heads: ", DEC heads, " Tails: ", DEC tails 
  END 

 
 
 
 
 



5: BASIC Stamp Command Reference – RCTIME 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 365 

percent of the total change in voltage that they will undergo. More 
importantly, the value τ is used in the generalized RC timing calculation. 
Tau’s formula is just R multiplied by C:  
 
τ = R x C 
 
The general RC timing formula uses τ to tell us the time required for an 
RC circuit to change from one voltage to another:  
 
time  =  -τ * ( ln (Vfinal / Vinitial) ) 
 
In this formula ln is the natural logarithm; it’s a key on most scientific 
calculators.  Let’s do some math.  Assume we’re interested in a 10 k 
resistor and 0.1 µF cap.  Calculate τ:  
 
τ = (10 x 103) x (0.1 x 10-6) = 1 x 10-3  
 
The RC time constant is 1 x 10-3 or 1 millisecond. Now calculate the time 
required for this RC circuit to go from 5V to 1.4V (as in Figure 5.33a):  
 
time = -1 x 10-3 x (ln(1.4v / 5.0v)) = 1.273 x 10-3 

 
On the BS2, the unit of time is 2µs (See Table 5.87), that time (1.273 x 10-3) 
works out to 636 units. With a 10 kΩ resistor and 0.1 µF cap, RCTIME 
would return a value of approximately 635. Since Vinitial and Vfinal doesn't 
change, we can use a simplified rule of thumb to estimate RCTIME results 
for circuits like Figure 5.33a:  
 
RCTIME units = 635 x R (in kΩ) x C (in µF) 
 
Another handy rule of thumb can help you calculate how long to 
charge/discharge the capacitor before RCTIME. In the example above 
that’s the purpose of the HIGH and PAUSE commands. A given RC 
charges or discharges 98 percent of the way in 5 time constants (5 x R x C). 
In Figure 5.33, the charge/discharge current passes through the 220 Ω 
series resistor and the capacitor. So if the capacitor were 0.1 µF, the 
minimum charge/discharge time should be:  
 
Charge time = 5 x 220 x (0.1 x 10-6) = 110 x 10-6  

CALCULATING CHARGE AND DISCHARGE 

TIME. 

THE RC TIME EQUATION. 

DETERMINING HOW LONG TO CHARGE OR 
DISCHARGE THE CAPACITOR BEFORE 

EXECUTING RCTIME. 



5: BASIC Stamp Command Reference – RUN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 385 

  FOR idx = 0 TO 4                      ' read/display table values 
    READ (slotNum * 5) + idx, value 
    DEBUG DEC3 value, " " 
  NEXT 
  DEBUG CR 
  PAUSE 1000 
 
  RUN 1                                 ' run Slot 1 pgm 

 
 Demo Program (RUN2.bsx) 
 
' RUN2.bsx 
' This example demonstrates the use of the RUN command.  First, the SPRAM 
' location that holds the current slot is read using the GET command to 
' display the currently running program number.  Then a set of values  
' (based on the program number) are displayed on the screen.  Afterwards,  
' program number 0 is run. This program is a BS2sx project consisting of  
' RUN1.BSX and RUN2.BSX, but will run on all multi-slot BASIC Stamp models. 
 
' {$STAMP BS2sx} 
' {$PBASIC 2.5} 
 
#SELECT $STAMP                          ' set SPRAM of slot number 
  #CASE BS2 
    #ERROR "Multi-slot BASIC Stamp required." 
  #CASE BS2E, BS2SX 
    Slot        CON     63 
  #CASE BS2P, BS2PE, BS2PX 
    Slot        CON     127 
#ENDSELECT 
 
slotNum         VAR     Nib             ' current slot 
idx             VAR     Nib             ' loop counter 
value           VAR     Byte            ' value from EEPROM 
 
EEtable         DATA    100, 40, 80, 32, 90 
                DATA    200, 65, 23, 77, 91 
 
 
Setup: 
  GET Slot, slotNum                     ' read current slot 
  DEBUG  "Program #", DEC slotNum, CR   ' display 
 
Main: 
  FOR idx = 0 TO 4                      ' read/display table values 
    READ (slotNum * 5) + idx, value 
    DEBUG DEC3 value, " " 
  NEXT 
  DEBUG CR 
  PAUSE 1000 
 
  RUN 0                                 ' back to Slot 0 pgm 

NOTE:  This example program  was 
written for the BS2sx but can be used 
with the BS2e, BS2p, BS2pe, and 
BS2px. This program uses conditional 
compilation techniques; see Chapter 3 
for more information. 



5: BASIC Stamp Command Reference – SELECT...CASE 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 389 

 Value1 TO Value2 
 
This indicates a range of Value1 to Value2, inclusive.  For example, 20 TO 
23 means 20, 21, 22 and 23.  Similarly, “A” TO “F” means all the characters 
in the range “A” through “F”. 
 
Finally, multiple conditions can be included in a single CASE by 
separating them with commas ( , ).  For example,  
 
CASE  20, 25 TO 30, >100 

 
will evaluate to True if the Expression (from the SELECT statement) is 
equal to 20, or is in the range 25 through 30, or is greater than 100. 
 
An example will help clarify this function.  
 
'{$PBASIC 2.5} 
 
guess VAR WORD 
 
DEBUG "Guess my favorite number: "  ' prompt user 
 
DO 
  DEBUGIN DEC Guess    ' get answer 
 
  SELECT guess 
    CASE < 100     ' less than 100? 
      DEBUG CR, "Not even close. Higher." 
    CASE > 140     ' greater than 140? 
      DEBUG CR, "Too high." 
    CASE 100 TO 120, 126 TO 140  ' 100-120 or 126-140? 
      DEBUG CR, "Getting closer..." 
    CASE 123     ' 123? Got it! 
      DEBUG CR, "That’s it!  123!" 
      DEBUG CR, "Good Guessing!" 
      STOP 
    CASE 121 TO 125    ' close to 123? 
      DEBUG CR, "You’re so close!" 
  ENDSELECT 
 
  DEBUG CR, "Try again: "  ' encourage another try 
LOOP 

 
This program will ask the user to guess a number, store that value in guess 
and check the results in the SELECT statement.  If guess is less than 100, 
the first CASE is true and BASIC Stamp will display “Not even close. 



5: BASIC Stamp Command Reference – SERIN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 401 

The SERIN command can also be configured to wait for specified data 
before it retrieves any additional input.  For example, suppose a device 
that is attached to the BASIC Stamp is known to send many different 
sequences of data, but the only data you desire happens to appear right 
after the unique characters, “XYZ”.  The BS1 has optional Qualifier 
arguments for this purpose.  On all BS2 models, a special formatter called 
WAIT can be used for this.   
 
SYMBOL  serData = B2 
 
SERIN 1, N2400, ("XYZ"), #serData 
 

-- or -- 
 
serData VAR     Byte 
 
SERIN 1, 16780, [WAIT("XYZ"), DEC serData] 
 

The above code waits for the characters “X”, “Y” and “Z” to be received, 
in that order, and then it looks for a decimal number to follow.  If the 
device in this example were to send the characters “XYZ100” followed by 
a carriage return or some other non-decimal numeric character, the serData 
variable would end up with the number 100 after the SERIN line finishes.  
If the device sent some data other than “XYZ” followed by a number, the 
BASIC Stamp would continue to wait at the SERIN command. 
 
The BS1 will accept an unlimited number of Qualifiers.  All BS2 models will 
only accept up to six bytes (characters) in the WAIT formatter. 
 
Keep in mind that when we type “XYZ” into the SERIN command, the 
BASIC Stamp actually uses the ASCII codes for each of those characters for 
its tasks.  We could also have typed:  88, 89, 90 in place of “XYZ” and the 
code would run the same way since 88 is the ASCII code for the “X” 
character, 89 is the ASCII code for the “Y” character, and so on.  Also note, 
serial communication with the BASIC Stamp is case sensitive.  If the device 
mentioned above sent, “xYZ” or “xyZ”, or some other combination of 
lower and upper-case characters, the BASIC Stamp would have ignored it 
because we told it to look for “XYZ” (all capital letters). 
 
The BS1’s SERIN command is limited to above-mentioned features.  If you 
are not using a BS1, please continue reading about the additional features 
below. 

USING SERIN TO WAIT FOR SPECIFIC 

DATA BEFORE PROCESSING. 

USING ASCII CODES AND CASE 

SENSITIVITY. 

All 2
This is written with the BS2's Baudmode 
value.  Be sure to adjust the value for 
your BASIC Stamp. 

1

1



5: BASIC Stamp Command Reference – SERIN 

BASIC Stamp Syntax and Reference Manual  2.2 • www.parallax.com • Page 409 

' {$PBASIC 2.5} 
 
result          VAR     Word 
 
Main: 
  DO 
    SERIN 1, 24660, Bad_Data, 10000, No_Data, [DEC result] 
    DEBUG CLS, ? result 
  LOOP 
 
Bad_Data: 
  DEBUG CLS, "Parity error" 
  GOTO Main 
 
No_Data: 
  DEBUG CLS, "Timeout error" 
  GOTO Main 
 

When you design an application that requires serial communication 
between BASIC Stamp modules, you have to work within these 
limitations:  

• When the BASIC Stamp is sending or receiving data, it can’t 
execute other instructions.  

• When the BASIC Stamp is executing other instructions, it can’t 
send or receive data. The BASIC Stamp does not have a serial buffer as 
there is in PCs. At most serial rates, the BASIC Stamp cannot 
receive data via SERIN, process it, and execute another SERIN in 
time to catch the next chunk of data, unless there are significant 
pauses between data transmissions.  

 
These limitations can sometimes be addressed by using flow control; the 
Fpin option for SERIN and SEROUT (at baud rates of up to the limitation 
shown in Table 5.94). Through Fpin, SERIN can tell a BASIC Stamp sender 
when it is ready to receive data. (For that matter, Fpin flow control follows 
the rules of other serial handshaking schemes, but most computers other 
than the BASIC Stamp cannot start and stop serial transmission on a byte-
by-byte basis. That’s why this discussion is limited to communication 
between BASIC Stamp modules.) 
 
Here’s an example using flow control on the BS2 (data through I/O pin 1, 
flow control through I/O pin 0, 9600 baud, N8, noninverted): 
 
serData         VAR     Byte 
 
SERIN 1\0, 84, [serData] 

CONTROLLING DATA FLOW. 

All 2

All 2



SHIFTOUT – BASIC Stamp Command Reference 

Page 438  �  BASIC Stamp Syntax and Reference Manual  2.2 �  www.parallax.com 

74HC595

To P0

1

2

3

4

5

6

7

8

16

15

14

13

12

11

10

9

QB

QC

QD

QE

QF

QG

QH

GND

VCC

QA

DATA IN

OE

LATCH

CLK

RESET

SQH

Vss

LEDs 470  (all)� Vdd

Vdd

Vss

To P2

To P1

 

Figure 5.44:  Circuit for Demo 
Program SHIFTOUT.bs2. 
 

 
 
Demo Program (SHIFTOUT.bs2) 
 
’ SHIFTOUT.bs2 
’ This program uses the SHIFTOUT command to interface to the 74HC595 shift 
’ register as an 8-bit output port.  The ’595 requires a minimum of three 
’ inputs: data, clock, and latch. See the figure in the SHIFTOUT command 
’ description in the manual for wiring information. SHIFTOUT automatically 
’ handles the data and clock, pulsing the clock to shift data bits into the 
’ ’595. An extra step (pulsing the latch input) is required to move the 
’ shifted bits in parallel onto the ’595’s output pins. Note: this code  
’ does not control the output-enable or reset lines of the ’595. This means  
’ that before the BASIC Stamp first sends, the ’595’s output latches are  
’ turned on and may contain random data. In critical applications, you  
’ should hold output-enable high (disabled) until the BASIC Stamp can take 
’ control. 
 
’ {$STAMP BS2} 
’ {$PBASIC 2.5} 
 
Dpin            PIN     0                       ’ data pin to 74HC595 
Clk             PIN     1                       ’ shift clock to 74HC595 
Latch           PIN     2                       ’ latch 74HC595 outputs 
 
counter         VAR     Byte 
 
 
Setup: 
  LOW Latch                                     ’ initialize latch output 
 
’ This loop moves the 8-bit value ’counter’ onto the output lines of the 
’ ’595, pauses, then increments counter and repeats.  The data is shifted 

NOTE:  This example program can be 
used with all BS2 models by changing 
the $STAMP directive accordingly. 

All  2



5: BASIC Stamp Command Reference – STOP 

BASIC Stamp Syntax and Reference Manual  2.2 �  www.parallax.com �  Page 447  

STOP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px 

STO P 
 

Function  
Stop program execution. 
 
Quick Facts 

Table 5.120:  STOP Quick Facts. 
  
 

 All BS2 Models 
Related 

Command END 
 

 
Explanation 
STOP prevents the BASIC Stamp from executing any further instructions 
until it is reset. The following actions will reset the BASIC Stamp: 

1. Pressing and releasing the RESET button on the development 
board. 

2. Driving the RES pin low then letting it float (high). 
3. Downloading a new program 
4. Disconnecting then reconnecting the power. 

  
STOP differs from END in two respects:  

1. Stop does not put the BASIC Stamp into low-power mode. The 
BASIC Stamp draws just as much current as if it were actively 
running program instructions.  

2. The output glitch that occurs af ter a program has "ended" does not 
occur after a program has "stopped." 

 
Demo Program (STOP.bs2) 
 
’ STOP.bs2 
’ This program is similar to SLEEP.BS2 except that the LED will not blink 
’ since the BASIC Stamp does not go into low power mode.  Use the circuit 
’ shown in the description of the SLEEP command for this example. 
 
’ {$STAMP BS2} 
’ {$PBASIC 2.5} 
 
 
Main: 
  LOW 0                                 ’ turn LED on 
  STOP                                  ’ stop program 

All  2

NOTE:  This example program can be 
used with all BS2 models by changing 
the $STAMP directive accordingly. 

All  2



5: BASIC Stamp Command Reference – STORE 

BASIC Stamp Syntax and Reference Manual  2.2 �  www.parallax.com �  Page 453  

 
Main: 
  DEBUG "Flat Memory", CR, 
        "---------------------", CR, 
        "First Slot..... ", DEC LoSlot, CR, 
        "Last Slot...... ", DEC HiSlot, CR, 
        "Flat EE Size... ", DEC MemSize, CR, CR 
 
  PAUSE 2000 
  DEBUG "Writing to flat Memory...", CR 
  PAUSE 1000 
  FOR eeAddr = 0 TO (MemSize - 1) STEP 128      ’ step through "flat" EE 
    value = eeAddr * 2                          ’ generate value 
    GOSUB Write_Word                            ’ write it 
    GET 127, slot                               ’ get R/W slot 
    DEBUG "--> Location: ", DEC5 eeAddr, "   ", ’ show "flat" address 
          "Value: ", DEC5 value, "   ",         ’ show value 
          "(", DEC slot.NIB1, ")", CR           ’ show slot 
  NEXT 
  DEBUG CR 
 
  DEBUG "Reading from flat Memory...", CR 
  PAUSE 1000 
  FOR eeAddr = 0 TO (MemSize - 1) STEP 128 
    GOSUB Read_Word                             ’ read value from EE 
    GET 127, slot                               ’ get W/R slot 
    DEBUG "<-- Location: ", DEC5 eeAddr, "   ", 
          "Value: ", DEC5 value, "   ", 
          "(", DEC slot.NIB1, ")  " 
     IF (value <> (2 * eeAddr)) THEN            ’ verify location 
      DEBUG "- Error" 
    ENDIF 
    DEBUG CR 
  NEXT 
  END 
 
Write_Word: 
’ NOTE: only use even-byte eeAddr with this routine 
  STORE (eeAddr >> 11) + LoSlot                 ’ set slot 
  WRITE eeAddr, Word value                      ’ write value 
  RETURN 
 
Read_Word: 
’ NOTE: only use even-byte eeAddr with this routine 
  STORE (eeAddr >> 11) + LoSlot                 ’ set slot 
  READ eeAddr, Word value                       ’ read value 
  RETURN 
 
 
 
 


