
Parallax Inc. - PBASIC48W/P40 Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic48w-p40

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic48w-p40-4431458
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

1: Introduction to the BASIC Stamp

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 23

Basic Stamp 2px

Figure 1.12: BASIC Stamp 2px
(Rev. A) (Stock# BS2px-IC)

The BASIC Stamp 2px is available in the above 24-pin DIP physical
package.

Table 1.7: BASIC Stamp 2px Pin
Descriptions.

Pin Name Description

1 SOUT
Serial Out: connects to PC serial port RX pin (DB9 pin 2 / DB25 pin 3)
for programming.

2 SIN
Serial In: connects to PC serial port TX pin (DB9 pin 3 / DB25 pin 2)
for programming.

3 ATN
Attention: connects to PC serial port DTR pin (DB9 pin 4 / DB25 pin
20) for programming.

4 VSS
System ground: (same as pin 23), connects to PC serial port GND pin
(DB9 pin 5 / DB25 pin 7) for programming.

5-20 P0-P15

 General-purpose I/O pins: each can source and sink 30 mA.
However, the total of all pins should not exceed 75 mA (source or
sink) if using the internal 5-volt regulator. The total per 8-pin groups
P0 – P7 or P8 – 15 should not exceed 100 mA (source or sink) if
using an external 5-volt regulator.

21 VDD

5-volt DC input/output: if an unregulated voltage is applied to the VIN
pin, then this pin will output 5 volts. If no voltage is applied to the VIN
pin, then a regulated voltage between 4.5V and 5.5V should be
applied to this pin.

22 RES

Reset input/output: goes low when power supply is less than
approximately 4.2 volts, causing the BASIC Stamp to reset. Can be
driven low to force a reset. This pin is internally pulled high and may
be left disconnected if not needed. Do not drive high.

23 VSS
System ground: (same as pin 4) connects to power supply’s ground
(GND) terminal.

24 VIN
Unregulated power in: accepts 5.5 - 12 VDC (7.5 recommended),
which is then internally regulated to 5 volts. Must be left unconnected
if 5 volts is applied to the VDD (+5V) pin.

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 69

To create a project consisting of multiple files, follow these steps:

1. Create the first file in the editor and save it (we'll call it
Sample.bsx). This will be the program that is downloaded into
program slot 0.

2. Create at least one other file in the editor and save it also (we'll call
it NextProgram.bsx).

Note: At this point the editor tabs will be:

 0:Sample.bsx and 0:NextProgram.bsx.

indicating that there are two unrelated files open "Sample.bsx" and
"NextProgram.bsx" and each will be downloaded into program slot 0.

3. Go back to the first program and enter or modify the $STAMP

directive using the project format. Use "NextProgram" as the File2
argument. For example:

' {$STAMP BS2sx, NextProgram.bsx}

4. Then tokenize the code by pressing F7 or selecting Run → Check
Syntax from the menu.

At this point, the BASIC Stamp Editor will see the $STAMP directive
and realize that this file (Sample.bsx) is the first file in a project and
that the second file should be NextProgram.bsx. It will then search for
the file on the hard drive (to verify its path is correct), will see that it is
already loaded, and then will change the editor tabs to indicate the
project relationship. At this point the editor tabs will be:

 0:Sample.bsx and [Sample] 1:NextProgram.bsx.

indicating that there are two related files open; "Sample.bsx" and
"NextProgram.bsx". NextProgram.bsx belongs to the "Sample" project
and it will be downloaded into program slot 1 and Sample.bsx will be
downloaded into program slot 0.

EASY STEPS TO CREATING MULTI-FILE
PROJECTS.

4: BASIC Stamp Architecture – PIN Symbols

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 101

' {$PBASIC 2.5}

signal PIN 2 ' pin-type symbol representing I/O 2

OUTPUT signal ' set signal pin to output
signal = 1 ' set signal high

The OUTPUT command treats signal as a constant equal to 2 and the
signal = 1 statement treats signal as a variable equal to the output variable
for the defined pin (OUT2 in this case).

You might be wondering why “signal = 0” in the IF…THEN statement of
our first example treats signal as the input variable IN1 and yet “signal =
1” in our last example treats signal as the output variable OUT2. The
distinction is that the first example is a comparison and the second
example is an assignment. Comparisons need to “read” expressions and
then evaluate the comparison while assignments need to read expressions
and then “write” the results. Since signal is to the left of the equal sign (=)
in our assignment statement, it must be a variable we can write to, thus it
must be treated as OUT2, in this case.

What happens if our pin-type symbol is to the right of the equal sign in an
assignment statement? Example:

' {$PBASIC 2.5}

signal1 PIN 1 ' pin-type symbol representing I/O 1
signal2 PIN 2 ' pin-type symbol representing I/O 2

INPUT signal1 ' set signal1 pin to input
OUTPUT signal2 ' set signal2 pin to output
signal2 = signal1 ' set signal2 pin to signal1 pin’s state

In this case signal2 is treated as OUT2 and signal1 is treated as IN1; left side
must be written to and right side must be read from.

If a pin-type symbol is used in a command, but not in the Pin argument of
that command, it will be treated as an input variable (i.e.: INx). NOTE: It
is very rare that you’ll need to use a pin-type symbol in this way.

The following is a summary of behaviors and uses of pin-type symbols.

All 2

All 2

4: BASIC Stamp Architecture – |, ^

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 119

0 OR 0 = 0
0 OR 1 = 1
1 OR 0 = 1
1 OR 1 = 1

The result returned by | will contain 1s in any bit positions in which one
or the other (or both) input values contain 1s. Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101001
result = value1 | value2
DEBUG %result ' Show result of OR (%10101111)

-- or --

DEBUG BIN ? %00001111 | %10101001 ' Show result of OR (%10101111)

The Xor operator (^) returns the bitwise XOR of two values. Each bit of the
values is subject to the following logic:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

The result returned by ^ will contain 1s in any bit positions in which one
or the other (but not both) input values contain 1s. Example:

SYMBOL value1 = B2
SYMBOL value2 = B3
SYMBOL result = B4

value1 = %00001111
value2 = %10101001
result = value1 ^ value2
DEBUG %result ' Show result or XOR (%10100110)

-- or --

XOR: ̂ All 2

1

1

BASIC Stamp Architecture

Page 122 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – AUXIO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 129

AUXIO BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

AUXIO

Function
Switch from control of main I/O pins to auxiliary I/O pins (on the BS2p40
only).

Quick Facts

Table 5.2: AUXIO Quick Facts.

 BS2p, BS2pe, and BS2px

I/O pin IDs 0 – 15 (just like main I/O, but after AUXIO command, all references affect
physical pins 21 – 36).

Special Notes The BS2p, BS2pe, and BS2px 24-pin modules accept this command,
however, only the BS2p40 gives access to the auxiliary I/O pins.

Related
Commands

MAINIO and IOTERM

Explanation
The BS2p, BS2pe, and BS2px are available as 24-pin modules that are pin
compatible with the BS2, BS2e and BS2sx. Also available is a 40-pin
module called the BS2p40, with an additional 16 I/O pins (for a total of
32). The BS2p40's extra, or auxiliary, I/O pins can be accessed in the same
manner as the main I/O pins (by using the IDs 0 to 15) but only after
issuing an AUXIO or IOTERM command. The AUXIO command causes
the BASIC Stamp to affect the auxiliary I/O pins instead of the main I/O
pins in all further code until the MAINIO or IOTERM command is
reached, or the BASIC Stamp is reset or power-cycled. AUXIO is also used
when setting the DIRS register for auxiliary I/O pins on the BS2p40.

When the BASIC Stamp module is reset, all RAM variables including DIRS
and OUTS are cleared to zero. This affects both main and auxiliary I/O
pins. On the BS2p24, BS2pe, and BS2px, the auxiliary I/O pins from the
interpreter chip are not connected to physical I/O pins on the BASIC
Stamp module. While not connected to anything, these pins do have
internal pull-up resistors activated, effectively connecting them to Vdd.
After reset, reading the auxiliary I/O from a BS2p24, BS2pe24, or BS2px24
will return all 1s.

5: BASIC Stamp Command Reference – AUXIO

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 131

 IOTERM port ' Switch to main or aux I/Os
 ' -- depending on port
 TOGGLE 3 ' Toggle state of I/O pin 3
 ' -- on main and aux, alternately
 port = ~port ' Invert port
 PAUSE 1000 ' 1 second delay
 LOOP
 END

5: BASIC Stamp Command Reference – DATA

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 157

To retrieve a word-sized value, you'll need to use the WORD modifier in
the READ command and a word-sized variable.

Finally, a DataItem may be defined using a simple expression with the
binary operators shown in Table 4.5. For example,

MinLvl CON 10

myLvl VAR Byte

Level1 DATA MinLvl + 10
Level2 DATA MinLvl * 5 + 21

READ Level2, myLvl ' read EE location Level2
DEBUG DEC myLvl ' show value of myLvl (71)

Demo Program (DATA.bs2)

' DATA.bs2
' This program stores a number of large text strings into EEPROM with the
' DATA directive and then sends them, one character at a time via the DEBUG
' command. This is a good demonstration of how to save program space by
' storing large amounts of data in EEPROM directly, rather than embedding
' the data into DEBUG commands.

' {$STAMP BS2}
' {$PBASIC 2.5}

idx VAR Word ' current location number
phrase VAR Nib ' current phrase number
char VAR Byte ' character to print

' ----- Define all text phrases (out of order, just for fun!) -----
'
Text1 DATA "Here is the first part of a large chunk of textual "
 DATA "data ", CR, "that needs to be transmitted. There's "
 DATA "a 5 second delay", CR, "between text paragraphs. ", CR
 DATA CR, 0

Text3 DATA "The alternative (having multiple DEBUGs or SEROUTs, "
 DATA "each ", CR, "with their own line of text) consumes "
 DATA "MUCH more EEPROM ", CR, "(program) space. ", CR
 DATA CR, 0

Text6 DATA "The 0 is used by this program to indicate we've "
 DATA "reached the ", CR, "End of Text. The Main routine "
 DATA "pauses in between each block of", CR, "text,and then "
 DATA "uses a LOOKUP command to retrieve the location ", CR
 DATA "of the next desired block of text to print. ", 0

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – GET

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 203

GET BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

GET Location, { WORD } Variable { , { WORD } Variable... }

Function
Read the value from Scratch Pad RAM (SPRAM) Location and store in
Variable.

• Location is a variable/constant/expression (0 – 63 for BS2e and
BS2sx and 0 – 131 for BS2p, BS2pe, and BS2px) that specifies the
SPRAM location to read from.

• Variable is a variable (usually a byte, or word if using the optional
WORD modifier) in which to store the value.

Quick Facts
Table 5.27: GET Quick Facts.

 BS2e and BS2sx BS2p, BS2pe, and BS2px
Scratch Pad RAM

Size and
Organization

64 bytes (0 – 63). Organized as
bytes only.

136 bytes (0 – 135). Organized as
bytes only.

General Purpose
Locations

0 - 62 0 – 126

Special Use
Location

Location 63: Active program slot
number (read only).

Location 127: READ/WRITE slot and
Active Program slot (read only).

Locations 128-135: Polled Interrupt
status (read only).

Related
Commands

PUT
PUT and STORE,

and SPSTR formatter.
PBASIC 2.5

Syntax Options
Multiple sequential variables may be read from the Scratch Pad RAM.

The optional WORD modifier may be specified to retrieve 16-bit values.

Explanation
The GET command reads a value from the specified Scratch Pad RAM
location and stores it into Variable. All values in all locations can be
retrieved from within any of the 8 program slots.

SPRAM is useful for passing data to programs in other program slots and
for additional workspace. It is different than regular RAM in that symbol
names cannot be assigned directly to locations and each location is always
configured as a byte only. The following code will read the value at
location 25, store it in a variable called temp and display it:

USES FOR SCRATCH PAD RAM.

NOTE: The optional arguments require
PBASIC 2.5.

5: BASIC Stamp Command Reference – ON

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 291

Demo Program (ON-GOSUB.bs2)

' ON-GOSUB.bs2
' This program demonstrates a simple task manager that can be used
' in a variety of applications. It is particularly useful in
' robotics and industrial applications. The advantage of this
' design is that task code modules may be called from other places
' in the program, including other tasks, and the overall program flow
' is maintained.

' {$STAMP BS2}
' {$PBASIC 2.5}

task VAR Nib

Main:
 DO
 ON task GOSUB Task_0, Task_1, Task_2 ' run current task
 task = task + 1 // 3 ' update task pointer
 PAUSE 1000
 LOOP
 END

Task_0:
 DEBUG "Running Task 0", CR
 RETURN

Task_1:
 DEBUG "Running Task 1", CR
 RETURN

Task_2:
 DEBUG "Running Task 2", CR
 RETURN

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – OWOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 303

OWOUT BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

OWOUT Pin, Mode, [OutputData]

Function
Send data to a device using the 1-Wire protocol.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to use. 1-Wire devices require only one I/O pin (called DQ)
to communicate. This I/O pin will be toggled between output and
input mode during the OWOUT command and will be set to input
mode by the end of the OWOUT command.

• Mode is a variable/constant/expression (0 – 15) indicating the mode
of data transfer. The Mode argument controls placement of reset
pulses (and detection of presence pulses) as well as byte vs. bit input
and normal vs. high speed. See explanation below.

• OutputData is a list of variables and modifiers that tells OWOUT
how to format outgoing data. OWOUT can transmit individual or
repeating bytes, convert values into decimal, hexadecimal or binary
text representations, or transmit strings of bytes from variable
arrays. These actions can be combined in any order in the
OutputData list.

Quick Facts
Table 5.68: OWOUT Quick
Facts.

 BS2p, BS2pe, and BS2px
Transmission Rate Approximately 20 kbits/sec (low speed, not including reset pulse)

Special Notes The DQ pin (specified by Pin) must have a 4.7 KΩ pull-up resistor.
The BS2pe is not capable of high-speed transfers.

Related Command OWIN

Explanation
The 1-Wire protocol is a form of asynchronous serial communication
developed by Dallas Semiconductor. It only requires one I/O pin and that
pin can be shared between multiple 1-Wire devices. The OWOUT
command allows the BASIC Stamp to send data to a 1-Wire device.

The following is an example of the OWOUT command:

OWOUT 0, 1, [$4E]

A SIMPLE OWOUT EXAMPLE.

5: BASIC Stamp Command Reference – PAUSE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 311

PAUSE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

PAUSE Duration

Function
Pause the program (do nothing) for the specified Duration.

• Duration is a variable/constant/expression (0 – 65535) that specifies
the duration of the pause. The unit of time for Duration is 1
millisecond.

Explanation
PAUSE delays the execution of the next program instruction for the
specified number of milliseconds. For example:

Flash:
 LOW 0
 PAUSE 100
 HIGH 0
 PAUSE 100
 GOTO Flash

This code causes pin 0 to go low for 100 ms, then high for 100 ms. The
delays produced by PAUSE are as accurate as the ceramic-resonator time
base (on the BASIC Stamp modules), ±1 percent. When you use PAUSE in
timing-critical applications, keep in mind the relatively low speed of the
PBASIC interpreter. This is the time required for the BASIC Stamp to read
and interpret an instruction stored in the EEPROM.

Demo Program (PAUSE.bs2)

' PAUSE.bs2
' This program demonstrates the PAUSE command's time delays. Once a second,
' the program will put the message "Paused..." on the screen.
' {$STAMP BS2}

Main:
 DEBUG "Paused...", CR
 PAUSE 1000
 GOTO Main

NOTE: Expressions are not allowed as
arguments on the BS1.

1 All 2

1

1 All 2

NOTE: This example program can be
used with the BS1 and all BS2 models
by changing the $STAMP directive
accordingly.

5: BASIC Stamp Command Reference – POLLIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 315

pin 0 is set low, the BASIC Stamp will set I/O pin 1 high. It will continue
to perform this operation, in-between each command in the loop,
endlessly.

It's important to note that, in this example, only the DEBUG and GOTO
commands are being executed over and over again. The first three lines of
code are only run once, yet their effects are "remembered" by the BASIC
Stamp throughout the rest of the program.

If the polling commands were not used, the program would have to look
like the one below in order to achieve the same effect.

INPUT 0
OUTPUT 1

Main:
 OUT1 = ~IN0
 DEBUG "Looping...", CR
 OUT1 = ~IN0
 GOTO Main

In this example, we create the inverse relationship of input pin 0 and
output pin 1 manually, in-between the DEBUG and GOTO lines. Though
the effects are the same as when using the polling commands, this
program actually takes a little longer to run and consumes 7 additional
bytes of program (EEPROM) space. Clearly, using the polling commands
is more efficient.

You can have as many polled-input and polled-output pins as you have
available. If multiple polled-input pins are defined, any one of them can
trigger changes on the polled-output pins that are also defined. For
example:

POLLIN 0, 0
POLLIN 1, 0
POLLOUT 2, 1
POLLOUT 3, 1
POLLMODE 2

Main:
 DEBUG "Looping...", CR
 GOTO Main

This code sets I/O pins 0 and 1 to polled-input pins (looking for a low (0)
state) and sets I/O pins 2 and 3 to polled-output pins (with a high-active

FOR COMPARISON: ACHIEVING THE SAME
EFFECTS WITHOUT THE POLLING

COMMANDS.

USING MULTIPLE POLLED-INPUT AND

POLLED-OUTPUT PINS.

THE BASIC STAMP "REMEMBERS" THE
POLLING CONFIGURATION FOR THE

DURATION OF THE PBASIC PROGRAM.

POLLIN – BASIC Stamp Command Reference

Page 318 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

PWM – BASIC Stamp Command Reference

Page 356 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

use this formula: (Duty/255) * 5V. For example, if Duty is 100, (100/255) *
5V = 1.96V; PWM outputs a train of pulses whose average voltage is 1.96V.

In order to convert PWM into an analog voltage we have to filter out the
pulses and store the average voltage. The resistor/capacitor combination
in Figure 5.31 will do the job. The capacitor will hold the voltage set by
PWM even after the instruction has finished. How long it will hold the
voltage depends on how much current is drawn from it by external
circuitry, and the internal leakage of the capacitor. In order to hold the
voltage relatively steady, a program must periodically repeat the PWM
instruction to give the capacitor a fresh charge.

Figure 5.31: Example PWM Filter
Circuit.

Just as it takes time to discharge a capacitor, it also takes time to charge it
in the first place. The PWM command lets you specify the charging time
in terms of PWM cycles. The period of each cycle is shown in Table 5.86.
So, on the BS2, to charge a capacitor for 5ms, you would specify 5 cycles in
the PWM instruction.

How do you determine how long to charge a capacitor? Use this rule-of-
thumb formula: Charge time = 5 * R * C. For instance, Figure 5.31 uses a 10
kΩ (10 x 103 ohm) resistor and a 1 µF (1 x 10-6 F) capacitor:

Charge time = 5 * 10 x 103 * 1 x 10-6 = 50 x 10-3 seconds, or 50 ms.

Since, on the BS2, each cycle is approximately a millisecond, it would take
at least 50 cycles to charge the capacitor. Assuming the circuit is
connected to pin 0, here’s the complete PWM instruction:

PWM 0, 100, 50 ' charge to 1.96 V

After outputting the PWM pulses, the BASIC Stamp leaves the pin in
input mode (0 in the corresponding bit of DIRS). In input mode, the pin’s
output driver is effectively disconnected. If it were not, the steady output

DETERMINING THE APPROPRIATE CYCLE

TIME FOR YOUR CIRCUIT.

FILTERING THE PWM SIGNAL.

5: BASIC Stamp Command Reference – SHIFTOUT

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 439

' msb first so that the msb appears on pin QH and the lsb on QA. Changing
' MSBFIRST to LSBFIRST causes the data to appear backwards on the outputs.

Main:
 DO
 SHIFTOUT Dpin, Clk, MSBFIRST, [counter] ' send the bits
 PULSOUT Latch, 1 ' transfer to outputs
 PAUSE 100 ' Wait 0.1 seconds
 counter = counter + 1 ' increment counter
 LOOP
 END

STORE – BASIC Stamp Command Reference

Page 450 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Demo Program (STORE0.bsp)

' STORE0.bsp
' This program demonstrates the STORE command and how it affects the READ
' and WRITE commands. This program "STORE0.BSP" is intended to be down-
' loaded into program slot 0. It is meant to work with STORE1.BSP and
' STORE2.BSP. Each program is very similar (they display the current
' Program Slot and READ/WRITE Slot numbers and the values contained in the
' first five EEPROM locations. Each program slot will have different data
' due to different DATA commands in each of the programs downloaded.

' {$STAMP BS2p, STORE1.BSP, STORE2.BSP}
' {$PBASIC 2.5}

#IF ($STAMP < BS2P) #THEN
 #ERROR "This program requires BS2p, BS2pe, or BS2px."
#ENDIF

idx VAR Word ' index
value VAR Byte

LocalData DATA @0, 1, 2, 3, 4, 5

Main:
 GOSUB Show_Slot_Info ' show slot info/data
 PAUSE 2000
 STORE 1 ' point READ/WRITE to Slot 1
 GOSUB Show_Slot_Info
 PAUSE 2000
 RUN 1 ' run program in Slot 1
 END

Show_Slot_Info:
 GET 127, value
 DEBUG CR, "Pgm Slot: ", DEC value.NIB0,
 CR, "R/W Slot: ", DEC value.NIB1,
 CR, CR

 FOR idx = 0 TO 4
 READ idx, value
 DEBUG "Location: ", DEC idx, TAB,
 "Value: ", DEC3 value, CR
 NEXT
 RETURN

NOTE: This example program can be
used with the BS2p, BS2pe, and
BS2px. This program uses conditional
compilation techniques; see Chapter 3
for more information.

5: BASIC Stamp Command Reference – TOGGLE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 457

Demo Program (TOGGLE.bs2)

' TOGGLE.bs2
' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command descrip-
' tion in the manual and run this program. The TOGGLE command will treat
' you to a light show. You may also run the demo without LEDs. The Debug
' window will show you the states of pins 0 through 3.

' {$STAMP BS2}
' {$PBASIC 2.5}

thePin VAR Nib ' pin 0 - 3

Setup:
 DIRA = %1111 ' make LEDs output, low

Main:
 DO
 FOR thePin = 0 TO 3 ' loop through pins
 TOGGLE thePin ' toggle current pin
 DEBUG HOME, BIN4 OUTA ' show on Debug
 PAUSE 250 ' short delay
 NEXT
 LOOP ' repeat forever
 END

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

Appendix B: Reserved Words

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 473

Reserved Words

This appendix contains complete listings of the reserved words for
PBASIC 1.0, PBASIC 2.0, and PBASIC 2.5, current with the BASIC Stamp
Editor v2.1.

The reserved word lists have been organized into 4 tables, because it
varies with each BASIC Stamp model and version of PBASIC. Table B.1
shows the reserved words for the BASIC Stamp 1, using the required
PBASIC 1.0.

Table B.1: BS1 Reserved Words.

BS1
AND GOSUB N2400 PIN0..PIN7 SOUND

B0..B13 GOTO NAP PINS STEP
BIT0..BIT15 HIGH NEXT PORT SYMBOL

BRANCH IF ON300 POT T300
BSAVE INPUT ON600 PULSIN T600

BUTTON LET ON1200 PULSOUT T1200
CLS LOOKDOWN ON2400 PWM T2400
CR LOOKUP OR RANDOM THEN

DEBUG LOW OT300 READ TO
DIR0..DIR7 MAX OT600 RETURN TOGGLE

DIRS MIN OT1200 REVERSE W0..W6
EEPROM N300 OT2400 SERIN WRITE

END N600 OUTPUT SEROUT
FOR N1200 PAUSE SLEEP

Table B.2 on the following page lists the reserved words common to all
BS2 models, including those for PBASIC 2.0 and PBASIC 2.5. Words listed
that are only reserved when using PBASIC 2.5 are marked with (2.5).

Index

Page 500 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

and Identify Function, 48

— V —
Variable Resistance, Measuring, 339–

40, 363–68
Variables

Aliases, 89–91
Arrays, 87–89
Defining, 85–91, 269
Fixed, 84
Modifiers, 89–91
Sizes, 86

VDD, 12, 14, 15, 18, 20, 21, 23
Versions, 3
VIN, 12, 14, 15, 18, 20, 21, 23
Voltage comparison function, of BS2px,

141
VSS, 12, 14, 15, 18, 20, 21, 23

— W —
W0-W6, 82
WAIT, 172, 259, 401, 404
WAITSTR, 172, 219, 259, 297, 404, 406
Warranty, 2
WHILE. See DO...LOOP
WRITE, 153, 449, 459–63

— X —
X0-X15, 20
X10 Control, 465–68
XOR, 235
XOR (^), 109, 119
XOR NOT (^/), 109, 121
XOUT, 465–68
XOUT Command Codes (Table), 467

