
Parallax Inc. - PBASIC2SX/P Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic2sx-p

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic2sx-p-4425563
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Introduction to the BASIC Stamp

Page 10 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

BASIC Stamp 1

Figure 1.1: BASIC Stamp 1
(Rev B) (Stock# BS1-IC).

Figure 1.2: BASIC Stamp 1 OEM
(Rev. A) (Stock# 27295).

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 15

BASIC Stamp 2e

Figure 1.6: BASIC Stamp 2e
(Rev. B) (Stock# BS2E-IC).

The BASIC Stamp 2e is available in the above 24-pin DIP package.

Table 1.3: BASIC Stamp 2e Pin
Descriptions.

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25
pin 3) for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin
2) for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25
pin 20) for programming.

4 VSS
System ground: (same as pin 23) connects to PC serial port GND
pin (DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin
groups (P0 – P7 or P8 – 15) should not exceed 100 mA (source
or sink) if using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the
VIN pin, then this pin will output 5 volts. If no voltage is applied to
the VIN pin, then a regulated voltage between 4.5V and 5.5V
should be applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can
be driven low to force a reset. This pin is internally pulled high
and may be left disconnected if not needed. Do not drive high.

23 VSS
System ground: (same as pin 4) connects to power supply’s
ground (GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left
unconnected if 5 volts is applied to the VDD (+5V) pin.

4: BASIC Stamp Architecture – Memory Organization

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 83

the variable RAM for these models, only the BS2p40 module has the extra
16 I/O pins for which this feature is intended.

The word variable INS is unique in that it is read-only. The 16 bits of INS
reflect the state of I/O pins P0 through P15. It may only be read, not
written. OUTS contains the states of the 16 output latches. DIRS controls
the direction (input or output) of each of the 16 I/O pins.

A 0 in a particular DIRS bit makes the corresponding pin an input and a 1
makes the corresponding pin an output. So if bit 5 of DIRS is 0 and bit 6 of
DIRS is 1, then I/O pin 5 (P5) is an input and I/O pin 6 (P6) is an output.
A pin that is an input is at the mercy of circuitry outside the BASIC Stamp;
the BASIC Stamp cannot change its state. A pin that is an output is set to
the state indicated by the corresponding bit of the OUTS register.

When the BASIC Stamp is powered up, or reset, all memory locations are
cleared to 0, so all pins are inputs (DIRS = %0000000000000000). Also, if
the PBASIC program sets all the I/O pins to outputs (DIRS =
%1111111111111111), then they will initially output low, since the output
latch (OUTS) is cleared to all zeros upon power-up or reset, as well.

Table 4.2: RAM Organization for
all BS2 models.

NOTE: There are 16 words, of
two bytes each for a total of 32
bytes*. All bits are individually
addressable through variable
modifiers; the bits within the
upper three words are also
individually addressable though
the pre-defined names shown.
All registers are word, byte,
nibble and bit addressable.

*The BS2p, BS2pe, and BS2px
have an additional set of INS,
OUTS, and DIRS registers that
are switched in and out of the
memory map in place of the main
INS, OUTS, and DIRS registers
by using AUXIO, MAINIO, and
IOTERM. Only the BS2p40 has
the required extra I/O pins this
feature is intended for.

Word Name Byte Names Nibble Names Bit Names Special Notes

INS*
INL, INH INA, INB

INC, IND
IN0 – IN7

IN8 – IN15
Input pins

OUTS*
OUTL, OUTH OUTA, OUTB

OUTC, OUTD
OUT0 – OUT7

OUT8 – OUT15
Output pins

DIRS*
DIRL, DIRH DIRA, DIRB

DIRC, DIRD
DIR0 – DIR7

DIR8 – DIR15
I/O pin direction control

W0 B0, B1
W1 B2, B3
W2 B4, B5
W3 B6, B7
W4 B8, B9
W5 B10, B11
W6 B12, B13
W7 B14, B15
W8 B16, B17
W9 B18, B19

W10 B20, B21
W11 B22, B23
W12 B24, B25

THE INPUT/OUTPUT VARIABLES.

5: BASIC Stamp Command Reference – BRANCH

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 133

BRANCH BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

BRANCH Offset, (Address0, Address1, ...AddressN)
BRANCH Offset, [Address0, Address1, ...AddressN]

Function
Go to the address specified by offset (if in range).

• Offset is a variable/constant/expression (0 – 255) that specifies the
index of the address, in the list, to branch to (0 – N).

• Addresses are labels that specify where to go. BRANCH will ignore
any list entries beyond offset 255.

Quick Facts
Table 5.3: BRANCH Quick Facts. BS1 All BS2 Models

Limit of
Address Entries

Limited only by memory 256

Related
Commands

None ON...GOTO

Explanation
The BRANCH instruction is useful when you want to write something like
this:

IF value = 0 THEN Case_0 ' when value is 0, jump to Case_0
IF value = 1 THEN Case_1 ' when value is 1, jump to Case_1
IF value = 2 THEN Case_2 ' when value is 2, jump to Case_2

You can use BRANCH to organize this into a single statement:

BRANCH value, [Case_0, Case_1, Case_2]

This works exactly the same as the previous IF...THEN example. If the
value isn’t in range (in this case if value is greater than 2), BRANCH does
nothing and the program continues with the next instruction after
BRANCH.

BRANCH can be teamed with the LOOKDOWN instruction to create a
simplified SELECT...CASE statement. See LOOKDOWN for an example.

BS1 syntax not shown here.

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

1

CONFIGPIN – BASIC Stamp Command Reference

Page 144 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Every high bit (1) in the PinMask argument enables the output direction
for the corresponding I/O pin while every low bit (0) disables the output
direction. In the above example, I/O pins 8, 4, 1, and 0 are set to the
output direction and all other I/O pins are set to the input direction. This
is similar to the following statement:

DIRS = %0000000100010011

Pull-up resistors are commonly used in circuitry where a component, such
as a button, provides an open/drain signal; the signal is either floating
(open) or is driven to ground (drain). Since the BASIC Stamp input pins
must always be connected to either 5 volts or ground (0 volts) in order to
read a reliable logic state with them, a pull-up resistor is required on
circuitry, such as the button circuit mentioned above, so that the signal is
never left floating (electrically disconnected).

The following example enables internal pull-up resistors on I/O pins 15,
12, 6, and 3, and disables internal pull-up resistors on all other I/O pins:

CONFIGPIN PULLUP, %1001000001001000

Note that the internal pull-up resistors are intentionally weak, about 20
kΩ. Additionally, the internal pull-up resistors can be activated for all
pins, regardless of pin direction, but really matter only when the
associated pin is set to input mode.

An input pin’s logic threshold determines the voltage levels that are
interpreted as logic high (1) and logic low (0). Most microcontrollers, and
other integrated circuits use one of two types of logic threshold: TTL Level
or CMOS Level. The BASIC Stamp I/O pins are, by default, configured
for TTL level logic thresholds. Figure 5.2 is an illustration of the difference
between TTL and CMOS logic levels.

TTL Logic Level CMOS Logic Level

Figure 5.2: TTL and CMOS Logic
Level Threshold Voltages

PULL-UP RESISTORS.

LOGIC THRESHOLD.

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 159

DEBUG BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DEBUG OutputData { , OutputData }

Function
Display information on the PC screen within the BASIC Stamp Editor’s
Debug Terminal. This command can be used to display text or numbers in
various formats on the PC screen in order to follow program flow (called
debugging) or as part of the functionality of the BASIC Stamp application.

• OutputData is a variable/constant/expression (0 – 65535) that
specifies the information to output. Valid data can be ASCII
characters (text strings and control characters), decimal numbers (0 -
65535), hexadecimal numbers ($0000 - $FFFF) or binary numbers (up
to %1111111111111111). Data can be modified with special
formatters as explained below.

Quick Facts
Table 5.9: DEBUG Quick Facts.

BS1 BS2, BS2e, BS2sx

BS2p, BS2pe
BS2px

Serial
Protocol

Asynchronous
4800, N, 8, 1
True polarity

Custom packetized format

Asynchronous
9600, N, 8, 1

Inverted polarity
Raw data

Asynchronous
19200, N, 8, 1

Inverted polarity
Raw data

Related
Commands

None SEROUT and DEBUGIN

Explanation
DEBUG provides a convenient way for your BASIC Stamp to send
messages to the PC screen while running. The name “debug” suggests its
most popular use; debugging programs by showing you the value of a
variable or expression, or by indicating what portion of a program is
currently executing. DEBUG is also a great way to rehearse programming
techniques. Throughout this manual, we use DEBUG to give you
immediate feedback on the effects of instructions. The following example
demonstrates using the DEBUG command to send the text string message
“Hello World!”.

DEBUG "Hello, World!"

After you download this one-line program, the BASIC Stamp Editor will
open a Debug Terminal on your PC screen and wait for a response from

NOTE: Expressions are not allowed as
arguments on the BS1. The only
constant allowed for the BS1 DEBUG
command is a text string.

1

1 All 2

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 165

but typing the name of the variables in quotes (for the display) can get a
little tedious. A special formatter, the question mark (?), can save you a lot
of time. The code below does exactly the same thing (with less typing):

x VAR Byte
y VAR Byte

x = 100
y = 250
DEBUG DEC ? x ' Show decimal value of x
DEBUG DEC ? y ' Show decimal value of y

The display would look something like this:

x = 100
y = 250

The ? formatter always displays data in the form "symbol = value"
(followed by a carriage return). In addition, it defaults to displaying in
decimal, so we really only needed to type: DEBUG ? x for the above
code. You can, of course, use any of the three number systems. For
example: DEBUG HEX ? x or DEBUG BIN ? y.

It's important to note that the "symbol" it displays is taken directly from
what appears to the right of the ?. If you were to use an expression, for
example: DEBUG ? x*10/2+3 in the above code, the display would
show: "x*10/2+3 = 503".

A special formatter, ASC, is also available for use only with the ? formatter
to display ASCII characters, as in: DEBUG ASC ? x.

What if you need to display a table of data; multiple rows and columns?
The Signed/Unsigned code (above) approaches this but, if you notice, the
columns don't line up. The number formatters (DEC, HEX and BIN) have
some useful variations to make the display fixed-width (see Table 5.12).
Up to 5 digits can be displayed for decimal numbers. To fix the value to a
specific number of decimal digits, you can use DEC1, DEC2, DEC3, DEC4
or DEC5. For example:

x VAR Byte

x = 165
DEBUG DEC5 x ' Show decimal value of x in 5 digits

DISPLAYING FIXED-WIDTH NUMBERS.

5: BASIC Stamp Command Reference – DEBUGIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 171

DEBUGIN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DEBUGIN InputData { , InputData }

Function
Accept information from the user via the Debug Terminal within the
BASIC Stamp Editor program.

• InputData is list of variables and formatters that tells DEBUGIN what
to do with incoming data. DEBUGIN can store data in a variable or
array, interpret numeric text (decimal, binary, or hex) and store the
corresponding value in a variable, wait for a fixed or variable
sequence of bytes, or ignore a specified number of bytes. These
actions can be combined in any order in the InputData list.

Quick Facts
Table 5.14: DEBUGIN Quick
Facts.

 BS2, BS2e, BS2sx, BS2p, BS2pe BS2px

Serial Protocol Asynchronous 9600 baud N, 8, 1
Inverted Polarity, Raw Data

Asynchronous 19200 baud N, 8, 1
Inverted Polarity, Raw Data

Related
Commands

SERIN and DEBUG

Explanation
DEBUGIN provides a convenient way for your BASIC Stamp to accept
input from the user via the Debug Terminal. DEBUGIN can wait for, filter
and convert incoming data in powerful ways, using the same techniques
and modifiers as SERIN.

DEBUGIN is actually a special case of the SERIN instruction. It is set for
inverted (RS-232-compatible) serial input through the programming
connector (the SIN pin) at 9600 baud (19200 baud on BS2px), no parity, 8
data bits, and 1 stop bit.

For example:

DEBUGIN DEC1 myNum

All 2
NOTE: DEBUGIN requires the
$PBASIC 2.5 compiler directive.

5: BASIC Stamp Command Reference – FOR...NEXT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 191

FOR…NEXT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

FOR Counter = StartValue TO EndValue { STEP {-} StepValue }

 Statement(s)

NEXT { Counter }

FOR Counter = StartValue TO EndValue { STEP StepValue }

 Statement(s)
NEXT { Counter }

Function
Create a repeating loop that executes the Statement(s), one or more
program lines that form a code block, between FOR and NEXT,
incrementing or decrementing Counter according to StepValue until the
value of the Counter variable passes the EndValue.

• Counter is a variable (usually a byte or a word) used as a counter.

• StartValue is a variable/constant/expression (0 – 65535) that
specifies the initial value of the variable (Counter).

• EndValue is a variable/constant/expression (0 – 65535) that specifies
the end value of the variable (Counter). When the value of Counter is
outside of the range StartValue to EndValue, the FOR...NEXT loop
stops executing and the program goes on to the instruction after
NEXT.

• StepValue is an optional variable/constant/expression (0 – 65535) by
which the Counter increases or decreases with each iteration through
the FOR…NEXT loop. On the BS1, use a minus sign (-) in front of
the StepValue to indicate a negative step. On all BS2 models, if
StartValue is larger than EndValue, PBASIC understands StepValue to
be negative, even though no minus sign is used.

• Statement is any valid PBASIC instruction.

NOTE: Expressions are not allowed as
arguments on the BS1.

NOTE: Use a minus sign to indicate
negative StepValues on the BS1.

1

1

1

All 2

5: BASIC Stamp Command Reference – POLLIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 315

pin 0 is set low, the BASIC Stamp will set I/O pin 1 high. It will continue
to perform this operation, in-between each command in the loop,
endlessly.

It's important to note that, in this example, only the DEBUG and GOTO
commands are being executed over and over again. The first three lines of
code are only run once, yet their effects are "remembered" by the BASIC
Stamp throughout the rest of the program.

If the polling commands were not used, the program would have to look
like the one below in order to achieve the same effect.

INPUT 0
OUTPUT 1

Main:
 OUT1 = ~IN0
 DEBUG "Looping...", CR
 OUT1 = ~IN0
 GOTO Main

In this example, we create the inverse relationship of input pin 0 and
output pin 1 manually, in-between the DEBUG and GOTO lines. Though
the effects are the same as when using the polling commands, this
program actually takes a little longer to run and consumes 7 additional
bytes of program (EEPROM) space. Clearly, using the polling commands
is more efficient.

You can have as many polled-input and polled-output pins as you have
available. If multiple polled-input pins are defined, any one of them can
trigger changes on the polled-output pins that are also defined. For
example:

POLLIN 0, 0
POLLIN 1, 0
POLLOUT 2, 1
POLLOUT 3, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

This code sets I/O pins 0 and 1 to polled-input pins (looking for a low (0)
state) and sets I/O pins 2 and 3 to polled-output pins (with a high-active

FOR COMPARISON: ACHIEVING THE SAME
EFFECTS WITHOUT THE POLLING

COMMANDS.

USING MULTIPLE POLLED-INPUT AND

POLLED-OUTPUT PINS.

THE BASIC STAMP "REMEMBERS" THE
POLLING CONFIGURATION FOR THE

DURATION OF THE PBASIC PROGRAM.

5: BASIC Stamp Command Reference – POLLOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 327

INPUT 0
OUTPUT 1

Main:
 OUT1 = ~IN0
 DEBUG "Looping...", CR
 OUT1 = ~IN0
 GOTO Main

In this example, we create the inverse relationship of input pin 0 and
output pin 1 manually, in-between the DEBUG and GOTO lines. Though
the effects are the same as when using the polling commands, this
program actually takes a little longer to run and consumes 7 additional
bytes of program (EEPROM) space. Clearly, using the polling commands
is more efficient.

You can have as many polled-input and polled-output pins as you have
available. If multiple polled-output pins are defined, all of them change in
response to changes on the polled-input pins. For example:

POLLIN 0, 0
POLLOUT 1, 0
POLLOUT 2, 1
POLLOUT 3, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

This code sets up I/O pin 0 as a polled-input pin (looking for a low (0)
state) and sets I/O pins 1, 2 and 3 to polled-output pins. Polled-output pin
1 is set to a low-active state and pins 2 and 3 are set to a high-active state.
If I/O pin 0 goes low, the BASIC Stamp will set I/O pin 1 low and I/O
pins 2 and 3 high. The table below shows the two possible states of the
polled-input pin and the corresponding states the BASIC Stamp will set
the polled-output pins to.

Table 5.79: POLLOUT Truth Table.

Polled-Input Polled-Outputs

0 1 2 3
1 1 0 0
0 0 1 1

Normally, any polled-output pins reflect the state changes continuously,
as described above. The POLLMODE command supports another feature,

USING MULTIPLE POLLED-INPUT AND

POLLED-OUTPUT PINS.

POLLED-OUTPUTS CAN BE "LATCHED"
ALSO.

POLLRUN – BASIC Stamp Command Reference

Page 332 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The following is a simple example of the POLLRUN command.

POLLIN 0, 0
POLLRUN 1
POLLMODE 3

Main:
 DEBUG "Waiting in Program Slot 0...", CR
 GOTO Main

The first line of the above code will set up I/O pin 0 as a polled-input pin
looking for a low (0) state. The second line, POLLRUN, tells the BASIC
Stamp that when I/O pin 0 goes low, it should switch execution over to
the program residing in program slot 1. The third line, POLLMODE,
activates the polled-run configuration.

Once the BASIC Stamp reaches the Main routine, it will continuously print
"Waiting in Program Slot 0…" on the PC screen. In between reading the
DEBUG and GOTO commands, however, the BASIC Stamp will poll I/O
pin 0 and check for a high or low state. If the state of pin 0 is high, it will
do nothing and continue as normal. If the state of pin 0 is low, it will
switch execution over to the program in slot 1 (the second program is not
shown in this example). The switch to another program slot works exactly
like with the RUN command; the designated program is run and the
BASIC Stamp does not "return" to the previous program (similar to a
GOTO command).

Note that in order for the polled-run activity to occur, the poll mode must
be set to either 3 or 4 (the two modes that activate polled-run). Also note,
that the polled-run modes, 3 and 4, are unique. As soon as the polled-run
action occurs, the mode switches to 1 (deactivated, saved) or 2 (activated,
outputs), respectively. This is so that the BASIC Stamp doesn't
continuously go to the start of the designated program slot while the
polled-inputs are in the desired poll state. Without this "one shot" feature,
your program would appear to lock-up as long as the polled-inputs are in
the designated state.

After the program switch takes place, the ProgramSlot value is maintained.
Any future change to poll mode 3 or 4, without another POLLRUN
command, will result in the previously defined program slot being used.

A SIMPLE POLLRUN EXAMPLE.

5: BASIC Stamp Command Reference – PULSIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 345

Main:
 PULSIN Pulse, 1, time ' measure positive pulse
 IF time = 0 THEN Main ' if 0, try again
 DEBUG CLS, time ' else display result
 GOTO Main
 END

Demo Program (PULSIN.bs2)

' PULSIN.bs2
' This program uses PULSIN to measure a pulse generated by discharging a
' 0.1 uF capacitor through a 1K resistor. Pressing the switch generates
' the pulse, which should ideally be approximately 120 us (60 PULSIN units
' of 2 us) long (for BS2 and BS2e). Variations in component values may
' produce results that are up to 10 units off from this value. For more
' information on calculating resistor-capacitor timing, see the RCTIME
' command.

' {$STAMP BS2}
' {$PBASIC 2.5}

Pulse PIN 7 ' pulse input pin

#SELECT $STAMP
 #CASE BS2, BS2E, BS2PE
 Scale CON $200 ' 2.0 us per unit
 #CASE BS2SX, BS2P
 Scale CON $0CC ' 0.8 us per unit
 #CASE BS2PX
 Scale CON $0CF ' 0.81 us per unit

#ENDSELECT

time VAR Word

Main:
 PULSIN Pulse, 1, time ' measure positive pulse
 IF (time > 0) THEN ' if not 0
 DEBUG HOME,
 DEC time, " units ", CLREOL ' display raw input
 time = time */ Scale ' adjust for Stamp
 DEBUG CR,
 DEC time, " us " ' display microseconds
 ELSE
 DEBUG CLS, "Out of Range" ' else error message
 ENDIF
 PAUSE 200
 GOTO Main
 END

All 2

NOTE: This example program can be
used with all BS2 models. This
program uses conditional compilation
techniques; see Chapter 3 for more
information.

RCTIME – BASIC Stamp Command Reference

Page 368 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 DEC Result, CR
 HIGH Coil ' release relay
 PAUSE 1000 ' wait one second
 LOOP
 END

SERIN - BASIC Stamp Command Reference

Page 396 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 5.36 shows the pinouts of the two styles of PC serial ports and how
to connect them to the BASIC Stamp's I/O pin (the 22 kΩ resistor is not
needed if connecting to the SIN pin). Though not normally needed, the
figure also shows loop back connections that defeat hardware
handshaking used by some PC software. Note that PC serial ports are
always male connectors. The 25-pin style of serial port (called a DB25)
looks similar to a printer (parallel) port except that it is male, whereas a
parallel port is female.

Asynchronous serial communication relies on precise timing. Both the
sender and receiver must be set for identical timing, usually expressed in
bits per second (bps) called baud.

On all BASIC Stamp models, SERIN requires a value called Baudmode that
tells it the important characteristics of the incoming serial data; the bit
period, number of data and parity bits, and polarity.

On the BS1, serial communication is limited to: no-parity, 8-data bits and
1-stop bit at one of four different speeds: 300, 600, 1200 or 2400 baud.
Table 5.95 indicates the Baudmode value or symbols to use when selecting
the desired mode.

Baudmode
Value

Symbol Baud Rate Polarity

0 T2400 2400 TRUE
1 T1200 1200 TRUE
2 T600 600 TRUE
3 T300 300 TRUE
4 N2400 2400 INVERTED
5 N1200 1200 INVERTED
6 N600 600 INVERTED
7 N300 300 INVERTED

Table 5.95: BS1 Baudmode Values.

On all BS2 models, serial communication is very flexible. The Baudmode
argument for SERIN accepts a 16-bit value that determines its
characteristics: 1-stop bit, 8-data bits/no-parity or 7-data bits/even-parity
and virtually any speed from as low as 300 baud to greater than 100K
baud (depending on the BASIC Stamp). Table 5.96 shows how Baudmode is
calculated, while Table 5.97, Table 5.98, and Table 5.99 show common
baud modes for standard serial baud rates.

SERIAL TIMING AND MODE (BAUDMODE).

1 All 2

1

All 2

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 397

Table 5.96: Baudmode calculation
for all BS2 models. Add the
results of steps 1, 2 and 3 to
determine the proper value for the
Baudmode argument.

Step 1: Determine the
bit period

(bits 0 – 11).

BS2, BS2e and BS2pe: = INT(1,000,000 / baud rate) – 20
BS2sx and BS2p: = INT(2,500,000 / baud rate) – 20
BS2px: = INT(4,000,000 / baud rate) – 20
Note: INT means 'convert to integer;' drop the numbers to the right of the decimal
point.

Step 2: Set data bits
and parity (bit 13).

8-bit/no-parity = 0
7-bit/even-parity = 8192

Step 3: Select
polarity (bit 14).

True (noninverted) = 0
Inverted = 16384

Table 5.97: BS2, BS2e, and
BS2pe common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
300 19697 3313 27889 11505
600 18030 1646 26222 9838

1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800* 16572 188 24764 8380
9600* 16468 84 24660 8276

*The BS2, BS2e and BS2pe may have trouble synchronizing with the incoming serial stream
at this rate and higher due to the lack of a hardware input buffer. Use only simple variables
and no formatters to try to solve this problem.

Table 5.98: BS2sx and BS2p
common baud rates and
corresponding Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 18447 2063 26639 10255
2400 17405 1021 25597 9213
4800* 16884 500 25076 8692
9600* 16624 240 24816 8432

*The BS2sx and BS2p may have trouble synchronizing with the incoming serial stream at this
rate and higher due to the lack of a hardware input buffer. Use only simple variables and no
formatters to try to solve this problem.

Table 5.99: BS2px common baud
rates and corresponding
Baudmodes.

Baud
Rate

8-bit
no-parity
inverted

8-bit
no-parity

true

7-bit
even-parity

inverted

7-bit
even-parity

true
1200 19697 3313 27889 11505
2400 18030 1646 26222 9838
4800 17197 813 25389 9005
9600 16780 396 24792 8588

If you’re communicating with existing software or hardware, its speed(s)
and mode(s) will determine your choice of baud rate and mode. In
general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity
(8N) for byte-oriented data. Note: the most common mode is
8-bit/no-parity, even when the data transmitted is just text. Most devices

CHOOSING THE PROPER BAUD MODE.

SHIFTOUT – BASIC Stamp Command Reference

Page 440 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – SLEEP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 441

SLEEP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

SLEEP Duration

Function
Put the BASIC Stamp into low-power mode for a specified time.

• Duration is a variable/constant/expression (1 – 65535) that specifies
the duration of sleep. The unit of time for Duration is 1 second,
though the BASIC Stamp rounds up to the nearest multiple of 2.3
seconds.

Quick Facts
Table 5.118: SLEEP Quick Facts.

NOTE: Current measurements
are based on 5-volt power, no
extra loads and 75° F ambient
temperature.

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
Current Draw
during Run

1 mA 3 mA 25 mA 60 mA 40 mA 15 mA 55 mA

Current Draw
during SLEEP

25 µA 50 µA 200 µA 500 µA 350 µA 36 µA 450 µA

Related
Commands

END and NAP END, NAP and POLLWAIT

Accuracy of
SLEEP ±1% @ 75°F with stable power supply

Explanation
SLEEP allows the BASIC Stamp to turn itself off, then turn back on after a
programmed period of time. The length of SLEEP can range from 2.3
seconds to slightly over 18 hours. Power consumption is reduced to the
amount described in Table 5.118, assuming no loads are being driven. The
resolution of the SLEEP instruction is 2.304 seconds. SLEEP rounds the
specified number of seconds up to the nearest multiple of 2.304. For
example, SLEEP 1 causes 2.304 seconds of sleep, while SLEEP 10 causes
11.52 seconds (5 x 2.304) of sleep.

Pins retain their previous I/O directions during SLEEP. However, outputs
are interrupted every 2.3 seconds during SLEEP due to the way the chip
keeps time. The alarm clock that wakes the BASIC Stamp up is called the
watchdog timer. The watchdog is a resistor/capacitor oscillator built into
the interpreter chip. During SLEEP, the chip periodically wakes up and
adjusts a counter to determine how long it has been asleep. If it isn’t time
to wake up, the chip “hits the snooze bar” and goes back to sleep.

NOTE: Expressions are not allowed as
arguments on the BS1.

1 All 2

1

5: BASIC Stamp Command Reference – STORE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 451

Demo Program (STORE1.bsp)

' STORE1.bsp

' {$STAMP BS2p}
' {$PBASIC 2.5}

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 6, 7, 8, 9, 10

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 0 ' point READ/WRITE to Slot 0
 GOSUB Show_Slot_Info
 PAUSE 2000
 RUN 2 ' run program in Slot 2
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

Demo Program (STORE2.bsp)

' STORE2.bsp

' {$STAMP BS2p}
' {$PBASIC 2.5}

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 11, 12, 13, 14, 15

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 0 ' point READ/WRITE to Slot 0

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px by changing the $STAMP
directive accordingly.

WRITE – BASIC Stamp Command Reference

Page 464 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

