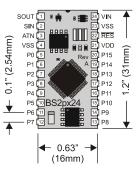


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Product Status	Obsolete
Core Processor	-
Core Size	-
Speed	-
Connectivity	-
Peripherals	-
Number of I/O	-
Program Memory Size	-
Program Memory Type	-
EEPROM Size	-
RAM Size	-
Voltage - Supply (Vcc/Vdd)	-
Data Converters	-
Oscillator Type	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/parallax/pbasic48w-p40

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Basic Stamp 2px

Figure 1.12: BASIC Stamp 2px (Rev. A) (Stock# BS2px-IC)

The BASIC Stamp 2px is available in the above 24-pin DIP physical package.

Table 1.7: BASIC Stamp 2px Pin	Pin	Name	Description
Descriptions.	1	SOUT	Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25 pin 3) for programming.
	2	SIN	Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin 2) for programming.
	3	ATN	Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25 pin 20) for programming.
	4	VSS	System ground: (same as pin 23), connects to PC serial port GND pin (DB9 pin 5 / DB25 pin 7) for programming.
	5-20	P0-P15	General-purpose I/O pins: each can source and sink 30 mA. However, the total of all pins should not exceed 75 mA (source or sink) if using the internal 5-volt regulator. The total per 8-pin groups P0 – P7 or P8 – 15 should not exceed 100 mA (source or sink) if using an external 5-volt regulator.
	21	VDD	5-volt DC input/output: if an unregulated voltage is applied to the VIN pin, then this pin will output 5 volts. If no voltage is applied to the VIN pin, then a regulated voltage between 4.5V and 5.5V should be applied to this pin.
	22	RES	Reset input/output: goes low when power supply is less than approximately 4.2 volts, causing the BASIC Stamp to reset. Can be driven low to force a reset. This pin is internally pulled high and may be left disconnected if not needed. Do not drive high.
	23	VSS	System ground: (same as pin 4) connects to power supply's ground (GND) terminal.
	24	VIN	Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended), which is then internally regulated to 5 volts. Must be left unconnected if 5 volts is applied to the VDD (+5V) pin.

EASY STEPS TO CREATING MULTI-FILE PROJECTS.

To create a project consisting of multiple files, follow these steps:

- 1. Create the first file in the editor and save it (we'll call it Sample.bsx). This will be the program that is downloaded into program slot 0.
- 2. Create at least one other file in the editor and save it also (we'll call it NextProgram.bsx).

Note: At this point the editor tabs will be:

0:Sample.bsx and 0:NextProgram.bsx.

indicating that there are two unrelated files open "Sample.bsx" and "NextProgram.bsx" and each will be downloaded into program slot 0.

3. Go back to the first program and enter or modify the \$STAMP directive using the project format. Use "NextProgram" as the *File2* argument. For example:

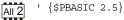
4. Then tokenize the code by pressing F7 or selecting Run \rightarrow Check Syntax from the menu.

At this point, the BASIC Stamp Editor will see the \$STAMP directive and realize that this file (Sample.bsx) is the first file in a project and that the second file should be NextProgram.bsx. It will then search for the file on the hard drive (to verify its path is correct), will see that it is already loaded, and then will change the editor tabs to indicate the project relationship. At this point the editor tabs will be:

0:Sample.bsx and [Sample] 1:NextProgram.bsx.

indicating that there are two related files open; "Sample.bsx" and "NextProgram.bsx". NextProgram.bsx belongs to the "Sample" project and it will be downloaded into program slot 1 and Sample.bsx will be downloaded into program slot 0.

^{&#}x27; {\$STAMP BS2sx, NextProgram.bsx}



signal	PIN	2	' pin-type symbol representing I/O $\rm 2$
OUTPUT signal signal = 1			' set signal pin to output ' set signal high

The OUTPUT command treats *signal* as a constant equal to 2 and the signal = 1 statement treats *signal* as a variable equal to the output variable for the defined pin (OUT2 in this case).

You might be wondering why "signal = 0" in the IF...THEN statement of our first example treats *signal* as the input variable *IN1* and yet "signal = 1" in our last example treats *signal* as the output variable *OUT2*. The distinction is that the first example is a comparison and the second example is an assignment. Comparisons need to "read" expressions and then evaluate the comparison while assignments need to read expressions and then "write" the results. Since *signal* is to the left of the equal sign (=) in our assignment statement, it must be a variable we can write to, thus it must be treated as OUT2, in this case.

What happens if our pin-type symbol is to the right of the equal sign in an assignment statement? Example:

signal1 PIN 1	' pin-type symbol representing I/O 1
signal2 PIN 2	' pin-type symbol representing I/O 2
INPUT signal1	' set signall pin to input
OUTPUT signal2	' set signal2 pin to output
signal2 = signal1	' set signal2 pin to signal1 pin's state

In this case *signal2* is treated as OUT2 and *signal1* is treated as IN1; left side must be written to and right side must be read from.

If a pin-type symbol is used in a command, but not in the *Pin* argument of that command, it will be treated as an input variable (i.e.: INx). NOTE: It is very rare that you'll need to use a pin-type symbol in this way.

The following is a summary of behaviors and uses of pin-type symbols.

0 OR 0 = 0 0 OR 1 = 1 1 OR 0 = 1 1 OR 1 = 1

The result returned by | will contain 1s in any bit positions in which one or the other (or both) input values contain 1s. Example:

```
      SYMBOL value1
      = B2

      SYMBOL value2
      = B3

      SYMBOL result
      = B4

      value1
      * %00001111

      value2
      * %10101001

      result
      = value1

      value2
      * %10101001

      result
      -- or --

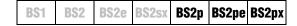
      DEBUG BIN ? %00001111
      * %10101001

      ' Show result of OR (%10101111)
```

XOR: ^

[All 2] The Xor operator (^) returns the bitwise XOR of two values. Each bit of the values is subject to the following logic:

0 XOR 0 = 0 0 XOR 1 = 1 1 XOR 0 = 1 1 XOR 1 = 0


The result returned by ^ will contain 1s in any bit positions in which one or the other (but not both) input values contain 1s. Example:

SYMBOL value1 SYMBOL value2 SYMBOL result	= B3	
value1 = %0000 value2 = %1010 result = value DEBUG %result Or	1001	' Show result or XOR (%10100110)

Page 122 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – AUXIO

Function

Switch from control of main I/O pins to auxiliary I/O pins (on the BS2p40 only).

Quick Facts

Table 5.2: AUXIO Quick Facts.

	BS2p, BS2pe, and BS2px		
I/O pin IDs	0 – 15 (just like main I/O, but after AUXIO command, all references affect physical pins 21 – 36).		
Special Notes	The BS2p, BS2pe, and BS2px 24-pin modules accept this command, however, only the BS2p40 gives access to the auxiliary I/O pins.		
Related Commands	MAINIO and IOTERM		

Explanation

The BS2p, BS2pe, and BS2px are available as 24-pin modules that are pin compatible with the BS2, BS2e and BS2sx. Also available is a 40-pin module called the BS2p40, with an additional 16 I/O pins (for a total of 32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in the same manner as the main I/O pins (by using the IDs 0 to 15) but only after issuing an AUXIO or IOTERM command. The AUXIO command causes the BASIC Stamp to affect the auxiliary I/O pins instead of the main I/O pins in all further code until the MAINIO or IOTERM command is reached, or the BASIC Stamp is reset or power-cycled. AUXIO is also used when setting the DIRS register for auxiliary I/O pins on the BS2p40.

When the BASIC Stamp module is reset, all RAM variables including DIRS and OUTS are cleared to zero. This affects both main and auxiliary I/O pins. On the BS2p24, BS2pe, and BS2px, the auxiliary I/O pins from the interpreter chip are not connected to physical I/O pins on the BASIC Stamp module. While not connected to anything, these pins do have internal pull-up resistors activated, effectively connecting them to Vdd. After reset, reading the auxiliary I/O from a BS2p24, BS2pe24, or BS2px24 will return all 1s.

5: BASIC Stamp Command Reference – AUXIO

IOTERM port

TOGGLE 3

port = ~port PAUSE 1000 LOOP END

' Switch to main or aux I/Os ' -- depending on port

' Toggle state of I/O pin 3
' -- on main and aux, alternately

' Invert port

' 1 second delay

To retrieve a word-sized value, you'll need to use the WORD modifier in the READ command and a word-sized variable.

Finally, a DataItem may be defined using a simple expression with the binary operators shown in Table 4.5. For example,

Demo Program (DATA.bs2)			
READ Level2, my DEBUG DEC myLvl	Lvl	' read EE location Level2 ' show value of myLvl (71)	
Level2	DATA	MinLvl * 5 + 21	
Level1	DATA	MinLvl + 10	
myLvl	VAR	Byte	
MinLvl	CON	10	

All 2

5 5				
 DATA.bs2 This program stores a number of large text strings into EEPROM with the DATA directive and then sends them, one character at a time via the DEBUG command. This is a good demonstration of how to save program space by storing large amounts of data in EEPROM directly, rather than embedding the data into DEBUG commands. 				
Word' current location numberNib' current phrase numberByte' character to print				
. text phrases (out of order, just for fun!)				
"Here is the first part of a large chunk of textual " "data ", CR, "that needs to be transmitted. There's " "a 5 second delay", CR, "between text paragraphs. ", CR CR, 0				
"The alternative (having multiple DEBUGs or SEROUTs, " "each ", CR, "with their own line of text) consumes " "MUCH more EEPROM ", CR, "(program) space. ", CR CR, 0				
"The 0 is used by this program to indicate we've " "reached the ", CR, "End of Text. The Main routine " "pauses in between each block of", CR, "text, and then " "uses a LOOKUP command to retrieve the location ", CR "of the next desired block of text to print. ", 0				
τ -				

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 157

NOTE: This example program can be used with all BS2 models by changing the \$STAMP directive accordingly.

5: BASIC Stamp Command Reference – GET

BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

🔮 🚉 🐉 🖧 GET Location, { WORD } Variable { , { WORD } Variable... }

NOTE: The optional arguments require PBASIC 2.5.

Function

Read the value from Scratch Pad RAM (SPRAM) *Location* and store in *Variable*.

- **Location** is a variable/constant/expression (0 63 for BS2e and BS2sx and 0 131 for BS2p, BS2pe, and BS2px) that specifies the SPRAM location to read from.
- *Variable* is a variable (usually a byte, or word if using the optional WORD modifier) in which to store the value.

Quick Facts

BS2e and BS2sx BS2p, BS2pe, and BS2px Scratch Pad RAM 64 bytes (0 - 63). Organized as 136 bytes (0 - 135). Organized as Size and bytes only. bytes only. Organization **General Purpose** 0 - 62 0 - 126 Locations Location 127: READ/WRITE slot and **Special Use** Location 63: Active program slot Active Program slot (read only). Location Locations 128-135: Polled Interrupt number (read only). status (read only). Related PUT and STORE. PUT and SPSTR formatter. Commands PBASIC 2.5 Multiple sequential variables may be read from the Scratch Pad RAM. Syntax Options The optional WORD modifier may be specified to retrieve 16-bit values.

Explanation

The GET command reads a value from the specified Scratch Pad RAM location and stores it into *Variable*. All values in all locations can be retrieved from within any of the 8 program slots.

USES FOR SCRATCH PAD RAM. SPRAM is useful for passing data to programs in other program slots and for additional workspace. It is different than regular RAM in that symbol names cannot be assigned directly to locations and each location is always configured as a byte only. The following code will read the value at location 25, store it in a variable called *temp* and display it:

Table 5.27: GET Quick Facts.

AII 2 Demo Program (ON-GOSUB.bs2)

NOTE: This example program can be used with all BS2 models by changing the \$STAMP directive accordingly.

```
' ON-GOSUB.bs2
' This program demonstrates a simple task manager that can be used
' in a variety of applications. It is particularly useful in
' robotics and industrial applications. The advantage of this
' design is that task code modules may be called from other places
' in the program, including other tasks, and the overall program flow
' is maintained.
' {$STAMP BS2}
' {$PBASIC 2.5}
         VAR Nib
task
Main:
 DO
  ON task GOSUB Task_0, Task_1, Task_2
                                              ' run current task
   task = task + 1 // 3
                                              ' update task pointer
  PAUSE 1000
 LOOP
 END
Task 0:
 DEBUG "Running Task 0", CR
 RETURN
Task_1:
 DEBUG "Running Task 1", CR
 RETURN
Task 2:
 DEBUG "Running Task 2", CR
 RETURN
```

5: BASIC Stamp Command Reference – OWOUT

👔 🗟 🕺 OWOUT Pin, Mode, [OutputData]

Function

Send data to a device using the 1-Wire protocol.

- **Pin** is a variable/constant/expression (0 15) that specifies which I/O pin to use. 1-Wire devices require only one I/O pin (called DQ) to communicate. This I/O pin will be toggled between output and input mode during the OWOUT command and will be set to input mode by the end of the OWOUT command.
- **Mode** is a variable/constant/expression (0 15) indicating the mode of data transfer. The *Mode* argument controls placement of reset pulses (and detection of presence pulses) as well as byte vs. bit input and normal vs. high speed. See explanation below.
- **OutputData** is a list of variables and modifiers that tells OWOUT how to format outgoing data. OWOUT can transmit individual or repeating bytes, convert values into decimal, hexadecimal or binary text representations, or transmit strings of bytes from variable arrays. These actions can be combined in any order in the *OutputData* list.

Quick Facts

 BS2p, BS2pe, and BS2px

 Transmission Rate
 Approximately 20 kbits/sec (low speed, not including reset pulse)

 Special Notes
 The DQ pin (specified by *Pin*) must have a 4.7 KΩ pull-up resistor. The BS2pe is not capable of high-speed transfers.

 Related Command
 OWIN

Explanation

The 1-Wire protocol is a form of asynchronous serial communication developed by Dallas Semiconductor. It only requires one I/O pin and that pin can be shared between multiple 1-Wire devices. The OWOUT command allows the BASIC Stamp to send data to a 1-Wire device.

A SIMPLE OWOUT EXAMPLE. The following is an example of the OWOUT command:

OWOUT 0, 1, [\$4E]

Table 5.68: OWOUT Quick Facts.

5: BASIC Stamp Command Reference – PAUSE

BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

1 AI 2 PAUSE Duration

Function

NOTE: Expressions are not allowed as arguments on the BS1.

Pause the program (do nothing) for the specified Duration.

• **Duration** is a variable/constant/expression (0 – 65535) that specifies the duration of the pause. The unit of time for *Duration* is 1 millisecond.

Explanation

PAUSE delays the execution of the next program instruction for the specified number of milliseconds. For example:

Flash: LOW 0 PAUSE 100 HIGH 0 PAUSE 100 GOTO Flash

This code causes pin 0 to go low for 100 ms, then high for 100 ms. The delays produced by PAUSE are as accurate as the ceramic-resonator time base (on the BASIC Stamp modules), ± 1 percent. When you use PAUSE in timing-critical applications, keep in mind the relatively low speed of the PBASIC interpreter. This is the time required for the BASIC Stamp to read and interpret an instruction stored in the EEPROM.

Demo Program (PAUSE.bs2)

be ' PAUSE.bs2

- ' This program demonstrates the PAUSE command's time delays. Once a second,
- ' the program will put the message "Paused..." on the screen.

 $\{\$STAMP BS2\}$

Main:

```
DEBUG "Paused...", CR
PAUSE 1000
GOTO Main
```

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 311

NOTE: This example program can be used with the BS1 and all BS2 models by changing the \$STAMP directive accordingly. pin 0 is set low, the BASIC Stamp will set I/O pin 1 high. It will continue to perform this operation, in-between each command in the loop, endlessly.

THE BASIC STAMP "REMEMBERS" THE POLLING CONFIGURATION FOR THE DURATION OF THE PBASIC PROGRAM.

FOR COMPARISON: ACHIEVING THE SAME

EFFECTS WITHOUT THE POLLING

COMMANDS.

It's important to note that, in this example, only the DEBUG and GOTO commands are being executed over and over again. The first three lines of code are only run once, yet their effects are "remembered" by the BASIC Stamp throughout the rest of the program.

If the polling commands were not used, the program would have to look like the one below in order to achieve the same effect.

```
INPUT 0
OUTPUT 1
Main:
OUT1 = ~IN0
DEBUG "Looping...", CR
OUT1 = ~IN0
GOTO Main
```

In this example, we create the inverse relationship of input pin 0 and output pin 1 manually, in-between the DEBUG and GOTO lines. Though the effects are the same as when using the polling commands, this program actually takes a little longer to run and consumes 7 additional bytes of program (EEPROM) space. Clearly, using the polling commands is more efficient.

USING MULTIPLE POLLED-INPUT AND You can have as many polled-input and polled-output pins as you have available. If multiple polled-input pins are defined, any one of them can trigger changes on the polled-output pins that are also defined. For example:

```
POLLIN 0, 0
POLLIN 1, 0
POLLOUT 2, 1
POLLOUT 3, 1
POLLMODE 2
Main:
DEBUG "Looping...", CR
GOTO Main
```

This code sets I/O pins 0 and 1 to polled-input pins (looking for a low (0) state) and sets I/O pins 2 and 3 to polled-output pins (with a high-active

Page 318 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

PWM – BASIC Stamp Command Reference

use this formula: (Duty/255) * 5V. For example, if Duty is 100, (100/255) * 5V = 1.96V; PWM outputs a train of pulses whose average voltage is 1.96V.

In order to convert PWM into an analog voltage we have to filter out the FILTERING THE PWM SIGNAL. pulses and store the average voltage. The resistor/capacitor combination in Figure 5.31 will do the job. The capacitor will hold the voltage set by PWM even after the instruction has finished. How long it will hold the voltage depends on how much current is drawn from it by external circuitry, and the internal leakage of the capacitor. In order to hold the voltage relatively steady, a program must periodically repeat the PWM instruction to give the capacitor a fresh charge.

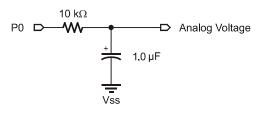


Figure 5.31: Example PWM Filter Circuit.

Just as it takes time to discharge a capacitor, it also takes time to charge it DETERMINING THE APPROPRIATE CYCLE in the first place. The PWM command lets you specify the charging time TIME FOR YOUR CIRCUIT. in terms of PWM cycles. The period of each cycle is shown in Table 5.86. So, on the BS2, to charge a capacitor for 5ms, you would specify 5 cycles in the PWM instruction.

How do you determine how long to charge a capacitor? Use this rule-ofthumb formula: Charge time = 5 * R * C. For instance, Figure 5.31 uses a 10 $k\Omega$ (10 x 10³ ohm) resistor and a 1 μ F (1 x 10⁶ F) capacitor:

Charge time = $5 * 10 \times 10^{3} * 1 \times 10^{-6} = 50 \times 10^{-3}$ seconds, or 50 ms.

Since, on the BS2, each cycle is approximately a millisecond, it would take at least 50 cycles to charge the capacitor. Assuming the circuit is connected to pin 0, here's the complete PWM instruction:

PWM 0, 100, 50 ' charge to 1.96 V

After outputting the PWM pulses, the BASIC Stamp leaves the pin in input mode (0 in the corresponding bit of DIRS). In input mode, the pin's output driver is effectively disconnected. If it were not, the steady output

Page 356 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

' msb first so that the msb appears on pin QH	and the lsb on QA. Changing
' MSBFIRST to LSBFIRST causes the data to appe	ear backwards on the outputs.
11	1
Main:	
ham.	
DO	
SHIFTOUT Dpin, Clk, MSBFIRST, [counter]	' send the bits
PULSOUT Latch, 1	' transfer to outputs
PAUSE 100	' Wait 0.1 seconds
counter = counter + 1	' increment counter
LOOP	
END	

Demo Program (STOREO.bsp)

' STORE0.bsp ' This program demonstrates the STORE command and how it affects the READ ' and WRITE commands. This program "STORE0.BSP" is intended to be down-' loaded into program slot 0. It is meant to work with STORE1.BSP and ' STORE2.BSP. Each program is very similar (they display the current ' Program Slot and READ/WRITE Slot numbers and the values contained in the ' first five EEPROM locations. Each program slot will have different data ' due to different DATA commands in each of the programs downloaded. ' {\$STAMP BS2p, STORE1.BSP, STORE2.BSP} ' {\$PBASIC 2.5} #IF (\$STAMP < BS2P) #THEN #ERROR "This program requires BS2p, BS2pe, or BS2px." #ENDIF idx VAR Word ' index value VAR Byte DATA @0, 1, 2, 3, 4, 5 LocalData Main: GOSUB Show_Slot_Info ' show slot info/data PAUSE 2000 STORE 1 ' point READ/WRITE to Slot 1 GOSUB Show_Slot_Info PAUSE 2000 ' run program in Slot 1 RUN 1 END Show Slot Info: GET 127, value DEBUG CR, "Pgm Slot: ", DEC value.NIB0, CR, "R/W Slot: ", DEC value.NIB1, CR, CR FOR idx = 0 TO 4 READ idx, value DEBUG "Location: ", DEC idx, TAB, "Value: ", DEC3 value, CR NEXT RETURN

2 2 2 p pe px

NOTE: This example program can be used with the BS2p, BS2pe, and BS2px. This program uses conditional compilation techniques; see Chapter 3 for more information.

Page 450 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (TOGGLE.bs2) All 2 ' TOGGLE.bs2 ' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command descrip-' tion in the manual and run this program. The TOGGLE command will treat ' you to a light show. You may also run the demo without LEDs. The Debug ' window will show you the states of pins 0 through 3. ' {\$STAMP BS2} ' {\$PBASIC 2.5} VAR Nib thePin ' pin 0 - 3 Setup: DIRA = %1111 ' make LEDs output, low Main: DO FOR thePin = 0 TO 3 TOGGLE thePin ' loop through pins ' toggle current pin ' show on Debug DEBUG HOME, BIN4 OUTA PAUSE 250 ' short delay NEXT LOOP ' repeat forever END

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 457

NOTE: This example program can be used with all BS2 models by changing the \$STAMP directive accordingly.

Reserved Words

This appendix contains complete listings of the reserved words for PBASIC 1.0, PBASIC 2.0, and PBASIC 2.5, current with the BASIC Stamp Editor v2.1.

The reserved word lists have been organized into 4 tables, because it varies with each BASIC Stamp model and version of PBASIC. Table B.1 shows the reserved words for the BASIC Stamp 1, using the required PBASIC 1.0.

Table B.1: BS1 Reserved Words.

BS1					
AND	GOSUB	N2400	PIN0PIN7	SOUND	
B0B13	GOTO	NAP	PINS	STEP	
BIT0BIT15	HIGH	NEXT	PORT	SYMBOL	
BRANCH	IF	ON300	POT	T300	
BSAVE	INPUT	ON600	PULSIN	T600	
BUTTON	LET	ON1200	PULSOUT	T1200	
CLS	LOOKDOWN	ON2400	PWM	T2400	
CR	LOOKUP	OR	RANDOM	THEN	
DEBUG	LOW	OT300	READ	TO	
DIR0DIR7	MAX	OT600	RETURN	TOGGLE	
DIRS	MIN	OT1200	REVERSE	W0W6	
EEPROM	N300	OT2400	SERIN	WRITE	
END	N600	OUTPUT	SEROUT		
FOR	N1200	PAUSE	SLEEP		

Table B.2 on the following page lists the reserved words common to all BS2 models, including those for PBASIC 2.0 and PBASIC 2.5. Words listed that are only reserved when using PBASIC 2.5 are marked with (25).

Index

and Identify Function, 48

Variable Resistance, Measuring, 339– 40, 363–68 Variables Aliases, 89–91 Arrays, 87–89 Defining, 85–91, 269 Fixed, 84 Modifiers, 89–91 Sizes, 86 VDD, 12, 14, 15, 18, 20, 21, 23 Versions, 3 VIN, 12, 14, 15, 18, 20, 21, 23 Voltage comparison function, of BS2px, 141 VSS, 12, 14, 15, 18, 20, 21, 23

W

W0-W6, 82 WAIT, 172, 259, 401, 404 WAITSTR, 172, 219, 259, 297, 404, 406 Warranty, 2 WHILE. *See* D0...L00P WRITE, 153, 449, 459–63

— X —

X0-X15, 20 X10 Control, 465–68 X0R, 235 X0R (^), 109, 119 X0R NOT (^/), 109, 121 X0UT, 465–68 X0UT Command Codes (Table), 467

Page 500 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com