
Parallax Inc. - PBASIC48W/P24 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic48w-p24

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic48w-p24-4431457
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Using the BASIC Stamp Editor

Page 46 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

(such as two BS2s) on two ports and you have two different PBASIC
programs to download (one to each BS2). Without this directive,
developing and downloading in this case would be a tedious task of
always answering the "which BASIC Stamp?" prompt.

The $PORT directive can be automatically inserted or modified by
selecting the appropriate port from the Directive → Port menu. The COM
ports listed in the Directive → Port menu are automatically updated any
time a change is made to the exiting computer hardware or to the available
ports list. See the Setting Preferences section which begins on page 55 for
more information.

Special Functions

The Identify function will identify which BASIC Stamp model, if any, is
detected on any available communications port. This information is
displayed in the Identification window (Figure 3.10), which can greatly aid
in troubleshooting your connection to your BASIC Stamp module.
Activate this function by selecting Run → Identify, by pressing Ctrl-I, or
pressing F6.

Figure 3.10: The Identification
Window.

The Port column shows the available ports (those that the BASIC Stamp
Editor is trying to access). You can modify the available Port List by
clicking on the Edit Port List button. Modifying this list only affects which
ports the BASIC Stamp Editor tries to use; it does not affect which serial
ports are installed on your computer. It is recommended that you delete
all known modem ports and any problematic ports from this list.

THE IDENTIFICATION FUNCTION .

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 57

To create a custom scheme, select a default scheme you wish to modify,
and click on the Copy Scheme button. Then, select (highlight) an element
within the Syntax Element list, and apply new Text Attributes with the
checkboxes and drop-down menus to the right. As you try various text
attributes and color combinations, the Show Preview Example checkbox
lets you audition your custom scheme without closing the Preferences
window.

The BASIC Stamp Editor supports one custom scheme at a time. It can be
modified indefinitely, but it cannot be copied. If you again copy a default
scheme, you will be asked to confirm that you wish to overwrite your
current custom scheme.

Under this tab, you will also find checkboxes that allow you to show or
hide bookmarks, line numbers, the overwrite cursor, and the toolbar.

Under the Editor Operation tab (Figure 3.19), you may set preferences for
automatic indentation and tab behavior.

The Auto Indent on Enter option makes it easy to indent nested loops to
make code easier to read. The Auto Unindent option enables quick
reversal of an indented line by simply using the backspace key, provided
that the cursor is to the left of the first character on the line.

The editor lets you choose whether a tab character or spaces are inserted
into source code whenever you press the Tab key. The default setting,
insert space characters upon Tab key presses, is recommended because it
enforces the intended formatting regardless of what editor you use to view
the code later.

CUSTOMIZED SYNTAX HIGHLIGHTING.

EDITOR OPERATION PREFERENCES.

AUTO INDENTING / UNINDENTING.

TAB CHARACTER.

4: BASIC Stamp Architecture – Memory Organization

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 81

BASIC Stamp Architecture Introduction This chapter provides detail on
the architecture (RAM usage) and math functions of the BS1, BS2, BS2e,
BS2sx, BS2p, BS2pe, and BS2px.

The following icons will appear to indicate where there are differences
among the various BASIC Stamp models:

One or more of these icons indicates the item applies only
to the BS1, BS2, BS2e, BS2sx, BS2p, BS2pe, or BS2px
respectively.

If an item applies to the all of the models in the BS2
family, this icon is used.

The BASIC Stamp has two kinds of memory; RAM (for variables used by
your program) and EEPROM (for storing the program itself). EEPROM
may also be used to store long-term data in much the same way that
desktop computers use a hard drive to hold both programs and files.

An important distinction between RAM and EEPROM is this:

• RAM loses its contents when the BASIC Stamp loses power; when
power returns, all RAM locations are cleared to 0s.

• EEPROM retains the contents of memory, with or without power,
until it is overwritten (such as during the program-downloading
process or with a WRITE instruction.)

The BS1 has 16 bytes (8 words) of RAM space arranged as shown in Table
4.1 The first word, called PORT, is used for I/O pin control. It consists of
two bytes, PINS and DIRS. The bits within PINS correspond to each of the
eight I/O pins on the BS1. Reading PINS effectively reads the I/O pins
directly, returning an 8-bit set of 1's and 0's corresponding to the high and
low state of the respective I/O pin at that moment. Writing to PINS will
store a high or low value on the respective I/O pins (though only on pins
that are set to outputs).

The second byte of PORT, DIRS, controls the direction of the I/O pins.
Each bit within DIRS corresponds to an I/O pin's direction. A high bit (1)

MEMORY ORGANIZATION

RAM ORGANIZATION (BS1)

THE INPUT/OUTPUT VARIABLES.

All 2

1

4: BASIC Stamp Architecture – NCD, SIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 107

result VAR Word

result = 99 ' Put -99 into result
 ' ...(2's complement format)
DEBUG SDEC ? result ' Display as a signed #
result = -result ' Negate the value
DEBUG SDEC ? result ' Display as a signed #

The Encoder operator (NCD) is a "priority" encoder of a 16-bit value. NCD
takes a 16-bit value, finds the highest bit containing a 1 and returns the bit
position plus one (1 through 16). If the input value is 0, NCD returns 0.
NCD is a fast way to get an answer to the question “what is the largest
power of two that this value is greater than or equal to?” The answer NCD
returns will be that power, plus one. Example:

result VAR Word

result = %1101 ' Highest bit set is bit 3

DEBUG ? NCD result ' Show the NCD of result (4)The
Sine operator (SIN) returns the two’s complement, 16-bit sine of an angle
specified as an 8-bit binary radian (0 to 255) angle.

To understand the SIN operator more completely, let’s look at a typical
sine function. By definition: given a circle with a radius of 1 unit (known
as a unit circle), the sine is the y-coordinate distance from the center of the
circle to its edge at a given angle. Angles are measured relative to the 3-
o'clock position on the circle, increasing as you go around the circle
counterclockwise.

At the origin point (0 degrees) the sine is 0, because that point has the
same y (vertical) coordinate as the circle center. At 45 degrees the sine is
0.707. At 90 degrees, sine is 1. At 180 degrees, sine is 0 again. At 270
degrees, sine is -1.

The BASIC Stamp SIN operator breaks the circle into 0 to 255 units instead
of 0 to 359 degrees. Some textbooks call this unit a “binary radian” or
“brad.” Each brad is equivalent to 1.406 degrees. And instead of a unit
circle, which results in fractional sine values between 0 and 1, BASIC
Stamp SIN is based on a 127-unit circle. Results are given in two’s
complement form in order to accommodate negative values. So, at the
origin, SIN is 0. At 45 degrees (32 brads), sine is 90. At 90 degrees (64
brads), sine is 127. At 180 degrees (128 brads), sine is 0. At 270 degrees
(192 brads), sine is -127.

ENCODER: NCD

SINE: SIN

All 2

All 2

All 2

5: BASIC Stamp Command Reference – GET

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 205

Table 5.28: Layout of SPRAM
Registers.

NOTE: Scratch Pad RAM can
only be accessed with the GET
and PUT commands. Scratch
Pad RAM cannot have variable
names assigned to it.

Location BS2e and BS2sx BS2p, BS2pe, and BS2px
0...62 General Purpose RAM General Purpose RAM

63
Bits 0-3: Active program

slot number.
General Purpose RAM

64..126 n/a General Purpose RAM
127 n/a Bits 0-3, Active program slot #. Bits 4-7, program

slot for READ and WRITE operations.

128 n/a Polled input trigger status of Main I/O pins 0-7
(0 = not triggered, 1 = triggered).

129 n/a Polled input trigger status of Main I/O pins 8-15
(0 = not triggered, 1 = triggered).

130 n/a Polled input trigger status of Auxiliary I/O pins
0-7 (0 = not triggered, 1 = triggered).

131 n/a Polled input trigger status of Auxiliary I/O pins
8-15 (0 = not triggered, 1 = triggered).

132 n/a Bits 0-3: Polled-interrupt mode, set by
POLLMODE

133 n/a Bits 0-2: Polled-interrupt “run” slot, set by
POLLRUN.

134 n/a Bit 0: Active I/O group; 0 = Main I/O,
1 = Auxiliary I/O.

135 n/a

Bit 0: Polled-output status (set by POLLMODE);
 0 = disabled, 1= enabled.
Bit 1: Polled-input status; 0 = none defined,
 1 = at least one defined.
Bit 2: Polled-run status (set by POLLMODE);
 0 = disabled, 1 = enabled.
Bit 3: Polled-output latch status;
 0 = real-time mode, 1 = latch mode.
Bit 4: Polled-input state;
 0 = no trigger, 1 = triggered.
Bit 5: Polled-output latch state;
 0 = nothing latched, 1 = signal latched.
Bit 6: Poll-wait state; 0 = No Event, 1 = Event
 Occurred. (Cleared by POLLMODE only).
Bit 7: Polling status; 0 = not active, 1 = active.

Demo Program (GET_PUT1.bsx)

' GET_PUT1.bsx
' This example demonstrates the use of the GET and PUT commands. First,
' slot location is read using GET to display the currently running program
' number. Then a set of values are written (PUT) into locations 0 TO 9.
' Afterwards, program number 1 is RUN. This program is a BS2SX project
' consisting of GET_PUT1.BSX and GET_PUT2.BSX, but will run on the BS2e,
' BS2p, BS2pe and BS2px without modification.

' {$STAMP BS2sx, GET_PUT2.BSX}
' {$PBASIC 2.5}

NOTE: This is written for the BS2sx but
can be used with the BS2e, BS2p,
BS2pe and BS2px also. This program
uses conditional compilation
techniques; see Chapter 3 for more
information.

5: BASIC Stamp Command Reference – GOSUB

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 211

BASIC Stamp encounters a RETURN without a previous GOSUB, the
entire program starts over from the beginning. Take care to avoid these
phenomena.

Demo Program (GOSUB.bs1)

' GOSUB.bs1
' This program is a guessing game that generates a random number in a
' subroutine called Pick_A_Number. It is written to stop after ten
' guesses. To see a common bug associated with GOSUB, delete or comment
' out the line beginning with END after the FOR-NEXT loop. This means
' that after the loop is finished, the program will wander into the
' Pick_A_Number subroutine. When the RETURN at the end executes, the
' program will go back to the beginning of the program. This will cause
' the program to execute endlessly. Make sure that your programs can't
' accidentally execute subroutines!

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL rounds = B2 ' number of reps
SYMBOL numGen = W0 ' random number holder
SYMBOL myNum = B3 ' random number, 1-10

Setup:
 numGen = 11500 ' initialize random "seed"

Main:
 FOR rounds = 1 TO 10
 DEBUG CLS, "Pick a number from 1 to 10", CR
 GOSUB Pick_A_Number
 PAUSE 2000 ' dramatic pause
 DEBUG "My number was: ", #myNum ' show the number
 PAUSE 1000 ' another pause.
 NEXT
 DEBUG CLS, "Done"
 END ' end program

' Random-number subroutine. A subroutine is just a piece of code with
' the RETURN instruction at the end. Always make sure your program enters
' subroutines with a GOSUB. If you don't, the RETURN won't have the
' correct address, and your program will have a bug!

Pick_A_Number:
 RANDOM numGen ' stir up the bits of NumGen.
 DEBUG numGen, CR
 myNum = numGen / 6550 MIN 1 ' scale to fit 1-10 range.
 RETURN ' go back to 1st instruction
 ' after GOSUB that got us here

1

GOSUB – BASIC Stamp Command Reference

Page 212 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (GOSUB.bs2)

' GOSUB.bs2
' This program is a guessing game that generates a random number in a
' subroutine called Pick_A_Number. It is written to stop after ten
' guesses. To see a common bug associated with GOSUB, delete or comment
' out the line beginning with END after the FOR-NEXT loop. This means
' that after the loop is finished, the program will wander into the
' Pick_A_Number subroutine. When the RETURN at the end executes, the
' program will go back to the beginning of the program. This will cause
' the program to execute endlessly. Make sure that your programs can't
' accidentally execute subroutines!

' {$STAMP BS2}
' {$PBASIC 2.5}

rounds VAR Byte ' number of reps
numGen VAR Word ' random number holder
myNum VAR Byte ' random number, 1-10

Setup:
 numGen = 11500 ' initialize random "seed"

Main:
 FOR rounds = 1 TO 10
 DEBUG CLS, "Pick a number from 1 to 10", CR
 GOSUB Pick_A_Number
 PAUSE 2000 ' dramatic pause
 DEBUG "My number was: ", DEC myNum ' show the number
 PAUSE 1000 ' another pause.
 NEXT
 DEBUG CLS, "Done"
 END ' end program

' Random-number subroutine. A subroutine is just a piece of code with
' the RETURN instruction at the end. Always make sure your program enters
' subroutines with a GOSUB. If you don't, the RETURN won't have the
' correct address, and your program will have a bug!

Pick_A_Number:
 RANDOM numGen ' stir up the bits of NumGen.
 DEBUG DEC ? numGen
 myNum = numGen / 6550 MIN 1 ' scale to fit 1-10 range.
 RETURN ' go back to 1st instruction
 ' after GOSUB that got us here

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

I2COUT – BASIC Stamp Command Reference

Page 226 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Quick Facts
 BS2p, BS2pe, and BS2px

Values for Pin Pin = 0 Pin = 8

I/O Pin Arrangement 0: Serial Data (SDA) pin
1: Serial Clock (SCL) pin

8: Serial Data (SDA) pin
9: Serial Clock (SCL) pin

Transmission
Rate

Approximately 81 kbits/sec on a BS2p, 45 kbits/sec on a BS2pe,
and 83 kbits/sec on a BS2px (not including overhead).

Special Notes
The SDA and SCL pins must have 1 kΩ - 4.7 kΩ pull-up resistors.
The I2CIN command does not allow for multiple masters.
The BASIC Stamp cannot operate as an I2C slave device.

Related Command I2CIN

Table 5.35: I2COUT Quick Facts.

Explanation
The I2C protocol is a form of synchronous serial communication developed
by Phillips Semiconductors. It only requires two I/O pins and both pins
can be shared between multiple I2C devices. The I2COUT command
allows the BASIC Stamp to send data to an I2C device.

The following is an example of the I2COUT command:

I2COUT 0, $A0, 5, [100]

This code will transmit a "write" command to an I2C device (connected to
I/O pins 0 and 1), followed by an address of 5 and finally will transmit the
number 100.

The above example will write a byte of data to location 5 of a 24LC16B
EEPROM from Microchip. Figure 5.11 shows the proper wiring for this
example to work. The SlaveID argument ($A0) is both the ID of the chip
and the command to write to the chip; the 0 means write. The Address
argument (5) is the EEPROM location to write to.

Vss

P1
Vdd

4.7 kΩ

P0

24LC16B
(DIP)

4.7 kΩ

SDA

SCL

1
2
3
4

8
7
6
5

Figure 5.11: Example Circuit for the
I2COUT command and a 24LC16B
EEPROM.

Note: The 4.7 kΩ resistors are
required for the I2COUT
command to function properly.

A SIMPLE I2COUT EXAMPLE.

INPUT – BASIC Stamp Command Reference

Page 246 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

IOTERM – BASIC Stamp Command Reference

Page 248 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Stamp that all commands following it should affect the auxiliary I/O pins
(Port = 1). The following LOW command will set I/O pin 0 of the
auxiliary I/O pins (physical pin 21) low.

Note that the main I/O and auxiliary I/O pins are independent of each
other; the states of the main I/O pins remain unchanged while the
program affects the auxiliary I/O pins, and vice versa.

Other commands that affect I/O group access are AUXIO and MAINIO.

Demo Program (AUX_MAIN_TERM.bsp)

' AUX_MAIN_TERM.bsp
' This program demonstrates the use of the AUXIO, MAINIO and IOTERM
' commands to affect I/O pins in the auxiliary and main I/O groups.

' {$STAMP BS2p}
' {$PBASIC 2.5}

#SELECT $STAMP
 #CASE BS2, BS2E, BS2SX
 #ERROR "Program requires BS2p40"
 #CASE BS2P, BS2PE, BS2PX
 DEBUG "Note: This program designed for the BS2p40.", CR
#ENDSELECT

port VAR Bit

Main:
 DO
 MAINIO ' Switch to main I/O pins
 TOGGLE 0 ' Toggle state of I/O pin P0
 PWM 1, 100, 40 ' Generate PWM on I/O pin P1

 AUXIO ' Switch to auxiliary I/O pins
 TOGGLE 0 ' Toggle state of I/O pin X0
 PULSOUT 1, 1000 ' Generate a pulse on I/O pin X1
 PWM 2, 100, 40 ' Generate PWM on I/O pin X2

 IOTERM port ' Switch to main or aux I/Os
 ' -- depending on port
 TOGGLE 3 ' Toggle state of I/O pin 3
 ' -- on main and aux, alternately
 port = ~port ' Invert port
 PAUSE 1000 ' 1 second delay
 LOOP
 END

MAIN I/O AND AUXILIARY I/O PINS ARE
INDEPENDENT AND UNAFFECTED BY

CHANGES IN THE OPPOSITE GROUP.

2p

NOTE: This example program will
tokenize with the 24-pin BS2p, BS2pe,
and BS2px but its effects can only be
seen on the BS2p40. This program
uses conditional compilation techniques;
see Chapter 3 for more information.

LCDCMD – BASIC Stamp Command Reference

Page 252 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

printed on the display (with the LCDOUT command) will appear at the
current cursor's location. Here's another example:

LCDCMD 0, 128 + 64

The above command will move the cursor to the first character position on
the second line (on a 2 x 16 display). 128 is the Move To Display Address
command and 64 is the location number. See the "Character Positioning"
section, below, for more information.

 Command
(in decimal)

Description

Do Nothing 0 Don't perform any special operation.
Clear Display 1 Clear the display and move cursor to home position.
Home Display 2 Move cursor and display to home position.

Inc Cursor 6 Set cursor direction to right, without a display shift.
Display Off 8 Turn off display (display data is retained).
Display On 12 Turn on display without cursor (display is restored).

Blinking Cursor 13 Turn on display with blinking cursor.
Underline Cursor 14 Turn on display with underline cursor.

Cursor Left 16 Move cursor left one character.
Cursor Right 20 Move cursor right one character.

Scroll Left 24 Scroll display left one character.
Scroll Right 28 Scroll display right one character.

Move To CGRAM
Address

64 + address Move pointer to character RAM location.

Move To DDRAM
Address

128 + address Move cursor to Display Data RAM location.

Table 5.44: Common LCD
Commands. These are supported
by LCDs with the Hitachi 44780
controller.

While most users will only need the commands shown in Table 5.44
above, Table 5.45 below details all of the instructions supported by the
LCD (for advanced users). Many instructions are multipurpose,
depending on the state of special bits. Clever manipulation of the
instruction bits will allow for powerful control of the LCD.

The last command shown above (Move To DDRAM Address) is used to
move the cursor to a specific position on the LCD. The LCD's DDRAM
(Display Data RAM) is a fixed size with a unique position number for each
character cell. The viewable portion of the DDRAM depends on the LCD's
logical view position (which can be altered with the Scroll Display
command). The default view position is called the Home position; it
means that the display's upper left character corresponds to DDRAM

CHARACTER POSITIONING: MOVING THE
CURSOR.

A NOTE ABOUT ADVANCED LCD
COMMANDS.

LCDIN – BASIC Stamp Command Reference

Page 260 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to
1 – 4 digits

-, 0 through 9,
A through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to
1 – 4 digits

$, 0 through 9,
A through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through
9, A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited
to 1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number
must be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

Table 5.48: LCDIN Conversion
Formatters

1 All numeric conversions will continue to accept new data until receiving either the specified
number of digits (ex: three digits for DEC3) or a non-numeric character.

2 To be recognized as part of a number, the minus sign (-) must immediately precede a
numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data see Appendix C.

5: BASIC Stamp Command Reference – LOOKDOWN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 271

LOOKDOWN BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LOOKDOWN Target, (Value0, Value1, ...ValueN), Variable
LOOKDOWN Target, { ComparisonOp } [Value0, Value1, ...ValueN], Variable

Function
Compare Target value to a list of values and store the index number of the
first value that matches into Variable. If no value in the list matches,
Variable is left unaffected. On all BS2 models, the optional ComparisonOp is
used as criteria for the match; the default criteria is "equal to."

• Target is a variable/constant/expression (0 – 65535) to be compared
to the values in the list.

• ComparisonOp is an optional comparison operator (as described in
Table 5.53) to be used as the criteria when comparing values. When
no ComparisonOp is specified, equal to (=) is assumed. This
argument is not available on the BS1.

• Values are variables/constants/expressions (0 – 65535) to be
compared to Target.

• Variable is a variable (usually a byte) that will be set to the index (0 –
255) of the matching value in the Values list. If no matching value is
found, Variable is left unaffected.

Quick Facts
Table 5.52: LOOKDOWN Quick
Facts.

 BS1 and all BS2 Models
Limit of Value

Entries
256

Starting Index
Number

0

If value list
contains no

match…
Variable is left unaffected

Related
Command

LOOKUP

Explanation
LOOKDOWN works like the index in a book. In an index, you search for a
topic and get the page number. LOOKDOWN searches for a target value
in a list, and stores the index number of the first match in a variable. For
example:

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

All 2

OWIN – BASIC Stamp Command Reference

Page 302 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 SDEC tempC, " C ", CR,
 SDEC tempF, " F "
 PAUSE 1000
 LOOP
 END

Get_Temperature:
 OWOUT DQ, 1, [SkipROM, CvrtTmp] ' send convert temperature command
 DO ' wait on conversion
 PAUSE 25 ' small loop pad
 OWIN DQ, 4, [tempIn] ' check status (bit transfer)
 LOOP UNTIL (tempIn) ' 1 when complete
 OWOUT DQ, 1, [SkipROM, RdSP] ' read DS1822 scratch pad
 OWIN DQ, 2, [tLo, tHi] ' get raw temp data
 tSign = sign ' save sign bit
 tempC = tempIn >> 4 ' round to whole degrees
 tempC.BYTE1 = $FF * tSign ' correct twos complement bits
 tempF = (ABS tempC) * 9 / 5 ' start F conversion
 IF (tSign) THEN ' finish F conversion
 tempF = 32 - tempF ' C was negative
 ELSE
 tempF = tempF + 32 ' C was positive
 ENDIF
 RETURN

POLLIN – BASIC Stamp Command Reference

Page 318 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

PULSOUT – BASIC Stamp Command Reference

Page 350 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

RUN – BASIC Stamp Command Reference

Page 382 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' Download this program to Slot 0

DEBUG "Hello "
RUN 1

' Download this program to Slot 1

DEBUG "World!"
PAUSE 1000
RUN 0

The above two programs (assuming they have been downloaded into
program slots 0 and 1, respectively) will display "Hello World!" on the
screen. Program 0 is the first to run and it displays "Hello ", then issues a
RUN 1 command. The BASIC Stamp then starts execution of program 1,
from its first line of code, which causes "World!" to be displayed. Program
1 then pauses for 1 second and the runs program 0 again.

The I/O pins retain their current state (directions and output latches) and
all RAM and SPRAM locations retain their current data during a transition
between programs with the RUN command. If sharing data between
programs within RAM, make sure to keep similar variable declarations
(defined in the same order) in all programs so that the variables align
themselves on the proper word, byte, nibble and bit boundaries across
programs. The following programs illustrate what happens with
mismatched variable declarations:

' Download this program to Slot 0
cats VAR Byte
dogs VAR Byte

Setup:
 cats = 3
 dogs = 1
 DEBUG ? cats
 DEBUG ? dogs
 RUN 1

' Download this program to Slot 1
cats VAR Byte
dogs VAR Byte
fleas VAR Word

Main:
 DEBUG ? cats
 DEBUG ? dogs
 DEBUG ? fleas
 END

WHAT HAPPENS TO I/O PINS AND RAM

WHEN USING RUN?

RUN – BASIC Stamp Command Reference

Page 386 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – SERIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 409

' {$PBASIC 2.5}

result VAR Word

Main:
 DO
 SERIN 1, 24660, Bad_Data, 10000, No_Data, [DEC result]
 DEBUG CLS, ? result
 LOOP

Bad_Data:
 DEBUG CLS, "Parity error"
 GOTO Main

No_Data:
 DEBUG CLS, "Timeout error"
 GOTO Main

When you design an application that requires serial communication
between BASIC Stamp modules, you have to work within these
limitations:

• When the BASIC Stamp is sending or receiving data, it can’t
execute other instructions.

• When the BASIC Stamp is executing other instructions, it can’t
send or receive data. The BASIC Stamp does not have a serial buffer as
there is in PCs. At most serial rates, the BASIC Stamp cannot
receive data via SERIN, process it, and execute another SERIN in
time to catch the next chunk of data, unless there are significant
pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the
Fpin option for SERIN and SEROUT (at baud rates of up to the limitation
shown in Table 5.94). Through Fpin, SERIN can tell a BASIC Stamp sender
when it is ready to receive data. (For that matter, Fpin flow control follows
the rules of other serial handshaking schemes, but most computers other
than the BASIC Stamp cannot start and stop serial transmission on a byte-
by-byte basis. That’s why this discussion is limited to communication
between BASIC Stamp modules.)

Here’s an example using flow control on the BS2 (data through I/O pin 1,
flow control through I/O pin 0, 9600 baud, N8, noninverted):

serData VAR Byte

SERIN 1\0, 84, [serData]

CONTROLLING DATA FLOW.

All 2

All 2

5: BASIC Stamp Command Reference – SEROUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 421

SEROUT 1, 16780, ["Hello", CR]
SEROUT 1, 16780, ["Num = ", DEC 100]

The above code will display "HELLO" on one line and "Num = 100" on the
next line. Notice that you can combine data to output in one SEROUT
command, separated by commas. In the example above, we could have
written it as one line of code, with "HELLO", CR, "Num = ", DEC 100 in the
OutputData list.
The BS1’s SEROUT command is limited to above-mentioned features. If
you are not using a BS1, please continue reading about the additional
features below.

The SEROUT command can also be configured to pause between
transmitted bytes. This is the purpose of the optional Pace argument. For
example (9600 baud N8, inverted):

SEROUT 1, 16780, 1000, ["Slowly..."]

Here, the BASIC Stamp transmits "Slowly..." with a 1 second delay
between each character. See Table 5.104 for units of the Pace argument.
One good reason to use the Pace feature is to support devices that require
more than one stop bit. Normally, the BASIC Stamp sends data as fast as
it can (with a minimum of 1 stop bit between bytes). Since a stop bit is
really just a resting state in the line (no data transmitted), using the Pace
option will effectively add multiple stop bits. Since the requirement for 2
or more stop bits (on some devices) is really just a "minimum"
requirement, the receiving side should receive this data correctly.

Keep in mind that when we type something like “XYZ” into the SEROUT
command, the BASIC Stamp actually uses the ASCII codes for each of
those characters for its tasks. We could also typed: 88, 89, 90 in place of
“XYZ” and the program would run the same way since 88 is the ASCII
code for the “X” character, 89 is the ASCII code for the “Y” character, and
so on.

The decimal formatter is only one of a whole family of conversion
formatters available with SERIN on all BS2 models. See Table 5.110 for a
list of available conversion formatters. All of the conversion formatters
work similar to the decimal formatter. The formatters translate the value
into separate bytes of data until the entire number is translated or until the

USING SEROUT'S PACE ARGUMENT TO
INSERT DELAYS BETWEEN TRANSMITTED

BYTES.

USING ASCII CODES.

ADDITIONAL CONVERSION FORMATTERS.

NOTE: The rest of the code examples
for this section are written for the BS2,
using the BS2's Baudmode and
Timeout values. Be sure to adjust the
value for your BASIC Stamp model.

This is written with the BS2's Baudmode
value. Be sure to adjust the value for
your BASIC Stamp model.

All 2

1

All 2

