
Parallax Inc. - PBASIC2SX-28/SS Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic2sx-28-ss

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic2sx-28-ss-4425566
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Internet BASIC Stamp Discussion List
We maintain active web-based discussion forums for people interested in Parallax products. These lists are accessible from
www.parallax.com via the Support → Discussion Forums menu. These are the forums that we operate from our web site:

• BASIC Stamps – This list is widely utilized by engineers, hobbyists and students who share their BASIC
Stamp projects and ask questions.

• Stamps in Class® – Created for educators and students, subscribers discuss the use of the Stamps in
Class curriculum in their courses. The list provides an opportunity for both students and educators to
ask questions and get answers.

• Parallax Educators –Exclusively for educators and those who contribute to the development of Stamps
in Class. Parallax created this group to obtain feedback on our curricula and to provide a forum for
educators to develop and obtain Teacher’s Guides.

• Translators – The purpose of this list is to provide a conduit between Parallax and those who translate
our documentation to languages other than English. Parallax provides editable Word documents to our
translating partners and attempts to time the translations to coordinate with our publications.

• Robotics – Designed exclusively for Parallax robots, this forum is intended to be an open dialogue for a
robotics enthusiasts. Topics include assembly, source code, expansion, and manual updates. The Boe-
Bot®, Toddler®, SumoBot®, HexCrawler and QuadCrawler robots are discussed here.

• SX Microcontrollers and SX-Key – Discussion of programming the SX microcontroller with Parallax
assembly language SX – Key® tools and 3rd party BASIC and C compilers.

• Javelin Stamp – Discussion of application and design using the Javelin Stamp, a Parallax module that is
programmed using a subset of Sun Microsystems’ Java® programming language.

Supported Hardware, Firmware and Software

This manual is valid with the following software and firmware versions:

BASIC Stamp Model Firmware Windows Interface
BASIC Stamp 1 1.4 2.2
BASIC Stamp 2 1.0 2.2
BASIC Stamp 2e 1.1 2.2
BASIC Stamp 2sx 1.1 2.2
BASIC Stamp 2p 1.4 2.2
BASIC Stamp 2pe 1.1 2.2
BASIC Stamp 2px 1.0 2.2

The information herein will usually apply to newer versions but may not apply to older versions. New software can be
obtained free on web site (www.parallax.com). If you have any questions about what you need to upgrade your product,
please contact Parallax.

Credits

Authorship and Editorial Review Team: Jeff Martin, Jon Williams, Ken Gracey, Aristides Alvarez, and Stephanie Lindsay;
Cover Art: Jen Jacobs; Technical Graphics, Rich Allred; with many thanks to everyone at Parallax Inc.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 75

#ERROR Message

#ERROR displays a compile-time error. This allows the programmer to
flag fatal errors during compilation.

• Message is the error message string, enclosed in quotes.
Example:

' {$PBASIC 2.5}

#DEFINE I2CReady = (($STAMP = BS2p) OR ($STAMP = BS2pe) OR ($STAMP = BS2px))

#IF NOT I2CReady #THEN
 #ERROR "BS2p, BS2pe, or BS2px is required for this program."
#ENDIF

When compiled, this example will cause the editor to halt compilation and
display the dialog below if you attempt to compile for a BASIC Stamp
model other than the BS2p, BS2pe, or BS2px:

Figure 3.27: Custom Error
Message using the #ERROR
directive.

Features for Developers

The BASIC Stamp Editor has several features that are designed to support
the needs of developers. Note: when installing the BASIC Stamp editor,
you can instruct the installer to include additional developer resources by
selecting the “Custom” option from the “Setup Type” prompt.

The Generate Object Code feature allows you to tokenize a PBASIC
program and save it to a file in the tokenized form. This allows you to
send your BASIC Stamp object code (the actual binary data that is
downloaded to the BASIC Stamp module) to other people without having
to reveal your PBASIC source code. If you are a developer who has

#ERROR SYNTAX.

GENERATE OBJECT CODE FEATURE.

Using the BASIC Stamp Editor

Page 80 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp Architecture – Memory Organization

Page 84 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The INS variable always shows the state of the I/O pins themselves,
regardless of the direction of each I/O pin. We call this, "reading the
pins". If a pin was set to an input mode (within DIRS) and an external
circuit connected the I/O pin to ground, the corresponding bit of INS
would be low. If a pin was set to an output mode and the pin's state was
set to a high level (within OUTS), the corresponding bit of INS would be
high. If, however, that same pin was externally connected directly to
ground, the corresponding bit of INS would be low; since we're reading
the state of the pin itself and the BASIC Stamp cannot override a pin that is
driven to ground or 5 volts externally. Note: The last example is an error,
is a direct short and can cause damage to the BASIC Stamp! Do not
intentionally connect output pins directly to an external power source or
you risk destroying your BASIC Stamp.

To summarize: DIRS determines whether a pin’s state is set by external
circuitry (input, 0) or by the state of OUTS (output, 1). INS always matches
the actual states of the I/O pins, whether they are inputs or outputs. OUTS
holds bits that will only appear on pins whose DIRS bits are set to output.

In programming the BASIC Stamp, it’s often more convenient to deal with
individual bytes, nibbles or bits of INS, OUTS and DIRS rather than the
entire 16-bit words. PBASIC has built-in names for these elements, shown
in Table 4.2.

Here's an example of what is described in Table 4.2. The INS register is 16-
bits (corresponding to I/O pins 0 though 15). The INS register consists of
two bytes, called INL (the Low byte) and INH (the High byte). INL
corresponds to I/O pins 0 through 7 and INH corresponds to I/O pins 8
though 15. INS can also be thought of as containing four nibbles, INA,
INB, INC and IND. INA is I/O pins 0 though 3, INB is I/O pins 4 though
7, etc. In addition, each of the bits of INS can be accessed directly using
the names IN0, IN1, IN2… IN5.

The same naming scheme holds true for the OUTS and DIRS variables as
well.

As Table 4.2 shows, the BASIC Stamp module’s memory is organized into
16 words of 16 bits each. The first three words are used for I/O. The
remaining 13 words are available for use as general-purpose variables.

PREDEFINED "FIXED" VARIABLES.

SUMMARY OF THE FUNCTION OF DIRS,
INS AND OUTS.

4: BASIC Stamp Architecture – Order of Operations

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 103

The BASIC Stamp solves math problems in the order they are written:
from left to right. The result of each operation is fed into the next
operation. So to compute 12+3*2/4, the BASIC Stamp goes through a
sequence like this:

 12 + 3 = 15
 15 * 2 = 30
 30 / 4 = 7

Since the BASIC Stamp performs integer math (whole numbers only) 30 /
4 results in 7, not 7.5. We’ll talk more about integers in the next section.

Some other dialects of BASIC would compute that same expression based
on their precedence of operators, which requires that multiplication and
division be done before addition. So the result would be:

 3 * 2 = 6
 6 / 4 = 1
 12 + 1 = 13
Once again, because of integer math, the fractional portion of 6 / 4 is
dropped, so we get 1 instead of 1.5.

The BS1 does not allow parenthesis in expressions. Unfortunately, all
expressions have to be written so that they evaluate as intended strictly
from left to right.

All BS2 models, however, allow parentheses to be used to change the
order of evaluation. Enclosing a math operation in parentheses gives it
priority over other operations. To make the BASIC Stamp compute the
previous expression in the conventional way, you would write it as 12 +
(3*2/4). Within the parentheses, the BASIC Stamp works from left to right.
If you wanted to be even more specific, you could write 12 + ((3*2)/4).
When there are parentheses within parentheses, the BASIC Stamp works
from the innermost parentheses outward. Parentheses placed within
parentheses are called “nested parentheses."

The BASIC Stamp performs all math operations by the rules of positive
integer math. That is, it handles only whole numbers, and drops any
fractional portions from the results of computations. The BASIC Stamp
handles negative numbers using two's complement rules.

INTEGER MATH.

1

All 2

ORDER OF OPERATIONS.

4: BASIC Stamp Architecture – ATN, HYP, MIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 115

Figure 4.2: ATN and HYP operators
in the PBASIC unit circle

The Hypotenuse operator (HYP) returns the length of the hypotenuse of a
right triangle with sides of length A and B. The syntax of HYP is:

SideA HYP SideB

where SideA and SideB are the side lengths of a right-triangle (the order
isn’t important). Another application of HYP is to calculate the distance
between the origin (0, 0) and a point (X, Y) in a Cartesian coordinate
system. Side length (vector) input values are limited to -127 to 127 (signed
bytes). See diagram with ATN operator, Figure 4.2.

DEBUG ? 3 HYP 4 ' hypotenuse of 3x4 triangle (5)

The Minimum operator (MIN) limits a value to a specified 16-bit positive
minimum. The syntax of MIN is:

value MIN limit

where value is a constant or variable value to perform the MIN function
upon and limit is the minimum value that value is allowed to be. Its logic
is, ‘if value is less than limit, then make result = limit; if value is greater than
or equal to limit, make result = value.’

MINIMUM: MIN

HYPOTENUSE: HYP All 2

1 All 2

5: BASIC Stamp Command Reference – DATA

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 153

DATA BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

(See EEPROM)
{ Symbol } DATA DataItem { , DataItem… }

Function
Write data to the EEPROM during program download.

• Symbol is an optional, unique symbol name that will be
automatically defined as a constant equal to the location number of
the first data item.

• DataItem is a constant/expression (0 – 65535) indicating a value, and
optionally how to store the value.

Quick Facts
Table 5.7: DATA Quick Facts.

 All BS2 Models

Special Notes Writes values to EEPROM during download in blocks of 16 bytes. Writes
byte or word-sized values. Can be used to decrease program size.

Related
Commands

READ and WRITE

Explanation
When you download a program into the BASIC Stamp, it is stored in the
EEPROM starting at the highest address (2047) and working towards the
lowest address. Most programs don’t use the entire EEPROM, so the
lower portion is available for other uses. The DATA directive allows you
to define a set of data to store in the available EEPROM locations. It is
called a “directive” rather than a “command” because it performs an
activity at compile-time rather than at run-time (i.e.: the DATA directive is
not downloaded to the BASIC Stamp, but the data it contains is
downloaded).

The simplest form of the DATA directive is something like the following:

DATA 100, 200, 52, 45

This example, when downloaded, will cause the values 100, 200, 52 and 45
to be written to EEPROM locations 0, 1, 2 and 3, respectively. You can
then use the READ and WRITE commands in your code to access these
locations and the data you’ve stored there.

WRITING SIMPLE, SEQUENTIAL DATA.

1

All 2

IF…THEN – BASIC Stamp Command Reference

Page 236 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Internally, the BASIC Stamp defines “false” as 0 and “true” as any value
other than 0. Consider the following instructions:

flag VAR Bit

Setup:
 flag = 1

Test:
 IF flag THEN Is_True
 DEBUG "False"
 END

Is_True:
 DEBUG "True"
 END

Since flag is 1, IF...THEN would evaluate it as true and print the message
“True” on the screen. Suppose you changed the IF...THEN command to
read “IF NOT flag THEN Is_True.” That would also evaluate as true.
Whoa! Isn’t NOT 1 the same thing as 0? No, at least not in the 16-bit world
of the BASIC Stamp.

Internally, the BASIC Stamp sees a bit variable containing 1 as the 16-bit
number %0000000000000001. So it sees the NOT of that as
%1111111111111110. Since any non-zero number is regarded as true, NOT
1 is true. Strange but true.

The easiest way to avoid the kinds of problems this might cause is to
always use a conditional operator with IF...THEN. Change the example
above to read IF flag = 1 THEN is_True. The result of the comparison
will follow IF...THEN rules. Also, the logical operators will work as they
should; IF NOT Flag = 1 THEN is_True will correctly evaluate to false
when flag contains 1.

This also means that you should only use the "named" conditional logic
operators NOT, AND, OR, and XOR with IF...THEN. The conditional logic
operators format their results correctly for IF...THEN instructions. The
other logical operators, represented by symbols ~, &, |, and ^ do not; they
are binary logic operators.

The remainder of this discussion only applies to the extended IF…THEN
syntax supported by PBASIC 2.5.

INTERNAL REPRESENTATION OF BOOLEAN

VALUES (TRUE VS. FALSE).

AVOIDING ERRORS WITH BOOLEAN

RESULTS.

All 2

All 2

5: BASIC Stamp Command Reference – LCDOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 263

LCDOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LCDOUT Pin, Command, [OutputData]

Function
Send data to an LCD display.

• Pin is a variable/constant/expression (0 – 1 or 8 – 9) that specifies
which I/O pins to use. The LCD requires, at most, seven I/O pins
to operate. The Pin argument serves a double purpose; specifying
the first pin and, indirectly, the group of other required pins. See
explanation below. All I/O pins will be set to output mode.

• Command is a variable/constant/expression (0 – 255) indicating an
LCD command to send.

• OutputData is a list of variables, constants, expressions and
formatters that tells LCDOUT how to format outgoing data.
LCDOUT can transmit individual or repeating bytes, convert values
into decimal, hex or binary text representations, or transmit strings
of bytes from variable arrays. These actions can be combined in any
order in the OutputData list.

Quick Facts
Table 5.49: LCDOUT Quick Facts.

 BS2p, BS2pe, and BS2px
Values for Pin 0, 1, 8 or 9

I/O Pin Arrangement
when Pin is

0 or 1

0 or 1 (depending on pin): LCD Enable (E) pin
2: LCD Read/Write (R/W) pin
3: LCD Register Select (RS) pin
4 – 7: LCD Data Buss (DB4 – DB7, respectively) pins

I/O Pin Arrangement
when Pin is

8 or 9

8 or 9 (depending on pin): LCD Enable (E) pin
10: LCD Read/Write (R/W) pin
11: LCD Register Select (RS) pin
12 – 15: LCD Data Buss (DB4 – DB7, respectively) pins

Special Notes LCDOUT is designed to use the LCD's 4-bit mode only.
Related Commands LCDCMD and LCDIN

Explanation
The three LCD commands (LCDCMD, LCDIN and LCDOUT) allow the
BS2p, BS2pe, and BS2px to interface directly to standard LCD displays that
feature a Hitachi 44780 controller (part #HD44780A). This includes many
1 x 16, 2 x 16 and 4 x 20 character LCD displays.

NOTE: LCDCMD, LCDIN and
LCDOUT use a 4-bit interface to the
LCD which requires a specific
initialization sequence before LCDIN
and LCDOUT can be used; read more
below.

POT – BASIC Stamp Command Reference

Page 340 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

variable resistor affects the time it takes to discharge the capacitor from 5
volts to approximately 1.4 volts.

The 16-bit reading is multiplied by (Scale/256), so a scale value of 128
would reduce the range by approximately 50%, a scale of 64 would reduce
to 25%, and so on. The amount by which the internal value must be scaled
varies with the size of the resistor being used.

Finding the best Scale value:
1. Build the circuit shown in Figure 5.27 and plug the BS1 into the PC.
2. In the BASIC Stamp editor select Pot Scaling from the Run menu. A

special calibration window appears, allowing you to find the best
value.

3. The window asks for the number of the I/O pin to which the variable
resistor is connected. Select the appropriate pin (0-7) from the drop-
down.

4. The editor downloads a short program to the BS1 (this overwrites any
program already stored in the BS1).

5. The window will now show the Scale Factor. Adjust the resistor until
the smallest number is shown for scale (assuming you can adjust the
resistor, as with a potentiometer).

6. Once you’ve found the smallest number for scale, you’re done. This
number should be used for the Scale in the POT command.

7. Optionally, you can verify the scale number found above by selecting
the POT Value checkbox (so it's checked). This locks the scale and
causes the BS1 to read the resistor continuously. The window displays
the value. If the scale is good, you should be able to adjust the
resistor, achieving a 0–255 reading for the value (or as close as
possible). To change the scale value and repeat this step, deselect the
POT Value checkbox. Continue this process until you find the best
scale.

Demo Program (POT.bs1)

' POT.bs1
' This program demonstrates the use of the POT command. Connect one side
' of a 5-50K potentiometer to P0. To the other side of the potentiometer
' connect a 0.1 uF capacitor, and then connect the other side of the
' capacitor to Vss (ground). Before running demo program,
' use the Run | POT Scaling dialog to determine the best Scale factor.

1

5: BASIC Stamp Command Reference – PUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 353

 DEBUG "Program Slot #", DEC value.NIB0, CR

Main:
 FOR idx = 0 TO 9
 value = (idx + 3) * 8
 PUT idx, value
 DEBUG " Writing: ", DEC2 value, " to location: ", DEC2 idx, CR
 NEXT
 DEBUG CR
 RUN 1
 END

 Demo Program (GET_PUT2.bsx)

' GET_PUT2.bsx
' This example demonstrates the use of the GET and PUT commands. First,
' the Slot location is read using GET to display the currently running
' program number. Then a set of values are read (GET) from locations
' 0 to 9 and displayed on the screen for verification. This program is a
' BS2SX project consisting of GET_PUT1.BSX and GET_PUT2.BSX, but will run
' on the BS2e, BS2p, BS2pe, and BS2px without modification.

' {$STAMP BS2sx}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2
 #ERROR "BS2e or greater required."
 #CASE BS2E, BS2SX
 Slot CON 63
 #CASE BS2P, BS2PE, BS2PX
 Slot CON 127
#ENDSELECT

value VAR Byte
idx VAR Byte

Setup:
 GET Slot, value
 DEBUG "Program Slot #", DEC value.NIB0, CR

Main:
 FOR idx = 0 TO 9
 GET idx, value
 DEBUG " Reading: ", DEC2 value, " from location: ", DEC2 idx, CR
 NEXT
 END

NOTE: This is written for the BS2sx but
can be used with the BS2e, BS2p,
BS2pe, and BS2px also. This program
uses conditional compilation
techniques; see Chapter 3 for more
information.

5: BASIC Stamp Command Reference – RCTIME

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 363

RCTIME BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

(See POT)

RCTIME Pin, State, Variable

Function
Measure time while Pin remains in State; usually to measure the
charge/discharge time of resistor/capacitor (RC) circuit.

• Pin is a variable/constant/expression (0 – 15) that specifies the I/O
pin to use. This pin will be placed into input mode.

• State is a variable/constant/expression (0 - 1) that specifies the
desired state to measure. Once Pin is not in State, the command
ends and stores the result in Variable.

• Variable is a variable (usually a word) in which the time
measurement will be stored. The unit of time for Variable is
described in Table 5.87.

Quick Facts
Table 5.87: RCTIME Quick Facts.

 BS2 BS2e BS2sx BS2p BS2pe BS2px
Units in
Variable

2 µs 2 µs 0.8 µs 0.75 µs 2 µs 0.75 µs

Maximum
Pulse Width

131.07 ms 131.07 ms 52.428 ms 49.151 ms 131.07 ms 49.151 ms

Explanation
RCTIME can be used to measure the charge or discharge time of a
resistor/capacitor circuit. This allows you to measure resistance or
capacitance; use R or C sensors such as thermistors or capacitive humidity
sensors or respond to user input through a potentiometer. In a broader
sense, RCTIME can also serve as a fast, precise stopwatch for events of
very short duration.

When RCTIME executes, it makes Pin an input, then starts a counter
(who's unit of time is shown in Table 5.87). It stops this counter as soon as
the specified pin is no longer in State (0 or 1). If pin is not in State when
the instruction executes, RCTIME will return 1 in Variable, since the
instruction requires one timing cycle to discover this fact. If pin remains in
State longer than 65535 timing cycles RCTIME returns 0.

HOW RCTIME'S TIMER WORKS.

1

All 2

5: BASIC Stamp Command Reference – RUN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 383

When the Slot 1 program runs you may be surprised to see that cats and
dogs are now zero and fleas are up to 259! – even though we didn't
explicitly define them. What happened? The key to remember is that
variable names are simply pointers to RAM addresses, and the PBASIC
compiler assigns variable names to RAM in descending order by size.
This means that in the Slot 1 program, fleas was assigned to RAM
locations 0 and 1 which are holding the values 3 and 1 respectively. Since
words are stored low-byte first, the value 259 for fleas makes sense
(3 + (1 * 256)).

There may be occasions when you need to preserve the RAM space in a
program slot before calling on another slot that has different variable
requirements. You can use the following subroutines to save your RAM
space to the SPRAM and restore it on returning from the other program
slot.

Save_RAM:
 PUT 0, B0 ' move RAM 0 value to SP
 FOR B0 = 1 TO 25 ' loop through other RAM bytes
 PUT B0, B0(B0) ' move RAM value to SP location
 NEXT
 RETURN

Restore_RAM:
 FOR B0 = 1 TO 25 ' loop through RAM
 GET B0, B0(B0) ' retrieve RAM value from SP
 NEXT
 GET 0, B0 ' retrieve RAM 0 value from SP
 RETURN

While the use of internal variable names is usually discouraged, these
subroutines demonstrate a valid opportunity for their use, as well as the
ability to take advantage of the BASIC Stamp's unique memory
architecture.
The Save_RAM routine starts by saving the first byte of RAM (internal
name: B0) to location 0 in the SPRAM. This is done so that B0 can be used
as a loop index for the other locations. The FOR...NEXT loop provides
control of that index. The following line is probably the most difficult to
comprehend, but works due to the nature of the BASIC Stamp module's
RAM organization

 PUT B0, B0(B0) ' move RAM value to SP location

SERIN - BASIC Stamp Command Reference

Page 402 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The decimal formatter is only one of a whole family of conversion
formatters available with SERIN on all the BS2 models. See Table 5.100 for
a list of available conversion formatters. All of the conversion formatters
work similar to the decimal formatter (as described in the “Decimal
Formatter Specifics” section, above). The formatters receive bytes of data,
waiting for the first byte that falls within the range of characters they
accept (e.g., “0” or “1” for binary, “0” to “9” for decimal, “0” to “9” and
“A” to “F” for hex, and “-” for signed variations of any type). Once they
receive a numeric character, they keep accepting input until a non-
numeric character arrives or (in the case of the fixed length formatters) the
maximum specified number of digits arrives.

ADDITIONAL CONVERSION FORMATTERS.

All 2

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 419

Table 5.107: BS2, BS2e and BS2pe
common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
300 19697 3313 27889 11505
600 18030 1646 26222 9838

1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800 16572 188 24764 8380
9600 16468 84 24660 8276

NOTE: For "open" baudmodes used in networking, add 32768 to the values from the table
above. If the dedicated serial port (Tpin=16) is used, the data is inverted and driven
regardless of the baudmode setting.

Table 5.108: BS2sx and BS2p
common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800 16884 500 25076 8692
9600 16624 240 24816 8432

NOTE: For "open" baudmodes used in networking, add 32768 to the values from the table
above. If the dedicated serial port (Tpin=16) is used, the data is inverted and driven
regardless of the baudmode setting.

Table 5.109: BS2px common
baud rates and corresponding
Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 19697 3313 27889 11505
2400 18030 1646 26222 9838
4800 17197 813 25389 9005
9600 16780 396 24792 8588

If you’re communicating with existing software or hardware, its speed(s)
and mode(s) will determine your choice of baud rate and mode. See the
SERIN command description for more information.

The example below will transmit a single byte through I/O pin 1 at 2400
baud, 8N1, inverted:

SEROUT 1, N2400, (65)

--or--

SEROUT 1, 16780, [65]

CHOOSING THE PROPER BAUD MODE.

A SIMPLE FORM OF SEROUT.

1

All 2

This is written with the BS2's Baudmode
value. Be sure to adjust the value for
your BASIC Stamp model.

SEROUT – BASIC Stamp Command Reference

Page 428 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

a. Unmatched settings on the sender and receiver side will cause
garbled data transfers or no data transfers. If the data you
receive is unreadable, it is most likely a baud rate setting
error.

5. If data transmitted to the Stamp Editor's Debug Terminal is
garbled, verify the output format.
a. A common mistake is to send data with SEROUT in ASCII

format. For example, SEROUT 16, 84, [0] instead of
SEROUT 16, 84, [DEC 0]. The first example will send a byte
equal to 0 to the PC, resulting in the Debug Terminal clearing
the screen (since 0 is the control character for a clear-screen
action).

Demo Program (SEROUT.bs1)

' SEROUT.bs1
' This program transmits the string "ABCD" followed by a number and a
' carriage-return at 2400 baud, inverted, N81 format.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL SOut = 1
SYMBOL Baud = N2400

SYMBOL value = W1

Setup:
 value = 1

Main:
 SEROUT SOut, Baud, ("ABCD", #value)
 value = value + 1
 PAUSE 250
 GOTO Main
 END

Demo Program (SERIN_SEROUT1.bs2)

' SERIN_SEROUT1.bs2
' Using two BS2-IC's, connect the circuit shown in the SERIN command
' description and run this program on the BASIC Stamp designated as the
' Sender. This program demonstrates the use of Flow Control (FPin).
' Without flow control, the sender would transmit the whole word "Hello!"
' in about 1.5 ms. The receiver would catch the first byte at most; by the
' time it got back from the first 1-second PAUSE, the rest of the data

NOTE: This example program was
written for BS2’s but it can be used with
the BS2e, BS2sx, BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

All 2

1

SLEEP – BASIC Stamp Command Reference

Page 442 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

To ensure accuracy of SLEEP intervals, the BASIC Stamp periodically
compares the watchdog timer to the more-accurate resonator time base. It
calculates a correction factor that it uses during SLEEP. As a result, longer
SLEEP intervals are accurate to approximately ±1 percent.

If your application is driving loads (sourcing or sinking current through
output-high or output-low pins) during SLEEP, current will be interrupted
for about 18 ms (60 µs on the BS2pe) when the BASIC Stamp wakes up
every 2.3 seconds. The reason is that the watchdog-timer reset that
awakens the BASIC Stamp also causes all of the pins to switch to input
mode for approximately 18 ms. When the interpreter firmware regains
control of the processor, it restores the I/O directions dictated by your
program.

If you plan to use END, NAP, POLLWAIT or SLEEP in your programs,
make sure that your loads can tolerate these periodic power outages. The
simplest solution is often to connect resistors high or low (to +5V or
ground) as appropriate to ensure a continuing supply of current during
the reset glitch. The demo program demonstrates the effects of this glitch.

Figure 5.45: SLEEP Example LED
Circuit.

Demo Program (SLEEP.bs2)

' SLEEP.bs2
' This program lights an LED and then goes to sleep. Connect an LED to pin
' 0 as shown in the description of SLEEP in the manual and run the program.
' The LED will turn on, then the BASIC Stamp will go to sleep. During
' sleep,the LED will remain on, but will blink at intervals of
' approximately 2.3 seconds due to the watchdog timeout and reset.

' {$STAMP BS2}

Setup:
 LOW 0 ' turn LED on

NOTE: This example program is written
for the BS2, but it also can be used with
the BS1 and all other BS2 models by
changing the $STAMP directive
accordingly.

1 All 2

5: BASIC Stamp Command Reference – STOP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 447

STOP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

STOP

Function
Stop program execution.

Quick Facts

Table 5.120: STOP Quick Facts.

 All BS2 Models
Related

Command
END

Explanation
STOP prevents the BASIC Stamp from executing any further instructions
until it is reset. The following actions will reset the BASIC Stamp:

1. Pressing and releasing the RESET button on the development
board.

2. Driving the RES pin low then letting it float (high).
3. Downloading a new program
4. Disconnecting then reconnecting the power.

STOP differs from END in two respects:

1. Stop does not put the BASIC Stamp into low-power mode. The
BASIC Stamp draws just as much current as if it were actively
running program instructions.

2. The output glitch that occurs after a program has "ended" does not
occur after a program has "stopped."

Demo Program (STOP.bs2)

' STOP.bs2
' This program is similar to SLEEP.BS2 except that the LED will not blink
' since the BASIC Stamp does not go into low power mode. Use the circuit
' shown in the description of the SLEEP command for this example.

' {$STAMP BS2}
' {$PBASIC 2.5}

Main:
 LOW 0 ' turn LED on
 STOP ' stop program

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

All 2

XOUT – BASIC Stamp Command Reference

Page 468 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The dim/bright commands support 19 brightness levels. Lamp modules
may also be turned on and off using the standard UnitOn and UnitOff
commands. In the example instruction above, we dimmed the lamp by
first turning it completely off, then sending 10 cycles of the Dim
command. This may seem odd, but it follows the peculiar logic of the X-10
system.

Demo Program (X10.bs2)

' XOUT.BS2
' This program--really two program fragments--demonstrates the syntax and
' use of the XOUT command. XOUT works like pressing the buttons on an X-10
' control box; first you press one of 16 keys to identify the unit you want
' to control, then you press the key for the action you want that unit to
' take (turn ON, OFF, Bright, or Dim). There are also two group-action
' keys, Lights ON and All OFF. Lights ON turns all lamp modules on without
' affecting appliance modules. All OFF turns off all modules, both lamp and
' appliance types. Connect the BASIC Stamp to a power-line interface as
' shown in the XOUT command description in the manual.

' {$STAMP BS2}
' {$PBASIC 2.5}

Mpin PIN 0 ' modulation pin
Zpin PIN 1 ' zero-cross input

HouseA CON 0 ' House code A = 0
Unit1 CON 0 ' Unit code 1 = 0
Unit2 CON 1 ' Unit code 2 = 1

' This first example turns a standard (appliance or non-dimmer lamp) module
' ON, then OFF. Note that once the Unit code is sent, it need not be
' repeated
' --subsequent instructions are understood to be addressed to that unit.

Main:
 XOUT Mpin, Zpin, [HouseA\Unit1\2] ' select Unit1 (appliance module)
 XOUT Mpin, Zpin, [HouseA\UNITON] ' turn it on

 PAUSE 1000 ' wait one second

 XOUT Mpin, Zpin, [HouseA\UNITOFF] ' then turn it off

' The next example talks to a lamp module using the dimmer feature. Dimmers
' go from full ON to dimmed OFF in 19 steps. Because dimming is relative to
' the current state of the lamp, the only guaranteed way to set a
' predefined brightness level is to turn the dimmer fully OFF, then ON,
' then dim to the desired level.

 XOUT Mpin, Zpin, [HouseA\Unit2\2] ' select Unit2 (lamp module)

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

Index

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 499

&, 118
&/, 120
*, 110
*, 109
**, 109, 111
*/, 109, 112
/, 109, 113
//, 109, 113
?, 163, 165, 228, 305, 422
@, 154, 161
^, 119
^/, 121
|, 118
|/, 120
~, 105, 106
+, 96, 109
<, 232
<<, 117
<=, 232
<>, 232
=, 232
>, 232
>=, 232
>>, 117

SYNCHRONOUS SERIAL, 431–34, 435–
40, See also SHIFTIN, SHIFTOUT<
I2CIN, I2COUT

Syntax Conventions, 128
Syntax Enhancements for PBASIC 2.5,

124
Syntax Highlighting, 37, 56

Customized, 57
PBASIC versions, 45

— T —
TAB, 168
Tables, 153–58, 183–86, 271–76, 277–

80
Tabs

(diagram), 59
Character, 57
Fixed plus Smart Tabs, 59

Fixed Tab Positions List, 60
Fixed Tabs, 58
in Debug Terminal, 65
Smart Tabs, 58
Tab Behavior, 58–59

Telephone Touch Tones, 179
Templates, 62
Text Wrapping

Debug Terminal, 64
Theory of Operation, 7
TIME. See PAUSE, POLLWAIT
Timeout, 393, 408, 415, 425
Tip of the Day, 55
TO. See FOR...NEXT
TOGGLE, 281, 455–57
Tone Generation, 179–82, 199–201,

445–46
Transmit Pane, 52
Troubleshooting Serial, 410, 427
Truth Table

IF...THEN, 235
POLLIN, 316
POLLOUT, 327

Two's Compliment, 104

— U —
Unary Operators, 104, 105–9

Absolute Value (ABS), 105
Cosine (COS), 105, 106
Decoder (DCD), 105, 106
Encoder (NCD), 105, 107
Inverse (~), 105, 106
Negative (-), 105, 106
Sine (SIN), 105, 107
Square Root (SQR), 105, 108

Unit Circle, 107, 114
UNITOFF, 467, See XOUT
UNITON, 467, See XOUT
UNITSONf, 467, See XOUT
UNTIL. See DO...LOOP
Untitled#, 36
USB Port

