
Parallax Inc. - PBASIC2E/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic2e-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic2e-ss-4431455
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Introduction to the BASIC Stamp

Page 14 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Stamp 2 OEM is available in either an assembled form or a kit form. These
three packages are functionally equivalent.

In addition to the dual-inline and OEM packages, there are prototyping
boards available that feature a surface mounted BS2. Please check
www.parallax.com → Products → Development Boards for product
descriptions.

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS
System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

General-purpose I/O pins: each can sink 25 mA and source 20
mA. However, the total of all pins should not exceed 50 mA (sink)
and 40 mA (source) if using the internal 5-volt regulator. The total
per 8-pin groups (P0 – P7 or P8 – 15) should not exceed 50 mA
(sink) and 40 mA (source) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 VSS
System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN

Unregulated power in: accepts 5.5 - 15 VDC (6-40 VDC on BS2-
IC Rev. e, f, and g), which is then internally regulated to 5 volts.
Must be left unconnected if 5 volts is applied to the VDD (+5V)
pin.

Table 1.2: BASIC Stamp 2 Pin
Descriptions.

See the "BASIC Stamp Programming Connections" section on page 27 for
more information on the required programming connections between the
PC and the BASIC Stamp.

Using the BASIC Stamp Editor

Page 36 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

editor will have its own tab at the top of the page labeled with the name of
the file, as seen in Figure 3.2. The full file path of the currently displayed
source code appears in the title bar. Source code that has never been saved
to disk will default to “Untitled#”; where # is an automatically generated
number. A user can switch between source code files by simply pointing
and clicking on a file’s tab or by pressing Ctrl+Tab or Ctrl+Shift+Tab while
the main edit pane is active.

Figure 3.2: Example Editor Tabs.
Shown with 6 separate files open;
Title Bar shows current code’s file
path.

The status of the active source code is indicated in the status bar below the
main edit pane and integrated explorer panel. The status bar contains
information such as cursor position, file save status, download status and
syntax error/download messages. The example in Figure 3.3 indicates
that the source code tokenized successfully.

Figure 3.3: Status Bar beneath the
Main Edit Pane.

Each editor pane can be individually split into two views of the same
source code. This can be done via the Split button on the toolbar, pressing
Ctrl-L, or clicking and dragging the top or bottom border of the editor
pane with the mouse.

Once split, the top and bottom edit controls allow viewing of different
areas of the same source code; this can be handy when needing to keep
variable declarations or a particular routine in view while modifying a
related section of code elsewhere. Note that the Split button and Ctrl+L
shortcut act like a toggle function, splitting or un-splitting the edit pane.

SPLIT WINDOW VIEW.

Using the BASIC Stamp Editor

Page 42 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 3.8: The Filter List found at
the bottom of the Integrated
Explorer Panel.

The BASIC Stamp Editor automatically associates BASIC Stamp source
code file types (.bs1, .bs2, .bse, .bsx, .bsp, .bpe, and .bpx) with itself. This
feature can be configured through automatic prompts or through the
Preferences → Files & Directories tab. Also, when using any Explorer-
shell for file browsing, right-clicking on a BASIC Stamp source code file
provides you with an Open With Stamp Editor option.

The integrated explorer panel can be resized via the vertical splitter bar
that separates it and the edit pane. The Directory list and File list can be
resized via the horizontal splitter bar that separates them. The integrated
explorer can also be hidden or shown via the Explorer toolbar button, by
pressing Ctrl+E, or by resizing it to zero width using the vertical splitter
bar.

Table 3.3 lists keyboard shortcuts for several file functions.

File Functions
Shortcut Key Function

Ctrl+E Show/hide explorer panel
Ctrl+L Show/hide split view in edit pane
Ctrl+O Open a source code file into edit pane

Ctrl+Shift+O Open a source code file from a recent directory into edit pane
Ctrl+S Save current source code file to its current location on disk

Ctrl+Shift+S Save current source code file to a recent directory on disk
Ctrl+P Print current source code

Ctrl+Tab Switch to next open file page
Ctrl+Shift+Tab Switch to previous open file page

Table 3.3: Keyboard Shortcuts for
File Functions.

.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 49

to the BASIC Stamp module (assuming the code is correct and the BASIC
Stamp is properly connected). The Download Progress window looks
similar to the Identify window with the exception of the additional
Download Status progress bar, and the indicator LED by the port
transmitting the data.

Figure 3.11: The Download
Progress Window.

If any errors occur, such as communication failure or inability to detect a
BASIC Stamp module, you will be prompted appropriately. One possible
error occurs when the BASIC Stamp your PBASIC program is targeting
does not appear to be connected to the PC (see Figure 3.12). This may be
caused, for example, by opening up a BASIC Stamp 1 program (usually
has a .bas or .bs1 extension) and trying to download it to a BASIC Stamp 2
module, instead.

Figure 3.12: A Download Error
message.

When this happens, you’ll be prompted to correct the situation, quickly
done by clicking on the BS2 button (if you really intended to download to
the BS2 in the first place). Keep in mind that programs written for one
BASIC Stamp model may not function properly on a different BASIC
Stamp model. Click on the More Info button for more detail. NOTE: If
you select the BS2 button, as in this example, the editor will modify the

Using the BASIC Stamp Editor

Page 76 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

customers using BASIC Stamp-based products, you can release firmware
updates to them in this manner.

Object code can be saved as a separate .obj file (downloadable with the
StampLoader.exe program) or as a single executable (integrated with the
StampLoader.exe inside of it). The single executable method provides a
simpler way to pass your firmware update on to your customers.

Any syntactically correct PBASIC source code can be used with the
Generate Object Code feature; this includes BS1 and BS2 code as well as
BS2e, BS2sx, BS2p, BS2pe, and BS2px code that is either a single file or a
multi-file project. Note: The original DOS-based software for the BS1
included a directive called BSAVE; when used it would cause the software
to generate an object file. In the BASIC Stamp Windows Editor, the
Generate Object Code feature replaces and enhances the BSAVE feature;
the reserved word BSAVE is still accepted in BS1 source code, but is
simply ignored. Old BS1 object code saved via the BSAVE option is not
compatible with the StampLoader.exe program so you must regenerate
the object file using the BASIC Stamp Windows Editor.

If you don’t have the StampLoader.exe program, it can be automatically
generated for you by selecting the second output file option, “Object Code
and Stamp Loader”, in the Generate Object Code window. Additionally,
firmware, product, company and related info can be embedded in the
object code or single executable file for your customers to view before
downloading.

5: BASIC Stamp Command Reference – AUXIO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 131

 IOTERM port ' Switch to main or aux I/Os
 ' -- depending on port
 TOGGLE 3 ' Toggle state of I/O pin 3
 ' -- on main and aux, alternately
 port = ~port ' Invert port
 PAUSE 1000 ' 1 second delay
 LOOP
 END

CONFIGPIN – BASIC Stamp Command Reference

Page 148 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

FOR…NEXT – BASIC Stamp Command Reference

Page 196 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

reps becomes 0 (bytes will rollover after 255 just like words will rollover
after 65535). The result, 0, is compared against the range (0 – 255) and it is
found to be within the range, so the FOR…NEXT loop continues.

It's important to realize that on all the BS2 models, the test is against the
entire range, not just the EndValue. The code below is a slight modification
of the previous example (the StartValue is 10 instead of 0) and will not loop
endlessly.

reps VAR Byte ' counter for the loop

FOR reps = 10 TO 300 ' each loop add 1
 DEBUG DEC ? reps ' show reps in Debug window
NEXT

reps still rolls over to 0, as before, however, this time it is outside the range
of 10 to 255. The loop stops, leaving reps at 0. Note that this code is still in
error since reps will never reach 300 until it is declared as a Word.

Demo Program (FOR-NEXT.bs1)

' FOR-NEXT.bs1
' This example uses a FOR...NEXT loop to churn out a series of sequential
' squares (numbers 1, 2, 3, 4... raised to the second power) by using a
' variable to set the FOR...NEXT StepValue, and incrementing StepValue
' within the loop. Sir Isaac Newton is generally credited with the
' discovery of this technique.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL square = B2 ' FOR/NEXT counter
SYMBOL stepSize = B3 ' step size increases by 2 each loop

Setup:
 stepSize = 1
 square = 1

Main:
 FOR square = 1 TO 250 STEP stepSize ' show squares up to 250
 DEBUG square ' display on screen
 stepSize = stepSize + 2 ' add 2 to stepSize
 NEXT ' loop until square > 250
 END

NOTE: On the BS1, the loop will
continue until Counter has gone past
EndValue. The rollover error will still
occur if the BS1 cannot determine if
Counter went past EndValue.

All 2

1

IF…THEN – BASIC Stamp Command Reference

Page 232 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Quick Facts
 BS1 All BS2 Models

Comparison
Operators

=, <>, >, <, >=, <= =, <>, >, <, >=, <=

Conditional
 Logic Operators

AND, OR NOT, AND, OR, XOR

Format of
Condition

Variable Comparison Value;
where Value is a variable

or constant

Value1 Comparison Value2;
where Value1 and Value2 can by

any of variable, constant or
expression

Parentheses Not Allowed Allowed
Max nested
IF…THENs

n/a 16

Max ELSEIFs
per IF

n/a 16

Max ELSEs per IF n/a 1
Related Command None SELECT…CASE

Table 5.38: IF...THEN Quick Facts.

Explanation
IF...THEN is PBASIC's decision maker that allows one block of code or
another to run based on the value (True or False) of a condition. The
condition that IF...THEN tests is written as a mixture of comparison and
logic operators. The available comparison operators are:

Comparison Operator
Symbol

Definition

= Equal
<> Not Equal
> Greater Than
< Less Than

>= Greater Than or Equal To
<= Less Than or Equal To

Table 5.39: IF...THEN Comparison
Operators.

Comparisons are always written in the form: Value1 Comparison Value2.
The values to be compared can be any combination of variables (any size),
constants, or expressions.

The following example is an IF…THEN command with a simple
condition:

IF value < 4000 THEN Main

This code will compare the value of value to the number 4000. If value is
less than 4000, the condition is true and the program will jump (implied

NOTE: On the BS1, expressions
are not allowed as arguments.
Also, the Value1 (to the left of
comparison) must be a variable.

1

A SIMPLE FORM OF IF…THEN

1 All 2

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 241

' {$STAMP BS2}
' {$PBASIC 2.0}

sample VAR Word ' Random number to be tested
samps VAR Nib ' Number of samples taken
temp VAR Nib ' Temporary workspace

Setup:
 sample = 11500

Mult3:
 RANDOM sample ' Put a random number into sample
 temp = sample // 3
 IF temp <> 0 THEN Mult3 ' Not multiple of 3? -- try again
 DEBUG DEC5 sample, " divides by 3", CR
 samps = samps + 1 ' Count multiples of 3
 IF samps = 10 THEN Done ' Quit with 10 samples
 GOTO Mult3 ' keep checking

Done:
 DEBUG CR, "All done."
 END

Demo Program (IF-THEN-ELSE.bs2)

' IF-THEN-ELSE.bs2
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

' {$STAMP BS2}
' {$PBASIC 2.5} ' version 2.5 required

sample VAR Word ' Random number to be tested
hits VAR Nib ' Number of hits
misses VAR Word ' Number of misses

Setup:
 sample = 11500

Main:
 DO
 RANDOM sample ' Put a random number into sample
 IF ((sample // 3) = 0) THEN ' divisible by 3?
 DEBUG DEC5 sample, ' - yes, print value and message
 " is divisible by 3", CR

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

INPUT – BASIC Stamp Command Reference

Page 244 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

on the BS1) will appear on the pin. The demo program shows how this
works.

Demo Program (INPUT.bs1)

' INPUT.bs1
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of PINS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of OUTS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor
' to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp
' can override this state by writing a low (0) to bit 7 of OUTS and
' changing the pin to output.

' {$STAMP BS1}
' {$PBASIC 1.0}

Main:
 INPUT 7 ' Make P7 an input
 DEBUG "State of P7: ", #PIN7, CR

 PIN7 = 0 ' Write 0 to output latch
 DEBUG "After 0 written to OUT7: "
 DEBUG #PIN7, CR

 OUTPUT 7 ' Make P7 an output
 DEBUG "After P7 changed to output: "
 DEBUG #PIN7

Demo Program (INPUT.bs2)

' INPUT.bs2
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of INS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of OUTS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor
' to +5V puts a high (1) on the pin when it's an input. The BASIC Stamp
' can override this state by writing a low (0) to bit 7 of OUTS and
' changing the pin to output.

' {$STAMP BS2}
' {$PBASIC 2.5}

Main:
 INPUT 7 ' Make P7 an input
 DEBUG "State of P7: ",

1

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – MAINIO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 283

MAINIO BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

MAINIO

Function
Switch from control of auxiliary I/O pins to main I/O pins (on the BS2p40
only).

Quick Facts

Table 5.58: MAINIO Quick Facts.

 BS2p, BS2pe, and BS2px

I/O pin IDs 0 – 15 (just like auxiliary I/O, but after MAINIO command, all references
affect physical pins 5 – 20).

Special Notes The 24-pin BS2p, BS2pe, and BS2px accept this command, however,
only the BS2p40 gives access to the auxiliary I/O pins.

Related
Commands

AUXIO and IOTERM

Explanation
The BS2p, BS2pe and BS2px are available as 24-pin modules that are pin
compatible with the BS2, BS2e and BS2sx. Also available is a 40-pin
module called the BS2p40, with an additional 16 I/O pins (for a total of
32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in the same
manner as the main I/O pins (by using the IDs 0 to 15) but only after
issuing AUXIO or IOTERM commands. The MAINIO command causes
the BASIC Stamp to affect the main I/O pins (the default) instead of the
auxiliary I/O pins in all further code until the AUXIO or IOTERM
command is reached, or the BASIC Stamp is reset or power-cycled.

The following example illustrates this:

AUXIO ' switch to auxiliary pins
HIGH 0 ' make X0 high
MAINIO ' switch to main pins
LOW 0 ' make P0 low

The first line of the above example will tell the BASIC Stamp to affect the
auxiliary I/O pins in the commands following it. Line 2, sets I/O pin 0 of
the auxiliary I/O pins (physical pin 21) high. Afterward, the MAINIO
command tells the BASIC Stamp that all commands following it should
affect the main I/O pins. The last command, LOW, will set I/O pin 0 of
the main I/O pins (physical pin 5) low.

A SIMPLE MAINIO EXAMPLE.

5: BASIC Stamp Command Reference – OUTPUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 293

OUTPUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OUTPUT Pin

Function
Make the specified pin an output.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to set to output mode.

Quick Facts
Table 5.62: OUTPUT Quick
Facts.

 BS1 and all BS2 Models
Related

Commands
INPUT and REVERSE

Explanation
There are several ways to make a pin an output. Commands that rely on
output pins, like PULSOUT and SEROUT, automatically change the
specified pin to output. Writing 1s to particular bits of the variable DIRS
makes the corresponding pins outputs. And then there’s the OUTPUT
command.

When a pin is an output, your program can change its state by writing to
the corresponding bit in the OUTS variable (PINS on the BS1). For
example:

OUTPUT 4
OUT4 = 1

When your program changes a pin from input to output, whatever state
happens to be in the corresponding bit of OUTS (PINS on the BS1) sets the
initial state of the pin. To simultaneously make a pin an output and set its
state use the HIGH and LOW commands.

Demo Program (INPUT_OUTPUT.bs1)

' INPUT_OUTPUT.bs1
' This program demonstrates how the input/output direction of a pin is
' determined by the corresponding bit of DIRS. It also shows that the
' state of the pin itself (as reflected by the corresponding bit of PINS)
' is determined by the outside world when the pin is an input, and by the
' corresponding bit of PINS when it's an output. To set up the demo,
' connect a 10k resistor from +5V to P7 on the BASIC Stamp. The resistor

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

EFFECTS OF SETTING AN INPUT PIN TO AN

OUTPUT.

1

1 All 2

1

All 2

5: BASIC Stamp Command Reference – OWIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 295

OWIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OWIN Pin, Mode, [InputData]

Function
Receive data from a device using the 1-Wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-Wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWIN command and will be set to input
mode by the end of the OWIN command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• InputData is a list of variables and modifiers that tells OWIN what to
do with incoming data. OWIN can store data in a variable or array,
interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
Table 5.63: OWIN Quick Facts.

 BS2p, BS2pe, and BS2px
Receive Rate Approximately 20 kbits/sec (low speed, not including reset pulse)

Special Notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resistor.
The BS2pe is not capable of high-speed transfers.

Related Commands OWOUT

Explanation
The 1-Wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-Wire devices. The OWIN command
allows the BASIC Stamp to receive data from a 1-wire device.

The following is an example of the OWIN command:

result VAR Byte

OWIN 0, 1, [result]

A SIMPLE OWIN EXAMPLE.

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 305

bitOne VAR Bit
bitTwo VAR Bit

bitOne = 0
bitTwo = 1
OWOUT 0, 5, [bitOne, bitTwo]

In the code above, we chose the value "5" for Mode. This sets Bit transfer
and Front-End Reset modes. Also, we could have chosen to make the
bitOne and bitTwo variables each a byte in size, but the BASIC Stamp
would still only use the their lowest bit (BIT0) as the value to transmit in
the OWOUT command (due to the Mode we chose).

The OWOUT command's OutputData argument is similar to the DEBUG
and SEROUT command's OutputData argument. This means data can be
sent as literal text, ASCII character values, repetitive values, decimal,
hexadecimal and binary translations and string data as in the examples
below. (Assume a 1-wire device is used and that it transmits the string,
"Value: 3A:101" every time it receives a Front-End Reset pulse).

value VAR Byte
value = 65

OWOUT 0, 1, [value] ' send "A"
OWOUT 0, 1, [REP value\5] ' send "AAAAA"
OWOUT 0, 1, [DEC value] ' send "6" and "5"
OWOUT 0, 1, [HEX value] ' send "4" and "1"
OWOUT 0, 1, [BIN value] ' send "1000001"

Table 5.70 and Table 5.71 list all the special formatters and conversion
formatters available to the OWOUT command. See the DEBUG and
SEROUT commands for additional information and examples of their use.

Table 5.70: OWOUT Special
Formatters.

Special Formatter Action

?

Displays "symbol = x' + carriage return; where x is a number.
Default format is decimal, but may be combined with
conversion formatters (ex: BIN ? x to display "x =
binary_number").

ASC ?
Displays "symbol = 'x'" + carriage return; where x is an ASCII
character.

STR ByteArray {\L}

Send character string from an array. The optional \L argument
can be used to limit the output to L characters, otherwise,
characters will be sent up to the first byte equal to 0 or the end
of RAM space is reached.

REP Byte \L
Send a string consisting of Byte repeated L times
(ex: REP "X"\10 sends "XXXXXXXXXX").

SENDING AND FORMATTING DATA.

POLLIN – BASIC Stamp Command Reference

Page 314 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

user program; giving the appearance that it is polling "in the background".
This feature should not be confused with the concept of interrupts, as the
BASIC Stamp does not support true interrupts.

The following is an example of the POLLIN command:

POLLIN 0, 0
POLLMODE 2

The POLLIN command in the above code will cause the BASIC Stamp to
set I/O pin 0 to an input mode and get ready to poll it for a low (0) state.
The BASIC Stamp will not actually start polling until it is set to the
appropriate mode, however. The second line, POLLMODE, initiates the
polling process (see the POLLMODE description for more information).
From then on, as the BASIC Stamp executes the rest of the program, it will
check for a low level (logic 0) on I/O pin 0, in-between instructions.

In the code above, no obvious action will be noticed since we didn't tell the
BASIC Stamp what to do when it detects a change on the I/O pin. One
possible action the BASIC Stamp can be instructed to take is to change the
state of an output, called a polled-output. Take a look at the next example:

POLLIN 0, 0
POLLOUT 1, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

In this example, in addition to an endless loop, we've added another
polling command called POLLOUT (see the POLLOUT description for
more information). Our POLLOUT command tells the BASIC Stamp to set
I/O pin 1 to an output mode and set it high (1) when it detects the desired
poll state. The poll state is the low (0) level on I/O pin 0 that POLLIN told
it to look for. If the polled-input pin is high, it will set polled-output pin 0
to low (0), instead.

Once the program reaches the endless loop, at Main, it will continuously
print "Looping…" on the PC screen. In between reading the DEBUG
command and the GOTO command (and vice versa) it will check polled-
input pin 0 and set polled-output pin 1 accordingly. In this case, when
I/O pin 0 is set low, the BASIC Stamp will set I/O pin 1 high. When I/O

A SIMPLE POLLIN EXAMPLE.

SETTING ONE OF THE POSSIBLE ACTIONS:
POLLED-OUTPUTS

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 415

SEROUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SEROUT Tpin, Baudmode, ({#} OutputData)
SEROUT Tpin { \Fpin }, Baudmode, { Pace, } { Timeout, Tlabel, } [OutputData]

Function
Transmit asynchronous serial data (e.g., RS-232 data).

• Tpin is a variable/constant/expression (0 – 16) that specifies the I/O
pin through which the serial data will be transmitted. This pin will
be set to output mode. On all BS2 models, if Tpin is set to 16, the
BASIC Stamp uses the dedicated serial-output pin (SOUT, physical
pin 1), which is normally used by the Stamp Editor during the
download process.

• Fpin is an optional variable/constant/expression (0 – 15) that
specifies the I/O pin to monitor for flow control status. This pin will
be set to input mode. NOTE: Fpin must be specified to use the
optional Timeout and Tlabel arguments in the SEROUT command.

• Baudmode is variable/constant/expression (0 – 7 on the BS1, 0 –
65535 on all BS2 models) that specifies serial timing and
configuration.

 • Pace is an optional variable/constant/expression (0 – 65535) that
determines the length of the pause between transmitted bytes.
NOTE: Pace cannot be used simultaneously with Timeout and Fpin.

• Timeout is an optional variable/constant/expression (0 – 65535) that
tells SEROUT how long to wait for Fpin permission to send. If
permission does not arrive in time, the program will jump to the
address specified by Tlabel. NOTE: Fpin must be specified to use
the optional Timeout and Tlabel arguments in the SEROUT
command.

• Tlabel is an optional label that must be provided along with Timeout.
Tlabel indicates where the program should go in the event that
permission to send data is not granted within the period specified
by Timeout.

• OutputData is list of variables, constants, expressions and formatters
that tells SEROUT how to format outgoing data. SEROUT can
transmit individual or repeating bytes, convert values into decimal,

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Rpin argument on the BS1 is 0 – 7.

NOTE: The BS1's OutputData
argument can only be a list of variables
and the optional decimal modifier (#).

1

All 2

1

1

5: BASIC Stamp Command Reference – SHIFTOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 439

' msb first so that the msb appears on pin QH and the lsb on QA. Changing
' MSBFIRST to LSBFIRST causes the data to appear backwards on the outputs.

Main:
 DO
 SHIFTOUT Dpin, Clk, MSBFIRST, [counter] ' send the bits
 PULSOUT Latch, 1 ' transfer to outputs
 PAUSE 100 ' Wait 0.1 seconds
 counter = counter + 1 ' increment counter
 LOOP
 END

5: BASIC Stamp Command Reference – STORE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 451

Demo Program (STORE1.bsp)

' STORE1.bsp

' {$STAMP BS2p}
' {$PBASIC 2.5}

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 6, 7, 8, 9, 10

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 0 ' point READ/WRITE to Slot 0
 GOSUB Show_Slot_Info
 PAUSE 2000
 RUN 2 ' run program in Slot 2
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

Demo Program (STORE2.bsp)

' STORE2.bsp

' {$STAMP BS2p}
' {$PBASIC 2.5}

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 11, 12, 13, 14, 15

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 0 ' point READ/WRITE to Slot 0

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

Appendix D: BASIC Stamp Schematics

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 481

BASIC Stamp 1 Schematic (Rev B)

