
Parallax Inc. - PBASIC48W/PE Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor -

Core Size -

Speed -

Connectivity -

Peripherals -

Number of I/O -

Program Memory Size -

Program Memory Type -

EEPROM Size -

RAM Size -

Voltage - Supply (Vcc/Vdd) -

Data Converters -

Oscillator Type -

Operating Temperature -

Mounting Type -

Package / Case -

Supplier Device Package -

Purchase URL https://www.e-xfl.com/product-detail/parallax/pbasic48w-pe

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pbasic48w-pe-4431456
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

Preface

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 5

Thank you for purchasing a Parallax BASIC Stamp® microcontroller
module. We have done our best to produce several full-featured, easy to
use development systems for BASIC Stamp microcontrollers. Depending
on the Starter Kit you purchased, your BASIC Stamp model, development
board and other contents will vary.

This manual is written for the latest available BASIC Stamp modules and
software as of February 2005. As the product-line evolves, new
information may become available. It is always recommended to visit the
Parallax web site, www.parallax.com, for the latest information.

This manual is intended to be a complete reference manual to the
architecture and command structure of the various BASIC Stamp models.
This manual is not meant to teach BASIC programming or electrical
design; though a person can learn a lot by paying close attention to the
details in this book.

If you have never programmed in the BASIC language or are unfamiliar
with electronics, it would be best to locate one or more of the books listed
on the following page for assistance. All are available, either to order or
to download, from www.parallax.com.

Books available in Adobe’s PDF format are published for free download
on the Parallax web site or on the CD-ROM which ships with our different
Starter Kits. Books available in print may be purchased directly from
Parallax or other distributors.

In addition, there are hundreds of great examples available on the Parallax
CD and web site (www.parallax.com). Also, Nuts & Volts Magazine
(www.nutsvolts.com / 1-800-783-4624) is a national electronic hobbyist's
magazine that features monthly articles featuring BASIC Stamp
applications. This is an excellent resource for beginners and experts alike!

3: Using the BASIC Stamp Editor

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 45

any BS2 model source code. A $PBASIC directive is required to use
version 2.5, which is compatible with all BS2 models.

PBASIC 2.5 has enhanced syntax options for several commands, as well as
some additional commands not available in PBASIC 2.0. Table 3.4 shows
the number of PBASIC commands that are available in each version of the
PBASIC language, on each BASIC Stamp model. Details about the syntax
differences among the three versions of PBASIC are denoted by icons in
the margins of Chapters 4 and 5; also refer to Table 5.1 on page 124 and
individual command syntax descriptions.

Table 3.4: Number of Available
Commands for each BASIC
Stamp Model with each version
of the PBASIC language .

 BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px
PBASIC 1.0 32 - - - - - -
PBASIC 2.0 - 37 40 40 56 56 58
PBASIC 2.5 - 42 45 45 61 61 63

A categorical listing of all PBASIC commands is included at the beginning of Chapter 5,
followed by detailed descriptions of each command in alphabetical order.

Note that the syntax-highlighting feature of the BASIC Stamp Editor will
also adjust to the language version indicated by the $PBASIC directive.
The best way to select the $PBASIC directive is to use the toolbar icons, as
was shown in Figure 3.9. Like the $STAMP directive, you must use care if
you choose to type it in by hand. The syntax is:

' {$PBASIC 1.0} 'Default when a BASIC Stamp 1 module is detected
' {$PBASIC 2.0} 'Default when any BASIC Stamp 2 module is detected
' {$PBASIC 2.5} 'Required for PBASIC 2.5 command set & enhanced syntax

If you try to run a program that contains command syntax specific to
PBASIC 2.5 without including the corresponding compiler directive, you
will probably get an error message. In this case, insert a $PBASIC 2.5
directive and try running the program again.

The optional $PORT directive allows you to indicate a specific PC
communications port through which to download a program to a BASIC
Stamp module. The syntax is as follows:
' {$PORT COM#}

where # is a valid port number. When any PBASIC program containing
this directive is downloaded, all other ports will be ignored. This directive
is especially convenient when using two of the same BASIC Stamp models

THE $PORT DIRECTIVE.

Using the BASIC Stamp Editor

Page 60 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

The Fixed Tab Positions list is used to provide a list of desired fixed tab
positions (used with Fixed Tabs or Fixed plus Smart Tabs options). The
list can be a single number, or a list of comma separated numbers in
ascending order. The allowable range is 2 to 512 and the list size is
virtually unlimited. When multiple values are entered, the difference
between the last two values will be used to set tab positions beyond the
last position. For example, in the default list, the last two positions are 9
and 11; resulting in further tab positions of 13, 15, 17, etc. (multiples of 2
after the last specified position). Since source code is usually indented by
multiples of two (2) spaces, the default list of 3, 5, 7, 9 and 11 is
recommended.

The Default Com Port setting allows you to specify which COM port to
download through. If you specify a specific port here, the Identification
window will report that it is “ignoring” other known ports. This can be
selectively overridden by placing a $PORT directive in the program. If
this setting is left on “AUTO”, the default, the editor will open and scan all
known ports for the correct BASIC Stamp. The button to the right, labeled
‘...’, opens the a window allowing the known port list to be edited.
Modifying the known port list only affects which ports the BASIC Stamp
Editor tries to use; it does not affect which serial ports are installed on
your computer. It is recommended that you delete all known modem
ports and any problematic ports from this list.

For an explanation of the Default Project Download Modes, see Table 3.7
on page 70. This is part of a discussion on BASIC Stamp Projects in the
Advanced Compilation Techniques beginning on page 68, below.

Selecting the “Ignore BS1 Modules unless downloading BS1 source code”
checkbox optimizes identification speed by attempting to locate BS1
modules only if you are downloading BASIC Stamp 1 code. This feature
can also be activated via the Identification or Download window.

Under the Files and Directories tab (Figure 3.23), you can set preferences
for saving and accessing files, as well as automatically creating backup
copies.

THE FIXED TAB POSITIONS LIST.

DEFAULT COM PORT.

THE FILES AND DIRECTORIES TAB.

Using the BASIC Stamp Editor

Page 64 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Figure 3.24: The Debug
Appearance Tab under
Edit → Preferences.

The “Wrap Text to” field gives two options, Pane and Page. Wrapping to
Pane is the default, and causes text to wrap at the right edge of the
Receiver pane, reflecting the current visible size that the user happens to
have set for the Debug Terminal’s window. Wrapping to Page, however,
causes text to wrap at a specific line width, regardless of the user’s current
Debug Terminal window size. The “Page width (characters)” field is
enabled when wrap mode is set to Page. The default page width is 32,
characters and the range is 32 to 128. Note: wrapping to page can be
handy to maintain formatting of formatted tabular information, but could
lead to information being displayed off the edge of the Receive pane if the
Debug Terminal is sized too small.

The maximum Receive pane buffer size is defined in terms of lines. It can
be set to any power of two between 256 and 8192; 1024 is the default. Data
received by the Debug Terminal is maintained in this buffer for display on

TEXT WRAPPING IN THE DEBUG
TERMINAL.

MAXIMUM BUFFER SIZE.

BASIC Stamp Architecture – COS, DCD, ~, -

Page 106 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

result VAR Word

result = -99 ' Put -99 into result
 ' ...(2's complement format)
DEBUG SDEC ? result ' Display as a signed #
DEBUG SDEC ? ABS result ' Display as a signed #

The Cosine operator (COS) returns the two’s complement, 16-bit cosine of
an angle specified as an 8-bit “binary radian” (0 to 255) angle. COS is the
same as SIN in all respects, except that the cosine function returns the x
distance instead of the y distance. See “Sine: SIN”, below, for a code
example and more information.

The Decoder operator (DCD) is a 2n-power decoder of a four-bit value.
DCD accepts a value from 0 to 15, and returns a 16-bit number with the
bit, described by value, set to 1. For example:

result VAR Word

result = DCD 12 ' Set bit 12
DEBUG BIN16 ? result ' Display result (%0001000000000000)

The Inverse operator (~) complements (inverts) the bits of a number. Each
bit that contains a 1 is changed to 0 and each bit containing 0 is changed to
1. This process is also known as a “bitwise NOT” and “ones complement”.
For example:

result VAR Byte

result = %11110001 ' Store bits in byte result.
DEBUG BIN8 ? result ' Display in binary (%11110001)
result = ~ result ' Complement result
DEBUG BIN8 ? Result ' Display in binary (%00001110)

The Negative operator (-) negates a 16-bit number (converts to its twos
complement).

SYMBOL result = W1

result = -99 ' Put -99 into result
 ' ...(2's complement format)
result = result + 100 ' Add 100 to it
DEBUG result ' Display result (1)

-- or --

COSINE: COS

DECODER: DCD

NEGATIVE: -

All 2

All 2

1

INVERSE: ~

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 159

DEBUG BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

DEBUG OutputData { , OutputData }

Function
Display information on the PC screen within the BASIC Stamp Editor’s
Debug Terminal. This command can be used to display text or numbers in
various formats on the PC screen in order to follow program flow (called
debugging) or as part of the functionality of the BASIC Stamp application.

• OutputData is a variable/constant/expression (0 – 65535) that
specifies the information to output. Valid data can be ASCII
characters (text strings and control characters), decimal numbers (0 -
65535), hexadecimal numbers ($0000 - $FFFF) or binary numbers (up
to %1111111111111111). Data can be modified with special
formatters as explained below.

Quick Facts
Table 5.9: DEBUG Quick Facts.

BS1 BS2, BS2e, BS2sx

BS2p, BS2pe
BS2px

Serial
Protocol

Asynchronous
4800, N, 8, 1
True polarity

Custom packetized format

Asynchronous
9600, N, 8, 1

Inverted polarity
Raw data

Asynchronous
19200, N, 8, 1

Inverted polarity
Raw data

Related
Commands

None SEROUT and DEBUGIN

Explanation
DEBUG provides a convenient way for your BASIC Stamp to send
messages to the PC screen while running. The name “debug” suggests its
most popular use; debugging programs by showing you the value of a
variable or expression, or by indicating what portion of a program is
currently executing. DEBUG is also a great way to rehearse programming
techniques. Throughout this manual, we use DEBUG to give you
immediate feedback on the effects of instructions. The following example
demonstrates using the DEBUG command to send the text string message
“Hello World!”.

DEBUG "Hello, World!"

After you download this one-line program, the BASIC Stamp Editor will
open a Debug Terminal on your PC screen and wait for a response from

NOTE: Expressions are not allowed as
arguments on the BS1. The only
constant allowed for the BS1 DEBUG
command is a text string.

1

1 All 2

5: BASIC Stamp Command Reference – DEBUG

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 165

but typing the name of the variables in quotes (for the display) can get a
little tedious. A special formatter, the question mark (?), can save you a lot
of time. The code below does exactly the same thing (with less typing):

x VAR Byte
y VAR Byte

x = 100
y = 250
DEBUG DEC ? x ' Show decimal value of x
DEBUG DEC ? y ' Show decimal value of y

The display would look something like this:

x = 100
y = 250

The ? formatter always displays data in the form "symbol = value"
(followed by a carriage return). In addition, it defaults to displaying in
decimal, so we really only needed to type: DEBUG ? x for the above
code. You can, of course, use any of the three number systems. For
example: DEBUG HEX ? x or DEBUG BIN ? y.

It's important to note that the "symbol" it displays is taken directly from
what appears to the right of the ?. If you were to use an expression, for
example: DEBUG ? x*10/2+3 in the above code, the display would
show: "x*10/2+3 = 503".

A special formatter, ASC, is also available for use only with the ? formatter
to display ASCII characters, as in: DEBUG ASC ? x.

What if you need to display a table of data; multiple rows and columns?
The Signed/Unsigned code (above) approaches this but, if you notice, the
columns don't line up. The number formatters (DEC, HEX and BIN) have
some useful variations to make the display fixed-width (see Table 5.12).
Up to 5 digits can be displayed for decimal numbers. To fix the value to a
specific number of decimal digits, you can use DEC1, DEC2, DEC3, DEC4
or DEC5. For example:

x VAR Byte

x = 165
DEBUG DEC5 x ' Show decimal value of x in 5 digits

DISPLAYING FIXED-WIDTH NUMBERS.

5: BASIC Stamp Command Reference – DEBUGIN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 173

Table 5.17: DEBUGIN Conversion
Formatters.

Conversion
Formatter

Type of Number Numeric
Characters
Accepted

Notes

DEC{1..5} Decimal, optionally limited to 1 – 5 digits 0 through 9 1
SDEC{1..5} Signed decimal, optionally limited to 1 – 5

digits
-, 0 through 9 1,2

HEX{1..4} Hexadecimal, optionally limited to 1 – 4 digits 0 through 9, A
through F

1,3,5

SHEX{1..4} Signed hexadecimal, optionally limited to 1 – 4
digits

-, 0 through 9, A
through F

1,2,3

IHEX{1..4} Indicated hexadecimal, optionally limited to 1 –
4 digits

$, 0 through 9, A
through F

1,3,4

ISHEX{1..4} Signed, indicated hexadecimal, optionally
limited to 1 – 4 digits

-, $, 0 through 9,
A through F

1,2,3,4

BIN{1..16} Binary, optionally limited to 1 – 16 digits 0, 1 1
SBIN{1..16} Signed binary, optionally limited to 1 – 16

digits
-, 0, 1 1,2

IBIN{1..16} Indicated binary, optionally limited to 1 – 16
digits

%, 0, 1 1,4

ISBIN{1..16} Signed, indicated binary, optionally limited
to 1 – 16 digits

-, %, 0, 1 1,2,4

NUM
Generic numeric input (decimal, hexadecimal
or binary); hexadecimal or binary number must
be indicated

$, %, 0 through
9, A through F

1, 3, 4

SNUM
Similar to NUM with value treated as signed
with range -32768 to +32767

-, $, %,
0 through 9,
A through F

1,2,3,4

1 All numeric conversions will continue to accept new data until receiving either the specified

number of digits (ex: three digits for DEC3) or a non-numeric character.
2 To be recognized as part of a number, the minus sign (-) must immediately precede a

numeric character. The minus sign character occurring in non-numeric text is ignored and
any character (including a space) between a minus and a number causes the minus to be
ignored.

3 The hexadecimal formatters are not case-sensitive; “a” through “f” means the same as “A”
through “F”.

4 Indicated hexadecimal and binary formatters ignore all characters, even valid numerics,
until they receive the appropriate prefix ($ for hexadecimal, % for binary). The indicated
formatters can differentiate between text and hexadecimal (ex: ABC would be interpreted
by HEX as a number but IHEX would ignore it unless expressed as $ABC). Likewise, the
binary version can distinguish the decimal number 10 from the binary number %10. A
prefix occurring in non-numeric text is ignored, and any character (including a space)
between a prefix and a number causes the prefix to be ignored. Indicated, signed
formatters require that the minus sign come before the prefix, as in -$1B45.

5 The HEX modifier can be used for Decimal to BCD Conversion. See “Hex to BCD
Conversion” on page 97.

For examples of all conversion formatters and how they process incoming
data, see Appendix C.

5: BASIC Stamp Command Reference – IF...THEN

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 241

' {$STAMP BS2}
' {$PBASIC 2.0}

sample VAR Word ' Random number to be tested
samps VAR Nib ' Number of samples taken
temp VAR Nib ' Temporary workspace

Setup:
 sample = 11500

Mult3:
 RANDOM sample ' Put a random number into sample
 temp = sample // 3
 IF temp <> 0 THEN Mult3 ' Not multiple of 3? -- try again
 DEBUG DEC5 sample, " divides by 3", CR
 samps = samps + 1 ' Count multiples of 3
 IF samps = 10 THEN Done ' Quit with 10 samples
 GOTO Mult3 ' keep checking

Done:
 DEBUG CR, "All done."
 END

Demo Program (IF-THEN-ELSE.bs2)

' IF-THEN-ELSE.bs2
' The program below generates a series of 16-bit random numbers and tests
' each to determine whether they're evenly divisible by 3. If a number is
' evenly divisible by 3, then it is printed, otherwise, the program
' generates another random number. The program counts how many numbers it
' prints, and quits when this number reaches 10.

' {$STAMP BS2}
' {$PBASIC 2.5} ' version 2.5 required

sample VAR Word ' Random number to be tested
hits VAR Nib ' Number of hits
misses VAR Word ' Number of misses

Setup:
 sample = 11500

Main:
 DO
 RANDOM sample ' Put a random number into sample
 IF ((sample // 3) = 0) THEN ' divisible by 3?
 DEBUG DEC5 sample, ' - yes, print value and message
 " is divisible by 3", CR

All 2

NOTE: This example program can be
used with all BS2 models by changing
the $STAMP directive accordingly.

5: BASIC Stamp Command Reference – LOOKUP

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 277

LOOKUP BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

LOOKUP Index, (Value0, Value1, ...ValueN), Variable
LOOKUP Index, [Value0, Value1, ...ValueN], Variable

Function
Find the value at location Index and store it in Variable. If Index exceeds the
highest index value of the items in the list, Variable is left unaffected.

• Index is a variable/constant/expression (0 – 255) indicating the list
item to retrieve.

• Values are variables/constants/expressions (0 – 65535).

• Variable is a variable that will be set to the value at the Index location.
If Index exceeds the highest location number, Variable is left
unaffected.

Quick Facts
Table 5.55: LOOKUP Quick Facts.

 BS1 and all BS2 Models
Limit of Value

Entries
256

Starting Index
Number

0

If index
 exceeds the

highest
location…

Variable is left unaffected

Related
Command

LOOKDOWN

Explanation
LOOKUP retrieves an item from a list based on the item’s position, Index,
in the list. For example:

SYMBOL index = B2
SYMBOL result = B3

index = 3
result = 255

LOOKUP index, (26, 177, 13, 1, 0, 17, 99), result
DEBUG "Item ", #index, "is: ", #result

-- or --

NOTE: Expressions are not allowed as
arguments on the BS1.

1

All 2

1

1

POLLIN – BASIC Stamp Command Reference

Page 318 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – RANDOM

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 359

RANDOM BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

RANDOM Variable

Function
Generate a pseudo-random number.

• Variable is a variable (usually a word) whose bits will be scrambled
to produce a random number. Variable acts as RANDOM's input
and its result output. Each pass through RANDOM stores the next
number, in the pseudorandom sequence, in Variable.

Explanation
RANDOM generates pseudo-random numbers ranging from 0 to 65535.
They’re called “pseudo-random” because they appear random, but are
generated by a logic operation that uses the initial value in Variable to "tap"
into a sequence of 65535 essentially random numbers. If the same initial
value, called the "seed", is always used, then the same sequence of
numbers is generated. The following example demonstrates this:

SYMBOL result = W1

Main:
 result = 11000
 RANDOM result
 DEBUG result
 GOTO Main

-- or --

result VAR Word

Main:
 result = 11000
 RANDOM result
 DEBUG DEC ? result
 GOTO Main

In this example, the same number would appear on the screen over and
over again. This is because the same seed value was used each time;
specifically, the first line of the loop sets result to 11,000. The RANDOM
command really needs a different seed value each time. Moving the
"result =" line out of the loop will solve this problem, as in:

1 All 2

1

All 2

SELECT...CASE – BASIC Stamp Command Reference

Page 392 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

SERIN - BASIC Stamp Command Reference

Page 414 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

 #CASE BS2SX, BS2P
 T1200 CON 2063
 T2400 CON 1021
 T9600 CON 240
 T19K2 CON 110
 T38K4 CON 45
 #CASE BS2PX
 T1200 CON 3313
 T2400 CON 1646
 T9600 CON 396
 T19K2 CON 188
 T38K4 CON 84
#ENDSELECT

Inverted CON $4000
Open CON $8000
Baud CON T38K4 + Inverted

letter VAR Byte

Main:
 DO
 SERIN SI\FC, Baud, [letter] ' receive one byte
 DEBUG letter ' display on screen
 PAUSE 1000 ' wait one second
 LOOP ' repeat forever
 END

STOP – BASIC Stamp Command Reference

Page 448 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

5: BASIC Stamp Command Reference – TOGGLE

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 455

TOGGLE BS1 BS2 BS2e BS2sx BS2p BS2pe BS2px

TOGGLE Pin

Function
Invert the state of an output pin.

• Pin is a variable/constant/expression (0 – 15) that specifies which
I/O pin to switch logic state. This pin will be placed into output
mode.

Quick Facts
Table 5.122: TOGGLE Quick
Facts.

 BS1 All BS2 Models
Affected
Register

PINS OUTS

Related
Commands

HIGH and LOW

Explanation
TOGGLE sets a pin to output mode and inverts the output state of the pin,
changing 0 to 1 and 1 to 0.

In some situations TOGGLE may appear to have no effect on a pin’s state.
For example, suppose pin 2 is in input mode and pulled to +5V by a 10k
resistor. Then the following code executes:

DIR2 = 0 ' make P2 an input
PIN2 = 0 ' make P2 output driver low
DEBUG PIN2 ' show P2 state (1 due to pull-up)
TOGGLE 2 ' toggle P2
DEBUG PIN2 ' show P2 state (1 again)

- or -

DIR2 = 0 ' make P2 an input
OUT2 = 0 ' make P2 output driver low
DEBUG ? IN2 ' show P2 state (1 due to pull-up)
TOGGLE 2 ' toggle P2
DEBUG ? IN2 ' show P2 state (1 again)

The state of pin 2 doesn’t change; it's high (due to the resistor) before
TOGGLE, and it’s high (due to the pin being output high) afterward. The
point is that TOGGLE works on the OUTS register (PINS on the BS1),
which may not match the pin’s state when the pin is initially an input. To

NOTE: Expressions are not allowed as
arguments on the BS1. The range of
the Pin argument on the BS1 is 0 – 7.

1 All 2

1

1

All 2

TOGGLE – BASIC Stamp Command Reference

Page 456 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

guarantee that the state actually changes, regardless of the initial input or
output mode, do this:

PIN2 = PIN2 ' make output driver match input
TOGGLE 2 ' then toggle

- or -

OUT2 = IN2 ' make output driver match input
TOGGLE 2 ' then toggle

Figure 5.47: Example LED Circuit
for TOGGLE Demo Programs.

Demo Program (TOGGLE.bs1)

' TOGGLE.bs1
' Connect LEDs to pins 0 through 3 as shown in the TOGGLE command descrip-
' tion in the manual and run this program. The TOGGLE command will treat
' you to a light show. You may also run the demo without LEDs. The Debug
' window will show you the states of pins 0 through 3.

' {$STAMP BS1}
' {$PBASIC 1.0}

SYMBOL thePin = B0 ' pin 0 - 3

Setup:
 DIRS = %1111 ' make LEDs output, low

Main:
 FOR thePin = 0 TO 3 ' loop through pins
 TOGGLE thePin ' toggle current pin
 DEBUG CLS, %PINS ' show on Debug
 PAUSE 100 ' short delay
 NEXT
 GOTO Main ' repeat forever
 END

All 2

1

1

TOGGLE – BASIC Stamp Command Reference

Page 458 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

Appendix D: BASIC Stamp Schematics

BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com • Page 483

BASIC Stamp 2e Schematic (Rev B)

Index

Page 498 • BASIC Stamp Syntax and Reference Manual 2.2 • www.parallax.com

— S —
Save To, 41
SBIN, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
Schematic

BS1, 481
BS2, 482
BS2e, 483
BS2p24, 485
BS2p40, 486
BS2pe, 487
BS2px, 488
BS2sx, 484

Schmitt Trigger, 143, 145, 150
(diagram), 145

Scratch Pad Ram
Registers, 93

Scratch Pad RAM, 92, 203, 351–52
Registers, 205
Special Purpose Locations

(POLLMODE), 323
SDEC, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
SELECT...CASE, 387–90
SELECT…CASE, 387
Serial Port Diagram, 395
Serial Timeout, 408, 425
Serial Troubleshooting, 410, 427
SERIN, 171, 393–412
SEROUT, 415–28
SHEX, 163, 173, 220, 227, 260, 265,

298, 306, 403, 422
Shift Left (<<), 109, 117
Shift Right (>>), 109, 117
SHIFTIN, 431–34
SHIFTOUT, 435–40
Shortcuts. See Keyboard Shortcuts
SIN, 105, 107
SIN (pin), 14, 15, 18, 20, 21, 23
Sine (SIN), 105, 107
Single Executable File, 76
SKIP, 172, 219, 259, 297, 404

SLEEP, 187, 335, 441–42
SNUM, 173, 220, 260, 298, 403
SOUND. See also SOUND, FREQOUT,

DTMFOUT
SOUND, 445–46
Sound, Generation (BS1), 445–46
Sound, Generation (Non-BS1), 199–201
SOUT, 14, 15, 18, 20, 21, 23
Speaker, 180, 200, 446
Special Formatters

DEBUGIN, 172
I2CIN, 219
I2COUT, 228
LCDIN, 259
OWIN, 297
OWOUT, 305
SERIN, 404
SEROUT, 422

Split Window View, 36
SPRAM. See Scratch Pad RAM
SPSTR, 219, 297, 404
SPSTR L, 172
SQR, 105, 108
Square Root (SQR), 105, 108
STAMP Directive. See $STAMP

Directive
StampLoader.exe program, 76
Static Sensitive Devices, 25
STEP. See FOR...NEXT
STOP, 447
STORE, 449, 459
STR, 163, 166, 172, 219, 228, 259,

297, 305, 404, 422
Strings

Displaying, 166
Subroutines, 209, 375
Subtract (-), 109, 110
Switching Program Slots, 381–85
Symbol Name Rules, 86
Symbols (Characters). See +

#, 161
$, 161
%, 161

